Properties

Label 245.2.l
Level $245$
Weight $2$
Character orbit 245.l
Rep. character $\chi_{245}(68,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $64$
Newform subspaces $4$
Sturm bound $56$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.l (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 4 \)
Sturm bound: \(56\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(245, [\chi])\).

Total New Old
Modular forms 144 96 48
Cusp forms 80 64 16
Eisenstein series 64 32 32

Trace form

\( 64 q + 2 q^{2} + 6 q^{3} - 20 q^{8} - 6 q^{10} - 8 q^{11} - 6 q^{12} - 12 q^{15} + 4 q^{16} - 12 q^{17} - 36 q^{18} - 48 q^{22} - 14 q^{23} + 20 q^{25} + 24 q^{26} - 20 q^{30} + 24 q^{31} + 62 q^{32} + 56 q^{36}+ \cdots - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
245.2.l.a 245.l 35.k $4$ $1.956$ \(\Q(\zeta_{12})\) None 35.2.k.a \(-4\) \(2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12})q^{2}+(\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+\cdots\)
245.2.l.b 245.l 35.k $4$ $1.956$ \(\Q(\zeta_{12})\) None 35.2.k.a \(2\) \(4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1+\zeta_{12}+\cdots)q^{3}+\cdots\)
245.2.l.c 245.l 35.k $8$ $1.956$ 8.0.3317760000.2 None 35.2.f.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\beta _{2}-\beta _{4})q^{2}+\beta _{1}q^{3}+\beta _{5}q^{5}+\cdots\)
245.2.l.d 245.l 35.k $48$ $1.956$ None 245.2.f.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(245, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)