Defining parameters
Level: | \( N \) | = | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 46 \) | ||
Sturm bound: | \(9408\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(245))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2592 | 2215 | 377 |
Cusp forms | 2113 | 1925 | 188 |
Eisenstein series | 479 | 290 | 189 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(245))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(245))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(245)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(245))\)\(^{\oplus 1}\)