Properties

Label 35.2.k.a
Level 35
Weight 2
Character orbit 35.k
Analytic conductor 0.279
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 35 = 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 35.k (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.279476407074\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{12} ) q^{2} + ( -\zeta_{12}^{2} + \zeta_{12}^{3} ) q^{3} + ( 1 + \zeta_{12}^{2} ) q^{4} + ( -\zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{5} + ( -1 + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{6} + ( -\zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} + ( -1 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{8} + ( -2 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{12} ) q^{2} + ( -\zeta_{12}^{2} + \zeta_{12}^{3} ) q^{3} + ( 1 + \zeta_{12}^{2} ) q^{4} + ( -\zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{5} + ( -1 + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{6} + ( -\zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} + ( -1 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{8} + ( -2 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{9} + ( -1 + \zeta_{12} + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{10} + ( 1 + \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{11} + ( 1 - \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{12} + ( 2 + 2 \zeta_{12}^{3} ) q^{13} + ( 2 + \zeta_{12} - 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{14} + ( -2 + 3 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{15} + ( 2 \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{16} + ( 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{17} + ( 1 - \zeta_{12} - \zeta_{12}^{2} ) q^{18} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{19} + ( 2 - 2 \zeta_{12} - 4 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{20} + ( 3 - 2 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{21} + ( 1 + \zeta_{12}^{3} ) q^{22} + ( -3 + \zeta_{12} + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{23} + ( 1 - \zeta_{12}^{2} ) q^{24} + ( -3 + 4 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{25} + ( -4 + 2 \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{26} + ( 1 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{27} + ( \zeta_{12} - 5 \zeta_{12}^{3} ) q^{28} -3 \zeta_{12}^{3} q^{29} + ( 4 - 5 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{30} + ( -2 - 4 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{31} + ( -4 - 4 \zeta_{12} + 5 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{32} + ( -\zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{33} -2 q^{34} + ( 1 - 4 \zeta_{12} + 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{35} + ( -3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{36} + ( 4 - 2 \zeta_{12} - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{37} + ( 1 + \zeta_{12} - 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{38} + ( -2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{39} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{40} + ( -2 + 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{41} + ( -6 + 5 \zeta_{12} + 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{42} + ( 1 + 5 \zeta_{12} - 5 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{43} + ( 2 + 3 \zeta_{12} - \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{44} + ( 3 + 3 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{45} + ( 7 - 4 \zeta_{12} - 7 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{46} + ( 4 + 5 \zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{47} + ( -5 + 3 \zeta_{12} + 3 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{48} + ( -8 + 5 \zeta_{12}^{2} ) q^{49} + ( 3 - 7 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{50} -2 \zeta_{12}^{2} q^{51} + ( 2 - 2 \zeta_{12} + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{52} + ( 5 - 5 \zeta_{12} - 5 \zeta_{12}^{2} ) q^{53} + ( -2 \zeta_{12} + 5 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{54} + ( -3 - 4 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{55} + ( 1 + 3 \zeta_{12} + 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{56} + ( 3 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{57} + ( 3 - 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{58} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{59} + ( -3 + 5 \zeta_{12} - \zeta_{12}^{3} ) q^{60} + ( -4 + 5 \zeta_{12} + 2 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{61} + ( 2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{62} + ( 1 + 4 \zeta_{12} + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{63} + ( 1 - 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{64} + ( 2 \zeta_{12} - 6 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{65} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{66} + ( -6 - 6 \zeta_{12} + \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{67} + ( -2 - 2 \zeta_{12} + 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{68} + ( 7 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{69} + ( -7 + 5 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{70} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{71} + ( 2 + \zeta_{12} - 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{72} + ( -8 - 8 \zeta_{12} + 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{73} + ( -2 + 6 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{74} + ( -1 - 3 \zeta_{12} + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{75} + ( -1 + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{76} + ( -4 - 3 \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{77} + ( 2 - 4 \zeta_{12} + 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{78} + ( 2 - 5 \zeta_{12} - \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{79} + ( -4 + 5 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{80} + ( -2 + 5 \zeta_{12} + 2 \zeta_{12}^{2} - 10 \zeta_{12}^{3} ) q^{81} + ( -1 - 2 \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{82} + ( -2 + 3 \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{83} + ( 4 - 5 \zeta_{12} + \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{84} + ( 4 + 2 \zeta_{12} - 6 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{85} + ( -4 \zeta_{12} + 9 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{86} + ( 3 - 3 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{87} + ( -1 + \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} + ( 5 \zeta_{12} - 8 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{89} + ( -1 + 3 \zeta_{12}^{3} ) q^{90} + ( 6 - 2 \zeta_{12} - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{91} + ( -7 + 5 \zeta_{12} + 5 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{92} + ( 2 + 2 \zeta_{12} ) q^{93} + ( -3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{94} + ( 3 - 3 \zeta_{12} - \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{95} + ( 10 - 6 \zeta_{12} - 5 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{96} + ( 3 + 8 \zeta_{12} - 8 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{97} + ( 8 - 8 \zeta_{12} - 5 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{98} + ( -2 + 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} - 2q^{3} + 6q^{4} - 4q^{5} - 2q^{8} - 6q^{9} + O(q^{10}) \) \( 4q - 4q^{2} - 2q^{3} + 6q^{4} - 4q^{5} - 2q^{8} - 6q^{9} + 2q^{11} + 8q^{13} + 2q^{14} - 6q^{15} - 2q^{16} + 4q^{17} + 2q^{18} + 2q^{19} + 10q^{21} + 4q^{22} - 4q^{23} + 2q^{24} - 6q^{25} - 12q^{26} - 2q^{27} + 16q^{30} - 12q^{31} - 6q^{32} + 2q^{33} - 8q^{34} + 8q^{35} - 12q^{36} + 12q^{37} - 2q^{38} - 12q^{39} + 10q^{40} - 20q^{42} - 6q^{43} + 6q^{44} + 14q^{45} + 14q^{46} + 18q^{47} - 14q^{48} - 22q^{49} + 14q^{50} - 4q^{51} + 12q^{52} + 10q^{53} + 10q^{54} - 8q^{55} + 8q^{56} + 8q^{57} + 6q^{58} + 6q^{59} - 12q^{60} - 12q^{61} + 4q^{62} + 8q^{63} - 12q^{65} - 6q^{66} - 22q^{67} + 28q^{69} - 28q^{70} + 12q^{71} + 2q^{72} - 24q^{73} - 12q^{74} + 4q^{75} - 18q^{77} + 16q^{78} + 6q^{79} - 16q^{80} - 4q^{81} - 6q^{82} - 2q^{83} + 18q^{84} + 4q^{85} + 18q^{86} + 12q^{87} + 2q^{88} - 16q^{89} - 4q^{90} + 20q^{91} - 18q^{92} + 8q^{93} - 6q^{94} + 10q^{95} + 30q^{96} - 4q^{97} + 22q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(\zeta_{12}^{3}\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−1.86603 0.500000i −0.500000 1.86603i 1.50000 + 0.866025i −0.133975 2.23205i 3.73205i 0.866025 + 2.50000i 0.366025 + 0.366025i −0.633975 + 0.366025i −0.866025 + 4.23205i
12.1 −1.86603 + 0.500000i −0.500000 + 1.86603i 1.50000 0.866025i −0.133975 + 2.23205i 3.73205i 0.866025 2.50000i 0.366025 0.366025i −0.633975 0.366025i −0.866025 4.23205i
17.1 −0.133975 + 0.500000i −0.500000 + 0.133975i 1.50000 + 0.866025i −1.86603 1.23205i 0.267949i −0.866025 2.50000i −1.36603 + 1.36603i −2.36603 + 1.36603i 0.866025 0.767949i
33.1 −0.133975 0.500000i −0.500000 0.133975i 1.50000 0.866025i −1.86603 + 1.23205i 0.267949i −0.866025 + 2.50000i −1.36603 1.36603i −2.36603 1.36603i 0.866025 + 0.767949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.2.k.a 4
3.b odd 2 1 315.2.bz.b 4
4.b odd 2 1 560.2.ci.a 4
5.b even 2 1 175.2.o.b 4
5.c odd 4 1 35.2.k.b yes 4
5.c odd 4 1 175.2.o.a 4
7.b odd 2 1 245.2.l.a 4
7.c even 3 1 245.2.f.a 4
7.c even 3 1 245.2.l.b 4
7.d odd 6 1 35.2.k.b yes 4
7.d odd 6 1 245.2.f.b 4
15.e even 4 1 315.2.bz.a 4
20.e even 4 1 560.2.ci.b 4
21.g even 6 1 315.2.bz.a 4
28.f even 6 1 560.2.ci.b 4
35.f even 4 1 245.2.l.b 4
35.i odd 6 1 175.2.o.a 4
35.k even 12 1 inner 35.2.k.a 4
35.k even 12 1 175.2.o.b 4
35.k even 12 1 245.2.f.a 4
35.l odd 12 1 245.2.f.b 4
35.l odd 12 1 245.2.l.a 4
105.w odd 12 1 315.2.bz.b 4
140.x odd 12 1 560.2.ci.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.k.a 4 1.a even 1 1 trivial
35.2.k.a 4 35.k even 12 1 inner
35.2.k.b yes 4 5.c odd 4 1
35.2.k.b yes 4 7.d odd 6 1
175.2.o.a 4 5.c odd 4 1
175.2.o.a 4 35.i odd 6 1
175.2.o.b 4 5.b even 2 1
175.2.o.b 4 35.k even 12 1
245.2.f.a 4 7.c even 3 1
245.2.f.a 4 35.k even 12 1
245.2.f.b 4 7.d odd 6 1
245.2.f.b 4 35.l odd 12 1
245.2.l.a 4 7.b odd 2 1
245.2.l.a 4 35.l odd 12 1
245.2.l.b 4 7.c even 3 1
245.2.l.b 4 35.f even 4 1
315.2.bz.a 4 15.e even 4 1
315.2.bz.a 4 21.g even 6 1
315.2.bz.b 4 3.b odd 2 1
315.2.bz.b 4 105.w odd 12 1
560.2.ci.a 4 4.b odd 2 1
560.2.ci.a 4 140.x odd 12 1
560.2.ci.b 4 20.e even 4 1
560.2.ci.b 4 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 4 T_{2}^{3} + 5 T_{2}^{2} + 2 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(35, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 4 T + 5 T^{2} - 2 T^{3} - 11 T^{4} - 4 T^{5} + 20 T^{6} + 32 T^{7} + 16 T^{8} \)
$3$ \( 1 + 2 T + 5 T^{2} + 10 T^{3} + 16 T^{4} + 30 T^{5} + 45 T^{6} + 54 T^{7} + 81 T^{8} \)
$5$ \( 1 + 4 T + 11 T^{2} + 20 T^{3} + 25 T^{4} \)
$7$ \( 1 + 11 T^{2} + 49 T^{4} \)
$11$ \( 1 - 2 T - 16 T^{2} + 4 T^{3} + 235 T^{4} + 44 T^{5} - 1936 T^{6} - 2662 T^{7} + 14641 T^{8} \)
$13$ \( ( 1 - 4 T + 8 T^{2} - 52 T^{3} + 169 T^{4} )^{2} \)
$17$ \( 1 - 4 T + 20 T^{2} - 100 T^{3} + 271 T^{4} - 1700 T^{5} + 5780 T^{6} - 19652 T^{7} + 83521 T^{8} \)
$19$ \( 1 - 2 T - 32 T^{2} + 4 T^{3} + 859 T^{4} + 76 T^{5} - 11552 T^{6} - 13718 T^{7} + 130321 T^{8} \)
$23$ \( 1 + 4 T + 53 T^{2} + 244 T^{3} + 1588 T^{4} + 5612 T^{5} + 28037 T^{6} + 48668 T^{7} + 279841 T^{8} \)
$29$ \( ( 1 - 49 T^{2} + 841 T^{4} )^{2} \)
$31$ \( 1 + 12 T + 106 T^{2} + 696 T^{3} + 3891 T^{4} + 21576 T^{5} + 101866 T^{6} + 357492 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 12 T + 72 T^{2} - 288 T^{3} + 983 T^{4} - 10656 T^{5} + 98568 T^{6} - 607836 T^{7} + 1874161 T^{8} \)
$41$ \( 1 - 122 T^{2} + 6651 T^{4} - 205082 T^{6} + 2825761 T^{8} \)
$43$ \( 1 + 6 T + 18 T^{2} + 60 T^{3} - 889 T^{4} + 2580 T^{5} + 33282 T^{6} + 477042 T^{7} + 3418801 T^{8} \)
$47$ \( 1 - 18 T + 90 T^{2} + 528 T^{3} - 8377 T^{4} + 24816 T^{5} + 198810 T^{6} - 1868814 T^{7} + 4879681 T^{8} \)
$53$ \( ( 1 - 14 T + 143 T^{2} - 742 T^{3} + 2809 T^{4} )( 1 + 4 T - 37 T^{2} + 212 T^{3} + 2809 T^{4} ) \)
$59$ \( 1 - 6 T - 64 T^{2} + 108 T^{3} + 4395 T^{4} + 6372 T^{5} - 222784 T^{6} - 1232274 T^{7} + 12117361 T^{8} \)
$61$ \( 1 + 12 T + 157 T^{2} + 1308 T^{3} + 11088 T^{4} + 79788 T^{5} + 584197 T^{6} + 2723772 T^{7} + 13845841 T^{8} \)
$67$ \( 1 + 22 T + 137 T^{2} - 834 T^{3} - 16648 T^{4} - 55878 T^{5} + 614993 T^{6} + 6616786 T^{7} + 20151121 T^{8} \)
$71$ \( ( 1 - 6 T + 148 T^{2} - 426 T^{3} + 5041 T^{4} )^{2} \)
$73$ \( 1 + 24 T + 144 T^{2} - 1752 T^{3} - 31057 T^{4} - 127896 T^{5} + 767376 T^{6} + 9336408 T^{7} + 28398241 T^{8} \)
$79$ \( 1 - 6 T + 148 T^{2} - 816 T^{3} + 13203 T^{4} - 64464 T^{5} + 923668 T^{6} - 2958234 T^{7} + 38950081 T^{8} \)
$83$ \( 1 + 2 T + 2 T^{2} + 140 T^{3} + 9631 T^{4} + 11620 T^{5} + 13778 T^{6} + 1143574 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 + 16 T + 89 T^{2} )^{2}( 1 - 16 T + 167 T^{2} - 1424 T^{3} + 7921 T^{4} ) \)
$97$ \( 1 + 4 T + 8 T^{2} + 12 T^{3} - 8818 T^{4} + 1164 T^{5} + 75272 T^{6} + 3650692 T^{7} + 88529281 T^{8} \)
show more
show less