Properties

Label 35.2.k.a
Level $35$
Weight $2$
Character orbit 35.k
Analytic conductor $0.279$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,2,Mod(3,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35.k (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.279476407074\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12} - 1) q^{2} + (\zeta_{12}^{3} - \zeta_{12}^{2}) q^{3} + (\zeta_{12}^{2} + 1) q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} - \zeta_{12}) q^{5} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}^{2} - 1) q^{6}+ \cdots + (4 \zeta_{12}^{3} + 4 \zeta_{12}^{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{5} - 2 q^{8} - 6 q^{9} + 2 q^{11} + 8 q^{13} + 2 q^{14} - 6 q^{15} - 2 q^{16} + 4 q^{17} + 2 q^{18} + 2 q^{19} + 10 q^{21} + 4 q^{22} - 4 q^{23} + 2 q^{24} - 6 q^{25}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(\zeta_{12}^{3}\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−1.86603 0.500000i −0.500000 1.86603i 1.50000 + 0.866025i −0.133975 2.23205i 3.73205i 0.866025 + 2.50000i 0.366025 + 0.366025i −0.633975 + 0.366025i −0.866025 + 4.23205i
12.1 −1.86603 + 0.500000i −0.500000 + 1.86603i 1.50000 0.866025i −0.133975 + 2.23205i 3.73205i 0.866025 2.50000i 0.366025 0.366025i −0.633975 0.366025i −0.866025 4.23205i
17.1 −0.133975 + 0.500000i −0.500000 + 0.133975i 1.50000 + 0.866025i −1.86603 1.23205i 0.267949i −0.866025 2.50000i −1.36603 + 1.36603i −2.36603 + 1.36603i 0.866025 0.767949i
33.1 −0.133975 0.500000i −0.500000 0.133975i 1.50000 0.866025i −1.86603 + 1.23205i 0.267949i −0.866025 + 2.50000i −1.36603 1.36603i −2.36603 1.36603i 0.866025 + 0.767949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.2.k.a 4
3.b odd 2 1 315.2.bz.b 4
4.b odd 2 1 560.2.ci.a 4
5.b even 2 1 175.2.o.b 4
5.c odd 4 1 35.2.k.b yes 4
5.c odd 4 1 175.2.o.a 4
7.b odd 2 1 245.2.l.a 4
7.c even 3 1 245.2.f.a 4
7.c even 3 1 245.2.l.b 4
7.d odd 6 1 35.2.k.b yes 4
7.d odd 6 1 245.2.f.b 4
15.e even 4 1 315.2.bz.a 4
20.e even 4 1 560.2.ci.b 4
21.g even 6 1 315.2.bz.a 4
28.f even 6 1 560.2.ci.b 4
35.f even 4 1 245.2.l.b 4
35.i odd 6 1 175.2.o.a 4
35.k even 12 1 inner 35.2.k.a 4
35.k even 12 1 175.2.o.b 4
35.k even 12 1 245.2.f.a 4
35.l odd 12 1 245.2.f.b 4
35.l odd 12 1 245.2.l.a 4
105.w odd 12 1 315.2.bz.b 4
140.x odd 12 1 560.2.ci.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.k.a 4 1.a even 1 1 trivial
35.2.k.a 4 35.k even 12 1 inner
35.2.k.b yes 4 5.c odd 4 1
35.2.k.b yes 4 7.d odd 6 1
175.2.o.a 4 5.c odd 4 1
175.2.o.a 4 35.i odd 6 1
175.2.o.b 4 5.b even 2 1
175.2.o.b 4 35.k even 12 1
245.2.f.a 4 7.c even 3 1
245.2.f.a 4 35.k even 12 1
245.2.f.b 4 7.d odd 6 1
245.2.f.b 4 35.l odd 12 1
245.2.l.a 4 7.b odd 2 1
245.2.l.a 4 35.l odd 12 1
245.2.l.b 4 7.c even 3 1
245.2.l.b 4 35.f even 4 1
315.2.bz.a 4 15.e even 4 1
315.2.bz.a 4 21.g even 6 1
315.2.bz.b 4 3.b odd 2 1
315.2.bz.b 4 105.w odd 12 1
560.2.ci.a 4 4.b odd 2 1
560.2.ci.a 4 140.x odd 12 1
560.2.ci.b 4 20.e even 4 1
560.2.ci.b 4 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 4T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(35, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$41$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$43$ \( T^{4} + 6 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$47$ \( T^{4} - 18 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$53$ \( T^{4} - 10 T^{3} + \cdots + 2500 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$61$ \( T^{4} + 12 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$67$ \( T^{4} + 22 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 24 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$79$ \( T^{4} - 6 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$83$ \( T^{4} + 2 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$89$ \( T^{4} + 16 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$97$ \( T^{4} + 4 T^{3} + \cdots + 8836 \) Copy content Toggle raw display
show more
show less