Properties

Label 245.2.l.c.178.1
Level $245$
Weight $2$
Character 245.178
Analytic conductor $1.956$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(68,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 178.1
Root \(-0.578737 - 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 245.178
Dual form 245.2.l.c.117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-0.578737 - 2.15988i) q^{3} +(-2.15988 - 0.578737i) q^{5} -3.16228i q^{6} +(-2.00000 - 2.00000i) q^{8} +(-1.73205 + 1.00000i) q^{9} +(-2.73861 - 1.58114i) q^{10} +(0.500000 - 0.866025i) q^{11} +(1.58114 - 1.58114i) q^{13} +5.00000i q^{15} +(-2.00000 - 3.46410i) q^{16} +(2.15988 - 0.578737i) q^{17} +(-2.73205 + 0.732051i) q^{18} +(1.58114 + 2.73861i) q^{19} +(1.00000 - 1.00000i) q^{22} +(0.732051 - 2.73205i) q^{23} +(-3.16228 + 5.47723i) q^{24} +(4.33013 + 2.50000i) q^{25} +(2.73861 - 1.58114i) q^{26} +(-1.58114 - 1.58114i) q^{27} -3.00000i q^{29} +(-1.83013 + 6.83013i) q^{30} +(2.73861 + 1.58114i) q^{31} +(-2.15988 - 0.578737i) q^{33} +3.16228 q^{34} +(8.19615 + 2.19615i) q^{37} +(1.15747 + 4.31975i) q^{38} +(-4.33013 - 2.50000i) q^{39} +(3.16228 + 5.47723i) q^{40} +9.48683i q^{41} +(-3.00000 - 3.00000i) q^{43} +(4.31975 - 1.15747i) q^{45} +(2.00000 - 3.46410i) q^{46} +(1.73621 - 6.47963i) q^{47} +(-6.32456 + 6.32456i) q^{48} +(5.00000 + 5.00000i) q^{50} +(-2.50000 - 4.33013i) q^{51} +(-1.36603 + 0.366025i) q^{53} +(-1.58114 - 2.73861i) q^{54} +(-1.58114 + 1.58114i) q^{55} +(5.00000 - 5.00000i) q^{57} +(1.09808 - 4.09808i) q^{58} +(4.74342 - 8.21584i) q^{59} +(-5.47723 + 3.16228i) q^{61} +(3.16228 + 3.16228i) q^{62} +8.00000i q^{64} +(-4.33013 + 2.50000i) q^{65} +(-2.73861 - 1.58114i) q^{66} +(-0.366025 - 1.36603i) q^{67} -6.32456 q^{69} -6.00000 q^{71} +(5.46410 + 1.46410i) q^{72} +(10.3923 + 6.00000i) q^{74} +(2.89368 - 10.7994i) q^{75} +(-5.00000 - 5.00000i) q^{78} +(-11.2583 + 6.50000i) q^{79} +(2.31495 + 8.63950i) q^{80} +(-5.50000 + 9.52628i) q^{81} +(-3.47242 + 12.9593i) q^{82} +(3.16228 - 3.16228i) q^{83} -5.00000 q^{85} +(-3.00000 - 5.19615i) q^{86} +(-6.47963 + 1.73621i) q^{87} +(-2.73205 + 0.732051i) q^{88} +(-3.16228 - 5.47723i) q^{89} +6.32456 q^{90} +(1.83013 - 6.83013i) q^{93} +(4.74342 - 8.21584i) q^{94} +(-1.83013 - 6.83013i) q^{95} +(1.58114 + 1.58114i) q^{97} +2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 16 q^{8} + 4 q^{11} - 16 q^{16} - 8 q^{18} + 8 q^{22} - 8 q^{23} + 20 q^{30} + 24 q^{37} - 24 q^{43} + 16 q^{46} + 40 q^{50} - 20 q^{51} - 4 q^{53} + 40 q^{57} - 12 q^{58} + 4 q^{67} - 48 q^{71}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.965926 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(3\) −0.578737 2.15988i −0.334134 1.24700i −0.904805 0.425826i \(-0.859984\pi\)
0.570671 0.821179i \(-0.306683\pi\)
\(4\) 0 0
\(5\) −2.15988 0.578737i −0.965926 0.258819i
\(6\) 3.16228i 1.29099i
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) −1.73205 + 1.00000i −0.577350 + 0.333333i
\(10\) −2.73861 1.58114i −0.866025 0.500000i
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0 0
\(13\) 1.58114 1.58114i 0.438529 0.438529i −0.452988 0.891517i \(-0.649642\pi\)
0.891517 + 0.452988i \(0.149642\pi\)
\(14\) 0 0
\(15\) 5.00000i 1.29099i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 2.15988 0.578737i 0.523847 0.140364i 0.0128014 0.999918i \(-0.495925\pi\)
0.511045 + 0.859554i \(0.329258\pi\)
\(18\) −2.73205 + 0.732051i −0.643951 + 0.172546i
\(19\) 1.58114 + 2.73861i 0.362738 + 0.628281i 0.988410 0.151805i \(-0.0485086\pi\)
−0.625672 + 0.780086i \(0.715175\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.00000i 0.213201 0.213201i
\(23\) 0.732051 2.73205i 0.152643 0.569672i −0.846653 0.532146i \(-0.821386\pi\)
0.999296 0.0375258i \(-0.0119476\pi\)
\(24\) −3.16228 + 5.47723i −0.645497 + 1.11803i
\(25\) 4.33013 + 2.50000i 0.866025 + 0.500000i
\(26\) 2.73861 1.58114i 0.537086 0.310087i
\(27\) −1.58114 1.58114i −0.304290 0.304290i
\(28\) 0 0
\(29\) 3.00000i 0.557086i −0.960424 0.278543i \(-0.910149\pi\)
0.960424 0.278543i \(-0.0898515\pi\)
\(30\) −1.83013 + 6.83013i −0.334134 + 1.24700i
\(31\) 2.73861 + 1.58114i 0.491869 + 0.283981i 0.725350 0.688381i \(-0.241678\pi\)
−0.233480 + 0.972362i \(0.575011\pi\)
\(32\) 0 0
\(33\) −2.15988 0.578737i −0.375986 0.100745i
\(34\) 3.16228 0.542326
\(35\) 0 0
\(36\) 0 0
\(37\) 8.19615 + 2.19615i 1.34744 + 0.361045i 0.859189 0.511658i \(-0.170969\pi\)
0.488250 + 0.872704i \(0.337635\pi\)
\(38\) 1.15747 + 4.31975i 0.187767 + 0.700756i
\(39\) −4.33013 2.50000i −0.693375 0.400320i
\(40\) 3.16228 + 5.47723i 0.500000 + 0.866025i
\(41\) 9.48683i 1.48159i 0.671729 + 0.740797i \(0.265552\pi\)
−0.671729 + 0.740797i \(0.734448\pi\)
\(42\) 0 0
\(43\) −3.00000 3.00000i −0.457496 0.457496i 0.440337 0.897833i \(-0.354859\pi\)
−0.897833 + 0.440337i \(0.854859\pi\)
\(44\) 0 0
\(45\) 4.31975 1.15747i 0.643951 0.172546i
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) 1.73621 6.47963i 0.253252 0.945151i −0.715802 0.698303i \(-0.753939\pi\)
0.969054 0.246847i \(-0.0793947\pi\)
\(48\) −6.32456 + 6.32456i −0.912871 + 0.912871i
\(49\) 0 0
\(50\) 5.00000 + 5.00000i 0.707107 + 0.707107i
\(51\) −2.50000 4.33013i −0.350070 0.606339i
\(52\) 0 0
\(53\) −1.36603 + 0.366025i −0.187638 + 0.0502775i −0.351414 0.936220i \(-0.614299\pi\)
0.163776 + 0.986498i \(0.447632\pi\)
\(54\) −1.58114 2.73861i −0.215166 0.372678i
\(55\) −1.58114 + 1.58114i −0.213201 + 0.213201i
\(56\) 0 0
\(57\) 5.00000 5.00000i 0.662266 0.662266i
\(58\) 1.09808 4.09808i 0.144184 0.538104i
\(59\) 4.74342 8.21584i 0.617540 1.06961i −0.372393 0.928075i \(-0.621463\pi\)
0.989933 0.141536i \(-0.0452041\pi\)
\(60\) 0 0
\(61\) −5.47723 + 3.16228i −0.701287 + 0.404888i −0.807827 0.589420i \(-0.799356\pi\)
0.106540 + 0.994308i \(0.466023\pi\)
\(62\) 3.16228 + 3.16228i 0.401610 + 0.401610i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −4.33013 + 2.50000i −0.537086 + 0.310087i
\(66\) −2.73861 1.58114i −0.337100 0.194625i
\(67\) −0.366025 1.36603i −0.0447171 0.166887i 0.939956 0.341295i \(-0.110865\pi\)
−0.984673 + 0.174408i \(0.944199\pi\)
\(68\) 0 0
\(69\) −6.32456 −0.761387
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 5.46410 + 1.46410i 0.643951 + 0.172546i
\(73\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(74\) 10.3923 + 6.00000i 1.20808 + 0.697486i
\(75\) 2.89368 10.7994i 0.334134 1.24700i
\(76\) 0 0
\(77\) 0 0
\(78\) −5.00000 5.00000i −0.566139 0.566139i
\(79\) −11.2583 + 6.50000i −1.26666 + 0.731307i −0.974355 0.225018i \(-0.927756\pi\)
−0.292306 + 0.956325i \(0.594423\pi\)
\(80\) 2.31495 + 8.63950i 0.258819 + 0.965926i
\(81\) −5.50000 + 9.52628i −0.611111 + 1.05848i
\(82\) −3.47242 + 12.9593i −0.383465 + 1.43111i
\(83\) 3.16228 3.16228i 0.347105 0.347105i −0.511925 0.859030i \(-0.671067\pi\)
0.859030 + 0.511925i \(0.171067\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) −3.00000 5.19615i −0.323498 0.560316i
\(87\) −6.47963 + 1.73621i −0.694689 + 0.186141i
\(88\) −2.73205 + 0.732051i −0.291238 + 0.0780369i
\(89\) −3.16228 5.47723i −0.335201 0.580585i 0.648323 0.761366i \(-0.275471\pi\)
−0.983523 + 0.180781i \(0.942137\pi\)
\(90\) 6.32456 0.666667
\(91\) 0 0
\(92\) 0 0
\(93\) 1.83013 6.83013i 0.189775 0.708251i
\(94\) 4.74342 8.21584i 0.489246 0.847399i
\(95\) −1.83013 6.83013i −0.187767 0.700756i
\(96\) 0 0
\(97\) 1.58114 + 1.58114i 0.160540 + 0.160540i 0.782806 0.622266i \(-0.213788\pi\)
−0.622266 + 0.782806i \(0.713788\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) −2.73861 1.58114i −0.272502 0.157329i 0.357522 0.933905i \(-0.383622\pi\)
−0.630024 + 0.776576i \(0.716955\pi\)
\(102\) −1.83013 6.83013i −0.181210 0.676283i
\(103\) 15.1191 + 4.05116i 1.48973 + 0.399173i 0.909647 0.415383i \(-0.136352\pi\)
0.580086 + 0.814556i \(0.303019\pi\)
\(104\) −6.32456 −0.620174
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 4.09808 + 1.09808i 0.396176 + 0.106155i 0.451406 0.892319i \(-0.350923\pi\)
−0.0552301 + 0.998474i \(0.517589\pi\)
\(108\) 0 0
\(109\) −6.06218 3.50000i −0.580651 0.335239i 0.180741 0.983531i \(-0.442150\pi\)
−0.761392 + 0.648292i \(0.775484\pi\)
\(110\) −2.73861 + 1.58114i −0.261116 + 0.150756i
\(111\) 18.9737i 1.80090i
\(112\) 0 0
\(113\) 12.0000 + 12.0000i 1.12887 + 1.12887i 0.990362 + 0.138503i \(0.0442291\pi\)
0.138503 + 0.990362i \(0.455771\pi\)
\(114\) 8.66025 5.00000i 0.811107 0.468293i
\(115\) −3.16228 + 5.47723i −0.294884 + 0.510754i
\(116\) 0 0
\(117\) −1.15747 + 4.31975i −0.107009 + 0.399361i
\(118\) 9.48683 9.48683i 0.873334 0.873334i
\(119\) 0 0
\(120\) 10.0000 10.0000i 0.912871 0.912871i
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) −8.63950 + 2.31495i −0.782184 + 0.209586i
\(123\) 20.4904 5.49038i 1.84756 0.495051i
\(124\) 0 0
\(125\) −7.90569 7.90569i −0.707107 0.707107i
\(126\) 0 0
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) −2.92820 + 10.9282i −0.258819 + 0.965926i
\(129\) −4.74342 + 8.21584i −0.417635 + 0.723364i
\(130\) −6.83013 + 1.83013i −0.599042 + 0.160513i
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000i 0.172774i
\(135\) 2.50000 + 4.33013i 0.215166 + 0.372678i
\(136\) −5.47723 3.16228i −0.469668 0.271163i
\(137\) 0.732051 + 2.73205i 0.0625433 + 0.233415i 0.990121 0.140215i \(-0.0447795\pi\)
−0.927578 + 0.373630i \(0.878113\pi\)
\(138\) −8.63950 2.31495i −0.735443 0.197061i
\(139\) 18.9737 1.60933 0.804663 0.593732i \(-0.202346\pi\)
0.804663 + 0.593732i \(0.202346\pi\)
\(140\) 0 0
\(141\) −15.0000 −1.26323
\(142\) −8.19615 2.19615i −0.687806 0.184297i
\(143\) −0.578737 2.15988i −0.0483964 0.180618i
\(144\) 6.92820 + 4.00000i 0.577350 + 0.333333i
\(145\) −1.73621 + 6.47963i −0.144184 + 0.538104i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.3923 6.00000i 0.851371 0.491539i −0.00974235 0.999953i \(-0.503101\pi\)
0.861113 + 0.508413i \(0.169768\pi\)
\(150\) 7.90569 13.6931i 0.645497 1.11803i
\(151\) −4.50000 + 7.79423i −0.366205 + 0.634285i −0.988969 0.148124i \(-0.952676\pi\)
0.622764 + 0.782410i \(0.286010\pi\)
\(152\) 2.31495 8.63950i 0.187767 0.700756i
\(153\) −3.16228 + 3.16228i −0.255655 + 0.255655i
\(154\) 0 0
\(155\) −5.00000 5.00000i −0.401610 0.401610i
\(156\) 0 0
\(157\) 8.63950 2.31495i 0.689507 0.184753i 0.102981 0.994683i \(-0.467162\pi\)
0.586526 + 0.809930i \(0.300495\pi\)
\(158\) −17.7583 + 4.75833i −1.41278 + 0.378552i
\(159\) 1.58114 + 2.73861i 0.125392 + 0.217186i
\(160\) 0 0
\(161\) 0 0
\(162\) −11.0000 + 11.0000i −0.864242 + 0.864242i
\(163\) 2.19615 8.19615i 0.172016 0.641972i −0.825025 0.565097i \(-0.808839\pi\)
0.997041 0.0768756i \(-0.0244944\pi\)
\(164\) 0 0
\(165\) 4.33013 + 2.50000i 0.337100 + 0.194625i
\(166\) 5.47723 3.16228i 0.425115 0.245440i
\(167\) −11.0680 11.0680i −0.856465 0.856465i 0.134454 0.990920i \(-0.457072\pi\)
−0.990920 + 0.134454i \(0.957072\pi\)
\(168\) 0 0
\(169\) 8.00000i 0.615385i
\(170\) −6.83013 1.83013i −0.523847 0.140364i
\(171\) −5.47723 3.16228i −0.418854 0.241825i
\(172\) 0 0
\(173\) −15.1191 4.05116i −1.14949 0.308004i −0.366727 0.930329i \(-0.619522\pi\)
−0.782759 + 0.622325i \(0.786188\pi\)
\(174\) −9.48683 −0.719195
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) −20.4904 5.49038i −1.54015 0.412682i
\(178\) −2.31495 8.63950i −0.173513 0.647558i
\(179\) −5.19615 3.00000i −0.388379 0.224231i 0.293079 0.956088i \(-0.405320\pi\)
−0.681457 + 0.731858i \(0.738654\pi\)
\(180\) 0 0
\(181\) 22.1359i 1.64535i 0.568511 + 0.822676i \(0.307520\pi\)
−0.568511 + 0.822676i \(0.692480\pi\)
\(182\) 0 0
\(183\) 10.0000 + 10.0000i 0.739221 + 0.739221i
\(184\) −6.92820 + 4.00000i −0.510754 + 0.294884i
\(185\) −16.4317 9.48683i −1.20808 0.697486i
\(186\) 5.00000 8.66025i 0.366618 0.635001i
\(187\) 0.578737 2.15988i 0.0423214 0.157946i
\(188\) 0 0
\(189\) 0 0
\(190\) 10.0000i 0.725476i
\(191\) 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i \(-0.132050\pi\)
−0.806641 + 0.591041i \(0.798717\pi\)
\(192\) 17.2790 4.62990i 1.24700 0.334134i
\(193\) 10.9282 2.92820i 0.786629 0.210777i 0.156924 0.987611i \(-0.449842\pi\)
0.629705 + 0.776834i \(0.283176\pi\)
\(194\) 1.58114 + 2.73861i 0.113519 + 0.196621i
\(195\) 7.90569 + 7.90569i 0.566139 + 0.566139i
\(196\) 0 0
\(197\) −1.00000 + 1.00000i −0.0712470 + 0.0712470i −0.741832 0.670585i \(-0.766043\pi\)
0.670585 + 0.741832i \(0.266043\pi\)
\(198\) −0.732051 + 2.73205i −0.0520246 + 0.194158i
\(199\) −4.74342 + 8.21584i −0.336252 + 0.582405i −0.983724 0.179683i \(-0.942493\pi\)
0.647473 + 0.762089i \(0.275826\pi\)
\(200\) −3.66025 13.6603i −0.258819 0.965926i
\(201\) −2.73861 + 1.58114i −0.193167 + 0.111525i
\(202\) −3.16228 3.16228i −0.222497 0.222497i
\(203\) 0 0
\(204\) 0 0
\(205\) 5.49038 20.4904i 0.383465 1.43111i
\(206\) 19.1703 + 11.0680i 1.33566 + 0.771142i
\(207\) 1.46410 + 5.46410i 0.101762 + 0.379781i
\(208\) −8.63950 2.31495i −0.599042 0.160513i
\(209\) 3.16228 0.218739
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 0 0
\(213\) 3.47242 + 12.9593i 0.237926 + 0.887954i
\(214\) 5.19615 + 3.00000i 0.355202 + 0.205076i
\(215\) 4.74342 + 8.21584i 0.323498 + 0.560316i
\(216\) 6.32456i 0.430331i
\(217\) 0 0
\(218\) −7.00000 7.00000i −0.474100 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) 2.50000 4.33013i 0.168168 0.291276i
\(222\) 6.94484 25.9185i 0.466107 1.73954i
\(223\) −14.2302 + 14.2302i −0.952928 + 0.952928i −0.998941 0.0460129i \(-0.985348\pi\)
0.0460129 + 0.998941i \(0.485348\pi\)
\(224\) 0 0
\(225\) −10.0000 −0.666667
\(226\) 12.0000 + 20.7846i 0.798228 + 1.38257i
\(227\) −2.15988 + 0.578737i −0.143356 + 0.0384121i −0.329783 0.944057i \(-0.606976\pi\)
0.186427 + 0.982469i \(0.440309\pi\)
\(228\) 0 0
\(229\) 7.90569 + 13.6931i 0.522423 + 0.904863i 0.999660 + 0.0260883i \(0.00830511\pi\)
−0.477237 + 0.878775i \(0.658362\pi\)
\(230\) −6.32456 + 6.32456i −0.417029 + 0.417029i
\(231\) 0 0
\(232\) −6.00000 + 6.00000i −0.393919 + 0.393919i
\(233\) −6.58846 + 24.5885i −0.431624 + 1.61084i 0.317394 + 0.948294i \(0.397192\pi\)
−0.749018 + 0.662550i \(0.769474\pi\)
\(234\) −3.16228 + 5.47723i −0.206725 + 0.358057i
\(235\) −7.50000 + 12.9904i −0.489246 + 0.847399i
\(236\) 0 0
\(237\) 20.5548 + 20.5548i 1.33518 + 1.33518i
\(238\) 0 0
\(239\) 19.0000i 1.22901i −0.788914 0.614504i \(-0.789356\pi\)
0.788914 0.614504i \(-0.210644\pi\)
\(240\) 17.3205 10.0000i 1.11803 0.645497i
\(241\) 21.9089 + 12.6491i 1.41128 + 0.814801i 0.995509 0.0946700i \(-0.0301796\pi\)
0.415768 + 0.909471i \(0.363513\pi\)
\(242\) 3.66025 + 13.6603i 0.235290 + 0.878114i
\(243\) 17.2790 + 4.62990i 1.10845 + 0.297008i
\(244\) 0 0
\(245\) 0 0
\(246\) 30.0000 1.91273
\(247\) 6.83013 + 1.83013i 0.434591 + 0.116448i
\(248\) −2.31495 8.63950i −0.146999 0.548609i
\(249\) −8.66025 5.00000i −0.548821 0.316862i
\(250\) −7.90569 13.6931i −0.500000 0.866025i
\(251\) 12.6491i 0.798405i −0.916863 0.399202i \(-0.869287\pi\)
0.916863 0.399202i \(-0.130713\pi\)
\(252\) 0 0
\(253\) −2.00000 2.00000i −0.125739 0.125739i
\(254\) 15.5885 9.00000i 0.978107 0.564710i
\(255\) 2.89368 + 10.7994i 0.181210 + 0.676283i
\(256\) 0 0
\(257\) −4.62990 + 17.2790i −0.288805 + 1.07783i 0.657209 + 0.753709i \(0.271737\pi\)
−0.946014 + 0.324126i \(0.894930\pi\)
\(258\) −9.48683 + 9.48683i −0.590624 + 0.590624i
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 0 0
\(263\) −9.56218 + 2.56218i −0.589629 + 0.157991i −0.541284 0.840840i \(-0.682061\pi\)
−0.0483454 + 0.998831i \(0.515395\pi\)
\(264\) 3.16228 + 5.47723i 0.194625 + 0.337100i
\(265\) 3.16228 0.194257
\(266\) 0 0
\(267\) −10.0000 + 10.0000i −0.611990 + 0.611990i
\(268\) 0 0
\(269\) −9.48683 + 16.4317i −0.578422 + 1.00186i 0.417238 + 0.908797i \(0.362998\pi\)
−0.995661 + 0.0930598i \(0.970335\pi\)
\(270\) 1.83013 + 6.83013i 0.111378 + 0.415668i
\(271\) 10.9545 6.32456i 0.665436 0.384189i −0.128909 0.991656i \(-0.541148\pi\)
0.794345 + 0.607467i \(0.207814\pi\)
\(272\) −6.32456 6.32456i −0.383482 0.383482i
\(273\) 0 0
\(274\) 4.00000i 0.241649i
\(275\) 4.33013 2.50000i 0.261116 0.150756i
\(276\) 0 0
\(277\) −6.58846 24.5885i −0.395862 1.47738i −0.820307 0.571923i \(-0.806197\pi\)
0.424445 0.905454i \(-0.360469\pi\)
\(278\) 25.9185 + 6.94484i 1.55449 + 0.416524i
\(279\) −6.32456 −0.378641
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) −20.4904 5.49038i −1.22018 0.326947i
\(283\) 1.73621 + 6.47963i 0.103207 + 0.385174i 0.998136 0.0610356i \(-0.0194403\pi\)
−0.894929 + 0.446209i \(0.852774\pi\)
\(284\) 0 0
\(285\) −13.6931 + 7.90569i −0.811107 + 0.468293i
\(286\) 3.16228i 0.186989i
\(287\) 0 0
\(288\) 0 0
\(289\) −10.3923 + 6.00000i −0.611312 + 0.352941i
\(290\) −4.74342 + 8.21584i −0.278543 + 0.482451i
\(291\) 2.50000 4.33013i 0.146553 0.253837i
\(292\) 0 0
\(293\) 7.90569 7.90569i 0.461856 0.461856i −0.437408 0.899263i \(-0.644103\pi\)
0.899263 + 0.437408i \(0.144103\pi\)
\(294\) 0 0
\(295\) −15.0000 + 15.0000i −0.873334 + 0.873334i
\(296\) −12.0000 20.7846i −0.697486 1.20808i
\(297\) −2.15988 + 0.578737i −0.125329 + 0.0335817i
\(298\) 16.3923 4.39230i 0.949581 0.254439i
\(299\) −3.16228 5.47723i −0.182879 0.316756i
\(300\) 0 0
\(301\) 0 0
\(302\) −9.00000 + 9.00000i −0.517892 + 0.517892i
\(303\) −1.83013 + 6.83013i −0.105138 + 0.392381i
\(304\) 6.32456 10.9545i 0.362738 0.628281i
\(305\) 13.6603 3.66025i 0.782184 0.209586i
\(306\) −5.47723 + 3.16228i −0.313112 + 0.180775i
\(307\) 4.74342 + 4.74342i 0.270721 + 0.270721i 0.829390 0.558669i \(-0.188688\pi\)
−0.558669 + 0.829390i \(0.688688\pi\)
\(308\) 0 0
\(309\) 35.0000i 1.99108i
\(310\) −5.00000 8.66025i −0.283981 0.491869i
\(311\) −19.1703 11.0680i −1.08705 0.627607i −0.154259 0.988031i \(-0.549299\pi\)
−0.932789 + 0.360423i \(0.882632\pi\)
\(312\) 3.66025 + 13.6603i 0.207221 + 0.773360i
\(313\) −19.4389 5.20863i −1.09875 0.294409i −0.336495 0.941685i \(-0.609241\pi\)
−0.762256 + 0.647276i \(0.775908\pi\)
\(314\) 12.6491 0.713831
\(315\) 0 0
\(316\) 0 0
\(317\) −25.9545 6.95448i −1.45775 0.390603i −0.559037 0.829143i \(-0.688829\pi\)
−0.898712 + 0.438540i \(0.855496\pi\)
\(318\) 1.15747 + 4.31975i 0.0649079 + 0.242240i
\(319\) −2.59808 1.50000i −0.145464 0.0839839i
\(320\) 4.62990 17.2790i 0.258819 0.965926i
\(321\) 9.48683i 0.529503i
\(322\) 0 0
\(323\) 5.00000 + 5.00000i 0.278207 + 0.278207i
\(324\) 0 0
\(325\) 10.7994 2.89368i 0.599042 0.160513i
\(326\) 6.00000 10.3923i 0.332309 0.575577i
\(327\) −4.05116 + 15.1191i −0.224030 + 0.836090i
\(328\) 18.9737 18.9737i 1.04765 1.04765i
\(329\) 0 0
\(330\) 5.00000 + 5.00000i 0.275241 + 0.275241i
\(331\) 3.00000 + 5.19615i 0.164895 + 0.285606i 0.936618 0.350352i \(-0.113938\pi\)
−0.771723 + 0.635959i \(0.780605\pi\)
\(332\) 0 0
\(333\) −16.3923 + 4.39230i −0.898293 + 0.240697i
\(334\) −11.0680 19.1703i −0.605612 1.04895i
\(335\) 3.16228i 0.172774i
\(336\) 0 0
\(337\) −8.00000 + 8.00000i −0.435788 + 0.435788i −0.890592 0.454804i \(-0.849709\pi\)
0.454804 + 0.890592i \(0.349709\pi\)
\(338\) −2.92820 + 10.9282i −0.159273 + 0.594416i
\(339\) 18.9737 32.8634i 1.03051 1.78489i
\(340\) 0 0
\(341\) 2.73861 1.58114i 0.148304 0.0856235i
\(342\) −6.32456 6.32456i −0.341993 0.341993i
\(343\) 0 0
\(344\) 12.0000i 0.646997i
\(345\) 13.6603 + 3.66025i 0.735443 + 0.197061i
\(346\) −19.1703 11.0680i −1.03060 0.595018i
\(347\) 8.78461 + 32.7846i 0.471583 + 1.75997i 0.634086 + 0.773262i \(0.281376\pi\)
−0.162504 + 0.986708i \(0.551957\pi\)
\(348\) 0 0
\(349\) −34.7851 −1.86200 −0.931001 0.365018i \(-0.881063\pi\)
−0.931001 + 0.365018i \(0.881063\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −5.20863 19.4389i −0.277228 1.03463i −0.954334 0.298742i \(-0.903433\pi\)
0.677106 0.735885i \(-0.263234\pi\)
\(354\) −25.9808 15.0000i −1.38086 0.797241i
\(355\) 12.9593 + 3.47242i 0.687806 + 0.184297i
\(356\) 0 0
\(357\) 0 0
\(358\) −6.00000 6.00000i −0.317110 0.317110i
\(359\) 19.0526 11.0000i 1.00556 0.580558i 0.0956683 0.995413i \(-0.469501\pi\)
0.909887 + 0.414855i \(0.136168\pi\)
\(360\) −10.9545 6.32456i −0.577350 0.333333i
\(361\) 4.50000 7.79423i 0.236842 0.410223i
\(362\) −8.10232 + 30.2383i −0.425848 + 1.58929i
\(363\) 15.8114 15.8114i 0.829883 0.829883i
\(364\) 0 0
\(365\) 0 0
\(366\) 10.0000 + 17.3205i 0.522708 + 0.905357i
\(367\) −23.7586 + 6.36611i −1.24019 + 0.332308i −0.818540 0.574450i \(-0.805216\pi\)
−0.421651 + 0.906758i \(0.638549\pi\)
\(368\) −10.9282 + 2.92820i −0.569672 + 0.152643i
\(369\) −9.48683 16.4317i −0.493865 0.855399i
\(370\) −18.9737 18.9737i −0.986394 0.986394i
\(371\) 0 0
\(372\) 0 0
\(373\) 4.39230 16.3923i 0.227425 0.848761i −0.753994 0.656882i \(-0.771875\pi\)
0.981418 0.191880i \(-0.0614583\pi\)
\(374\) 1.58114 2.73861i 0.0817587 0.141610i
\(375\) −12.5000 + 21.6506i −0.645497 + 1.11803i
\(376\) −16.4317 + 9.48683i −0.847399 + 0.489246i
\(377\) −4.74342 4.74342i −0.244298 0.244298i
\(378\) 0 0
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) −24.6475 14.2302i −1.26273 0.729038i
\(382\) 1.09808 + 4.09808i 0.0561825 + 0.209676i
\(383\) −21.5988 5.78737i −1.10364 0.295721i −0.339397 0.940643i \(-0.610223\pi\)
−0.764248 + 0.644922i \(0.776890\pi\)
\(384\) 25.2982 1.29099
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) 8.19615 + 2.19615i 0.416634 + 0.111637i
\(388\) 0 0
\(389\) 19.9186 + 11.5000i 1.00991 + 0.583073i 0.911166 0.412039i \(-0.135183\pi\)
0.0987463 + 0.995113i \(0.468517\pi\)
\(390\) 7.90569 + 13.6931i 0.400320 + 0.693375i
\(391\) 6.32456i 0.319847i
\(392\) 0 0
\(393\) 0 0
\(394\) −1.73205 + 1.00000i −0.0872595 + 0.0503793i
\(395\) 28.0784 7.52358i 1.41278 0.378552i
\(396\) 0 0
\(397\) 8.68105 32.3981i 0.435690 1.62602i −0.303721 0.952761i \(-0.598229\pi\)
0.739411 0.673255i \(-0.235104\pi\)
\(398\) −9.48683 + 9.48683i −0.475532 + 0.475532i
\(399\) 0 0
\(400\) 20.0000i 1.00000i
\(401\) 0.500000 + 0.866025i 0.0249688 + 0.0432472i 0.878240 0.478220i \(-0.158718\pi\)
−0.853271 + 0.521468i \(0.825385\pi\)
\(402\) −4.31975 + 1.15747i −0.215450 + 0.0577296i
\(403\) 6.83013 1.83013i 0.340233 0.0911651i
\(404\) 0 0
\(405\) 17.3925 17.3925i 0.864242 0.864242i
\(406\) 0 0
\(407\) 6.00000 6.00000i 0.297409 0.297409i
\(408\) −3.66025 + 13.6603i −0.181210 + 0.676283i
\(409\) 1.58114 2.73861i 0.0781823 0.135416i −0.824283 0.566177i \(-0.808422\pi\)
0.902466 + 0.430762i \(0.141755\pi\)
\(410\) 15.0000 25.9808i 0.740797 1.28310i
\(411\) 5.47723 3.16228i 0.270172 0.155984i
\(412\) 0 0
\(413\) 0 0
\(414\) 8.00000i 0.393179i
\(415\) −8.66025 + 5.00000i −0.425115 + 0.245440i
\(416\) 0 0
\(417\) −10.9808 40.9808i −0.537730 2.00684i
\(418\) 4.31975 + 1.15747i 0.211286 + 0.0566139i
\(419\) 15.8114 0.772437 0.386218 0.922407i \(-0.373781\pi\)
0.386218 + 0.922407i \(0.373781\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 23.2224 + 6.22243i 1.13045 + 0.302903i
\(423\) 3.47242 + 12.9593i 0.168835 + 0.630101i
\(424\) 3.46410 + 2.00000i 0.168232 + 0.0971286i
\(425\) 10.7994 + 2.89368i 0.523847 + 0.140364i
\(426\) 18.9737i 0.919277i
\(427\) 0 0
\(428\) 0 0
\(429\) −4.33013 + 2.50000i −0.209061 + 0.120701i
\(430\) 3.47242 + 12.9593i 0.167455 + 0.624951i
\(431\) 11.5000 19.9186i 0.553936 0.959444i −0.444050 0.896002i \(-0.646459\pi\)
0.997985 0.0634424i \(-0.0202079\pi\)
\(432\) −2.31495 + 8.63950i −0.111378 + 0.415668i
\(433\) −9.48683 + 9.48683i −0.455908 + 0.455908i −0.897310 0.441402i \(-0.854481\pi\)
0.441402 + 0.897310i \(0.354481\pi\)
\(434\) 0 0
\(435\) 15.0000 0.719195
\(436\) 0 0
\(437\) 8.63950 2.31495i 0.413283 0.110739i
\(438\) 0 0
\(439\) −6.32456 10.9545i −0.301855 0.522827i 0.674701 0.738091i \(-0.264272\pi\)
−0.976556 + 0.215263i \(0.930939\pi\)
\(440\) 6.32456 0.301511
\(441\) 0 0
\(442\) 5.00000 5.00000i 0.237826 0.237826i
\(443\) 0.366025 1.36603i 0.0173904 0.0649018i −0.956685 0.291124i \(-0.905971\pi\)
0.974076 + 0.226222i \(0.0726375\pi\)
\(444\) 0 0
\(445\) 3.66025 + 13.6603i 0.173513 + 0.647558i
\(446\) −24.6475 + 14.2302i −1.16709 + 0.673822i
\(447\) −18.9737 18.9737i −0.897424 0.897424i
\(448\) 0 0
\(449\) 17.0000i 0.802280i 0.916017 + 0.401140i \(0.131386\pi\)
−0.916017 + 0.401140i \(0.868614\pi\)
\(450\) −13.6603 3.66025i −0.643951 0.172546i
\(451\) 8.21584 + 4.74342i 0.386869 + 0.223359i
\(452\) 0 0
\(453\) 19.4389 + 5.20863i 0.913318 + 0.244723i
\(454\) −3.16228 −0.148413
\(455\) 0 0
\(456\) −20.0000 −0.936586
\(457\) 1.36603 + 0.366025i 0.0639000 + 0.0171219i 0.290627 0.956836i \(-0.406136\pi\)
−0.226727 + 0.973958i \(0.572803\pi\)
\(458\) 5.78737 + 21.5988i 0.270426 + 1.00924i
\(459\) −4.33013 2.50000i −0.202113 0.116690i
\(460\) 0 0
\(461\) 6.32456i 0.294564i 0.989095 + 0.147282i \(0.0470525\pi\)
−0.989095 + 0.147282i \(0.952948\pi\)
\(462\) 0 0
\(463\) −4.00000 4.00000i −0.185896 0.185896i 0.608023 0.793919i \(-0.291963\pi\)
−0.793919 + 0.608023i \(0.791963\pi\)
\(464\) −10.3923 + 6.00000i −0.482451 + 0.278543i
\(465\) −7.90569 + 13.6931i −0.366618 + 0.635001i
\(466\) −18.0000 + 31.1769i −0.833834 + 1.44424i
\(467\) 4.05116 15.1191i 0.187465 0.699630i −0.806624 0.591065i \(-0.798708\pi\)
0.994089 0.108565i \(-0.0346256\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −15.0000 + 15.0000i −0.691898 + 0.691898i
\(471\) −10.0000 17.3205i −0.460776 0.798087i
\(472\) −25.9185 + 6.94484i −1.19300 + 0.319662i
\(473\) −4.09808 + 1.09808i −0.188430 + 0.0504896i
\(474\) 20.5548 + 35.6020i 0.944113 + 1.63525i
\(475\) 15.8114i 0.725476i
\(476\) 0 0
\(477\) 2.00000 2.00000i 0.0915737 0.0915737i
\(478\) 6.95448 25.9545i 0.318091 1.18713i
\(479\) −3.16228 + 5.47723i −0.144488 + 0.250261i −0.929182 0.369623i \(-0.879487\pi\)
0.784694 + 0.619884i \(0.212820\pi\)
\(480\) 0 0
\(481\) 16.4317 9.48683i 0.749220 0.432562i
\(482\) 25.2982 + 25.2982i 1.15230 + 1.15230i
\(483\) 0 0
\(484\) 0 0
\(485\) −2.50000 4.33013i −0.113519 0.196621i
\(486\) 21.9089 + 12.6491i 0.993808 + 0.573775i
\(487\) 1.46410 + 5.46410i 0.0663448 + 0.247602i 0.991132 0.132883i \(-0.0424236\pi\)
−0.924787 + 0.380485i \(0.875757\pi\)
\(488\) 17.2790 + 4.62990i 0.782184 + 0.209586i
\(489\) −18.9737 −0.858019
\(490\) 0 0
\(491\) −41.0000 −1.85030 −0.925152 0.379597i \(-0.876063\pi\)
−0.925152 + 0.379597i \(0.876063\pi\)
\(492\) 0 0
\(493\) −1.73621 6.47963i −0.0781950 0.291828i
\(494\) 8.66025 + 5.00000i 0.389643 + 0.224961i
\(495\) 1.15747 4.31975i 0.0520246 0.194158i
\(496\) 12.6491i 0.567962i
\(497\) 0 0
\(498\) −10.0000 10.0000i −0.448111 0.448111i
\(499\) −16.4545 + 9.50000i −0.736604 + 0.425278i −0.820833 0.571168i \(-0.806490\pi\)
0.0842294 + 0.996446i \(0.473157\pi\)
\(500\) 0 0
\(501\) −17.5000 + 30.3109i −0.781842 + 1.35419i
\(502\) 4.62990 17.2790i 0.206642 0.771200i
\(503\) −7.90569 + 7.90569i −0.352497 + 0.352497i −0.861038 0.508541i \(-0.830185\pi\)
0.508541 + 0.861038i \(0.330185\pi\)
\(504\) 0 0
\(505\) 5.00000 + 5.00000i 0.222497 + 0.222497i
\(506\) −2.00000 3.46410i −0.0889108 0.153998i
\(507\) 17.2790 4.62990i 0.767388 0.205621i
\(508\) 0 0
\(509\) 9.48683 + 16.4317i 0.420496 + 0.728321i 0.995988 0.0894865i \(-0.0285226\pi\)
−0.575492 + 0.817808i \(0.695189\pi\)
\(510\) 15.8114i 0.700140i
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 1.83013 6.83013i 0.0808021 0.301557i
\(514\) −12.6491 + 21.9089i −0.557928 + 0.966360i
\(515\) −30.3109 17.5000i −1.33566 0.771142i
\(516\) 0 0
\(517\) −4.74342 4.74342i −0.208615 0.208615i
\(518\) 0 0
\(519\) 35.0000i 1.53633i
\(520\) 13.6603 + 3.66025i 0.599042 + 0.160513i
\(521\) 35.6020 + 20.5548i 1.55975 + 0.900522i 0.997280 + 0.0737049i \(0.0234823\pi\)
0.562470 + 0.826817i \(0.309851\pi\)
\(522\) 2.19615 + 8.19615i 0.0961230 + 0.358736i
\(523\) −25.9185 6.94484i −1.13334 0.303677i −0.357068 0.934078i \(-0.616224\pi\)
−0.776269 + 0.630402i \(0.782890\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −14.0000 −0.610429
\(527\) 6.83013 + 1.83013i 0.297525 + 0.0797216i
\(528\) 2.31495 + 8.63950i 0.100745 + 0.375986i
\(529\) 12.9904 + 7.50000i 0.564799 + 0.326087i
\(530\) 4.31975 + 1.15747i 0.187638 + 0.0502775i
\(531\) 18.9737i 0.823387i
\(532\) 0 0
\(533\) 15.0000 + 15.0000i 0.649722 + 0.649722i
\(534\) −17.3205 + 10.0000i −0.749532 + 0.432742i
\(535\) −8.21584 4.74342i −0.355202 0.205076i
\(536\) −2.00000 + 3.46410i −0.0863868 + 0.149626i
\(537\) −3.47242 + 12.9593i −0.149846 + 0.559233i
\(538\) −18.9737 + 18.9737i −0.818013 + 0.818013i
\(539\) 0 0
\(540\) 0 0
\(541\) −4.50000 7.79423i −0.193470 0.335100i 0.752928 0.658103i \(-0.228641\pi\)
−0.946398 + 0.323003i \(0.895308\pi\)
\(542\) 17.2790 4.62990i 0.742197 0.198871i
\(543\) 47.8109 12.8109i 2.05176 0.549768i
\(544\) 0 0
\(545\) 11.0680 + 11.0680i 0.474100 + 0.474100i
\(546\) 0 0
\(547\) 14.0000 14.0000i 0.598597 0.598597i −0.341342 0.939939i \(-0.610882\pi\)
0.939939 + 0.341342i \(0.110882\pi\)
\(548\) 0 0
\(549\) 6.32456 10.9545i 0.269925 0.467525i
\(550\) 6.83013 1.83013i 0.291238 0.0780369i
\(551\) 8.21584 4.74342i 0.350006 0.202076i
\(552\) 12.6491 + 12.6491i 0.538382 + 0.538382i
\(553\) 0 0
\(554\) 36.0000i 1.52949i
\(555\) −10.9808 + 40.9808i −0.466107 + 1.73954i
\(556\) 0 0
\(557\) −2.19615 8.19615i −0.0930540 0.347282i 0.903663 0.428244i \(-0.140868\pi\)
−0.996717 + 0.0809616i \(0.974201\pi\)
\(558\) −8.63950 2.31495i −0.365739 0.0979996i
\(559\) −9.48683 −0.401250
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 12.2942 + 3.29423i 0.518601 + 0.138959i
\(563\) −3.47242 12.9593i −0.146345 0.546167i −0.999692 0.0248236i \(-0.992098\pi\)
0.853347 0.521344i \(-0.174569\pi\)
\(564\) 0 0
\(565\) −18.9737 32.8634i −0.798228 1.38257i
\(566\) 9.48683i 0.398761i
\(567\) 0 0
\(568\) 12.0000 + 12.0000i 0.503509 + 0.503509i
\(569\) 27.7128 16.0000i 1.16178 0.670755i 0.210051 0.977690i \(-0.432637\pi\)
0.951730 + 0.306935i \(0.0993036\pi\)
\(570\) −21.5988 + 5.78737i −0.904672 + 0.242406i
\(571\) 13.0000 22.5167i 0.544033 0.942293i −0.454634 0.890678i \(-0.650230\pi\)
0.998667 0.0516146i \(-0.0164367\pi\)
\(572\) 0 0
\(573\) 4.74342 4.74342i 0.198159 0.198159i
\(574\) 0 0
\(575\) 10.0000 10.0000i 0.417029 0.417029i
\(576\) −8.00000 13.8564i −0.333333 0.577350i
\(577\) 28.0784 7.52358i 1.16892 0.313211i 0.378396 0.925644i \(-0.376476\pi\)
0.790522 + 0.612433i \(0.209809\pi\)
\(578\) −16.3923 + 4.39230i −0.681830 + 0.182696i
\(579\) −12.6491 21.9089i −0.525679 0.910503i
\(580\) 0 0
\(581\) 0 0
\(582\) 5.00000 5.00000i 0.207257 0.207257i
\(583\) −0.366025 + 1.36603i −0.0151592 + 0.0565750i
\(584\) 0 0
\(585\) 5.00000 8.66025i 0.206725 0.358057i
\(586\) 13.6931 7.90569i 0.565655 0.326581i
\(587\) 15.8114 + 15.8114i 0.652606 + 0.652606i 0.953620 0.301014i \(-0.0973251\pi\)
−0.301014 + 0.953620i \(0.597325\pi\)
\(588\) 0 0
\(589\) 10.0000i 0.412043i
\(590\) −25.9808 + 15.0000i −1.06961 + 0.617540i
\(591\) 2.73861 + 1.58114i 0.112651 + 0.0650394i
\(592\) −8.78461 32.7846i −0.361045 1.34744i
\(593\) 28.0784 + 7.52358i 1.15304 + 0.308956i 0.784183 0.620529i \(-0.213082\pi\)
0.368858 + 0.929486i \(0.379749\pi\)
\(594\) −3.16228 −0.129750
\(595\) 0 0
\(596\) 0 0
\(597\) 20.4904 + 5.49038i 0.838615 + 0.224706i
\(598\) −2.31495 8.63950i −0.0946653 0.353296i
\(599\) 11.2583 + 6.50000i 0.460003 + 0.265583i 0.712045 0.702133i \(-0.247769\pi\)
−0.252043 + 0.967716i \(0.581102\pi\)
\(600\) −27.3861 + 15.8114i −1.11803 + 0.645497i
\(601\) 22.1359i 0.902944i −0.892285 0.451472i \(-0.850899\pi\)
0.892285 0.451472i \(-0.149101\pi\)
\(602\) 0 0
\(603\) 2.00000 + 2.00000i 0.0814463 + 0.0814463i
\(604\) 0 0
\(605\) −5.78737 21.5988i −0.235290 0.878114i
\(606\) −5.00000 + 8.66025i −0.203111 + 0.351799i
\(607\) −5.20863 + 19.4389i −0.211412 + 0.789000i 0.775987 + 0.630749i \(0.217252\pi\)
−0.987399 + 0.158251i \(0.949414\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −7.50000 12.9904i −0.303418 0.525535i
\(612\) 0 0
\(613\) −23.2224 + 6.22243i −0.937945 + 0.251322i −0.695239 0.718778i \(-0.744702\pi\)
−0.242706 + 0.970100i \(0.578035\pi\)
\(614\) 4.74342 + 8.21584i 0.191429 + 0.331564i
\(615\) −47.4342 −1.91273
\(616\) 0 0
\(617\) 4.00000 4.00000i 0.161034 0.161034i −0.621991 0.783025i \(-0.713676\pi\)
0.783025 + 0.621991i \(0.213676\pi\)
\(618\) 12.8109 47.8109i 0.515330 1.92324i
\(619\) −12.6491 + 21.9089i −0.508411 + 0.880593i 0.491542 + 0.870854i \(0.336433\pi\)
−0.999953 + 0.00973920i \(0.996900\pi\)
\(620\) 0 0
\(621\) −5.47723 + 3.16228i −0.219793 + 0.126898i
\(622\) −22.1359 22.1359i −0.887570 0.887570i
\(623\) 0 0
\(624\) 20.0000i 0.800641i
\(625\) 12.5000 + 21.6506i 0.500000 + 0.866025i
\(626\) −24.6475 14.2302i −0.985113 0.568755i
\(627\) −1.83013 6.83013i −0.0730882 0.272769i
\(628\) 0 0
\(629\) 18.9737 0.756530
\(630\) 0 0
\(631\) −31.0000 −1.23409 −0.617045 0.786928i \(-0.711670\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(632\) 35.5167 + 9.51666i 1.41278 + 0.378552i
\(633\) −9.83853 36.7179i −0.391046 1.45941i
\(634\) −32.9090 19.0000i −1.30698 0.754586i
\(635\) −24.6475 + 14.2302i −0.978107 + 0.564710i
\(636\) 0 0
\(637\) 0 0
\(638\) −3.00000 3.00000i −0.118771 0.118771i
\(639\) 10.3923 6.00000i 0.411113 0.237356i
\(640\) 12.6491 21.9089i 0.500000 0.866025i
\(641\) −22.0000 + 38.1051i −0.868948 + 1.50506i −0.00587459 + 0.999983i \(0.501870\pi\)
−0.863073 + 0.505079i \(0.831463\pi\)
\(642\) 3.47242 12.9593i 0.137046 0.511461i
\(643\) −4.74342 + 4.74342i −0.187062 + 0.187062i −0.794425 0.607363i \(-0.792228\pi\)
0.607363 + 0.794425i \(0.292228\pi\)
\(644\) 0 0
\(645\) 15.0000 15.0000i 0.590624 0.590624i
\(646\) 5.00000 + 8.66025i 0.196722 + 0.340733i
\(647\) 17.2790 4.62990i 0.679308 0.182020i 0.0973638 0.995249i \(-0.468959\pi\)
0.581944 + 0.813229i \(0.302292\pi\)
\(648\) 30.0526 8.05256i 1.18058 0.316334i
\(649\) −4.74342 8.21584i −0.186195 0.322500i
\(650\) 15.8114 0.620174
\(651\) 0 0
\(652\) 0 0
\(653\) −6.95448 + 25.9545i −0.272150 + 1.01568i 0.685577 + 0.728000i \(0.259550\pi\)
−0.957727 + 0.287678i \(0.907117\pi\)
\(654\) −11.0680 + 19.1703i −0.432792 + 0.749618i
\(655\) 0 0
\(656\) 32.8634 18.9737i 1.28310 0.740797i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000i 0.0389545i 0.999810 + 0.0194772i \(0.00620019\pi\)
−0.999810 + 0.0194772i \(0.993800\pi\)
\(660\) 0 0
\(661\) −10.9545 6.32456i −0.426079 0.245997i 0.271596 0.962411i \(-0.412449\pi\)
−0.697675 + 0.716415i \(0.745782\pi\)
\(662\) 2.19615 + 8.19615i 0.0853559 + 0.318553i
\(663\) −10.7994 2.89368i −0.419413 0.112381i
\(664\) −12.6491 −0.490881
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) −8.19615 2.19615i −0.317356 0.0850354i
\(668\) 0 0
\(669\) 38.9711 + 22.5000i 1.50671 + 0.869900i
\(670\) −1.15747 + 4.31975i −0.0447171 + 0.166887i
\(671\) 6.32456i 0.244157i
\(672\) 0 0
\(673\) −24.0000 24.0000i −0.925132 0.925132i 0.0722542 0.997386i \(-0.476981\pi\)
−0.997386 + 0.0722542i \(0.976981\pi\)
\(674\) −13.8564 + 8.00000i −0.533729 + 0.308148i
\(675\) −2.89368 10.7994i −0.111378 0.415668i
\(676\) 0 0
\(677\) 5.20863 19.4389i 0.200184 0.747097i −0.790680 0.612230i \(-0.790273\pi\)
0.990864 0.134867i \(-0.0430607\pi\)
\(678\) 37.9473 37.9473i 1.45736 1.45736i
\(679\) 0 0
\(680\) 10.0000 + 10.0000i 0.383482 + 0.383482i
\(681\) 2.50000 + 4.33013i 0.0958002 + 0.165931i
\(682\) 4.31975 1.15747i 0.165412 0.0443220i
\(683\) −43.7128 + 11.7128i −1.67262 + 0.448178i −0.965816 0.259227i \(-0.916532\pi\)
−0.706808 + 0.707406i \(0.749865\pi\)
\(684\) 0 0
\(685\) 6.32456i 0.241649i
\(686\) 0 0
\(687\) 25.0000 25.0000i 0.953809 0.953809i
\(688\) −4.39230 + 16.3923i −0.167455 + 0.624951i
\(689\) −1.58114 + 2.73861i −0.0602366 + 0.104333i
\(690\) 17.3205 + 10.0000i 0.659380 + 0.380693i
\(691\) −27.3861 + 15.8114i −1.04182 + 0.601494i −0.920348 0.391102i \(-0.872094\pi\)
−0.121470 + 0.992595i \(0.538761\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 48.0000i 1.82206i
\(695\) −40.9808 10.9808i −1.55449 0.416524i
\(696\) 16.4317 + 9.48683i 0.622841 + 0.359597i
\(697\) 5.49038 + 20.4904i 0.207963 + 0.776129i
\(698\) −47.5173 12.7322i −1.79856 0.481921i
\(699\) 56.9210 2.15295
\(700\) 0 0
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) −6.83013 1.83013i −0.257787 0.0690737i
\(703\) 6.94484 + 25.9185i 0.261930 + 0.977535i
\(704\) 6.92820 + 4.00000i 0.261116 + 0.150756i
\(705\) 32.3981 + 8.68105i 1.22018 + 0.326947i
\(706\) 28.4605i 1.07113i
\(707\) 0 0
\(708\) 0 0
\(709\) −7.79423 + 4.50000i −0.292718 + 0.169001i −0.639167 0.769068i \(-0.720721\pi\)
0.346449 + 0.938069i \(0.387387\pi\)
\(710\) 16.4317 + 9.48683i 0.616670 + 0.356034i
\(711\) 13.0000 22.5167i 0.487538 0.844441i
\(712\) −4.62990 + 17.2790i −0.173513 + 0.647558i
\(713\) 6.32456 6.32456i 0.236856 0.236856i
\(714\) 0 0
\(715\) 5.00000i 0.186989i
\(716\) 0 0
\(717\) −41.0376 + 10.9960i −1.53258 + 0.410653i
\(718\) 30.0526 8.05256i 1.12155 0.300519i
\(719\) 15.8114 + 27.3861i 0.589665 + 1.02133i 0.994276 + 0.106841i \(0.0340737\pi\)
−0.404611 + 0.914489i \(0.632593\pi\)
\(720\) −12.6491 12.6491i −0.471405 0.471405i
\(721\) 0 0
\(722\) 9.00000 9.00000i 0.334945 0.334945i
\(723\) 14.6410 54.6410i 0.544505 2.03212i
\(724\) 0 0
\(725\) 7.50000 12.9904i 0.278543 0.482451i
\(726\) 27.3861 15.8114i 1.01639 0.586816i
\(727\) −9.48683 9.48683i −0.351847 0.351847i 0.508949 0.860796i \(-0.330034\pi\)
−0.860796 + 0.508949i \(0.830034\pi\)
\(728\) 0 0
\(729\) 7.00000i 0.259259i
\(730\) 0 0
\(731\) −8.21584 4.74342i −0.303874 0.175442i
\(732\) 0 0
\(733\) 23.7586 + 6.36611i 0.877545 + 0.235138i 0.669348 0.742949i \(-0.266574\pi\)
0.208197 + 0.978087i \(0.433240\pi\)
\(734\) −34.7851 −1.28394
\(735\) 0 0
\(736\) 0 0
\(737\) −1.36603 0.366025i −0.0503182 0.0134827i
\(738\) −6.94484 25.9185i −0.255643 0.954074i
\(739\) −32.0429 18.5000i −1.17872 0.680534i −0.223001 0.974818i \(-0.571585\pi\)
−0.955718 + 0.294285i \(0.904919\pi\)
\(740\) 0 0
\(741\) 15.8114i 0.580846i
\(742\) 0 0
\(743\) −9.00000 9.00000i −0.330178 0.330178i 0.522476 0.852654i \(-0.325008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(744\) −17.3205 + 10.0000i −0.635001 + 0.366618i
\(745\) −25.9185 + 6.94484i −0.949581 + 0.254439i
\(746\) 12.0000 20.7846i 0.439351 0.760979i
\(747\) −2.31495 + 8.63950i −0.0846995 + 0.316103i
\(748\) 0 0
\(749\) 0 0
\(750\) −25.0000 + 25.0000i −0.912871 + 0.912871i
\(751\) −18.5000 32.0429i −0.675075 1.16926i −0.976447 0.215757i \(-0.930778\pi\)
0.301373 0.953506i \(-0.402555\pi\)
\(752\) −25.9185 + 6.94484i −0.945151 + 0.253252i
\(753\) −27.3205 + 7.32051i −0.995615 + 0.266774i
\(754\) −4.74342 8.21584i −0.172745 0.299203i
\(755\) 14.2302 14.2302i 0.517892 0.517892i
\(756\) 0 0
\(757\) −16.0000 + 16.0000i −0.581530 + 0.581530i −0.935324 0.353794i \(-0.884892\pi\)
0.353794 + 0.935324i \(0.384892\pi\)
\(758\) 2.92820 10.9282i 0.106357 0.396930i
\(759\) −3.16228 + 5.47723i −0.114783 + 0.198811i
\(760\) −10.0000 + 17.3205i −0.362738 + 0.628281i
\(761\) −21.9089 + 12.6491i −0.794197 + 0.458530i −0.841438 0.540354i \(-0.818290\pi\)
0.0472409 + 0.998884i \(0.484957\pi\)
\(762\) −28.4605 28.4605i −1.03102 1.03102i
\(763\) 0 0
\(764\) 0 0
\(765\) 8.66025 5.00000i 0.313112 0.180775i
\(766\) −27.3861 15.8114i −0.989501 0.571289i
\(767\) −5.49038 20.4904i −0.198246 0.739865i
\(768\) 0 0
\(769\) 22.1359 0.798243 0.399121 0.916898i \(-0.369315\pi\)
0.399121 + 0.916898i \(0.369315\pi\)
\(770\) 0 0
\(771\) 40.0000 1.44056
\(772\) 0 0
\(773\) 13.3110 + 49.6771i 0.478762 + 1.78676i 0.606644 + 0.794973i \(0.292515\pi\)
−0.127883 + 0.991789i \(0.540818\pi\)
\(774\) 10.3923 + 6.00000i 0.373544 + 0.215666i
\(775\) 7.90569 + 13.6931i 0.283981 + 0.491869i
\(776\) 6.32456i 0.227038i
\(777\) 0 0
\(778\) 23.0000 + 23.0000i 0.824590 + 0.824590i
\(779\) −25.9808 + 15.0000i −0.930857 + 0.537431i
\(780\) 0 0
\(781\) −3.00000 + 5.19615i −0.107348 + 0.185933i
\(782\) 2.31495 8.63950i 0.0827824 0.308948i
\(783\) −4.74342 + 4.74342i −0.169516 + 0.169516i
\(784\) 0 0
\(785\) −20.0000 −0.713831
\(786\) 0 0
\(787\) 23.7586 6.36611i 0.846904 0.226927i 0.190829 0.981623i \(-0.438882\pi\)
0.656075 + 0.754696i \(0.272216\pi\)
\(788\) 0 0
\(789\) 11.0680 + 19.1703i 0.394030 + 0.682480i
\(790\) 41.1096 1.46261
\(791\) 0 0
\(792\) 4.00000 4.00000i 0.142134 0.142134i
\(793\) −3.66025 + 13.6603i −0.129979 + 0.485090i
\(794\) 23.7171 41.0792i 0.841688 1.45785i
\(795\) −1.83013 6.83013i −0.0649079 0.242240i
\(796\) 0 0
\(797\) −1.58114 1.58114i −0.0560068 0.0560068i 0.678549 0.734555i \(-0.262609\pi\)
−0.734555 + 0.678549i \(0.762609\pi\)
\(798\) 0 0
\(799\) 15.0000i 0.530662i
\(800\) 0 0
\(801\) 10.9545 + 6.32456i 0.387056 + 0.223467i
\(802\) 0.366025 + 1.36603i 0.0129248 + 0.0482360i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 10.0000 0.352235
\(807\) 40.9808 + 10.9808i 1.44259 + 0.386541i
\(808\) 2.31495 + 8.63950i 0.0814396 + 0.303937i
\(809\) 2.59808 + 1.50000i 0.0913435 + 0.0527372i 0.544976 0.838452i \(-0.316539\pi\)
−0.453632 + 0.891189i \(0.649872\pi\)
\(810\) 30.1247 17.3925i 1.05848 0.611111i
\(811\) 37.9473i 1.33251i 0.745724 + 0.666256i \(0.232104\pi\)
−0.745724 + 0.666256i \(0.767896\pi\)
\(812\) 0 0
\(813\) −20.0000 20.0000i −0.701431 0.701431i
\(814\) 10.3923 6.00000i 0.364250 0.210300i
\(815\) −9.48683 + 16.4317i −0.332309 + 0.575577i
\(816\) −10.0000 + 17.3205i −0.350070 + 0.606339i
\(817\) 3.47242 12.9593i 0.121485 0.453387i
\(818\) 3.16228 3.16228i 0.110566 0.110566i
\(819\) 0 0
\(820\) 0 0
\(821\) 11.5000 + 19.9186i 0.401353 + 0.695163i 0.993889 0.110380i \(-0.0352068\pi\)
−0.592537 + 0.805543i \(0.701873\pi\)
\(822\) 8.63950 2.31495i 0.301337 0.0807431i
\(823\) 4.09808 1.09808i 0.142850 0.0382765i −0.186686 0.982420i \(-0.559775\pi\)
0.329535 + 0.944143i \(0.393108\pi\)
\(824\) −22.1359 38.3406i −0.771142 1.33566i
\(825\) −7.90569 7.90569i −0.275241 0.275241i
\(826\) 0 0
\(827\) −26.0000 + 26.0000i −0.904109 + 0.904109i −0.995789 0.0916799i \(-0.970776\pi\)
0.0916799 + 0.995789i \(0.470776\pi\)
\(828\) 0 0
\(829\) 14.2302 24.6475i 0.494237 0.856044i −0.505741 0.862685i \(-0.668781\pi\)
0.999978 + 0.00664181i \(0.00211417\pi\)
\(830\) −13.6603 + 3.66025i −0.474154 + 0.127049i
\(831\) −49.2950 + 28.4605i −1.71003 + 0.987284i
\(832\) 12.6491 + 12.6491i 0.438529 + 0.438529i
\(833\) 0 0
\(834\) 60.0000i 2.07763i
\(835\) 17.5000 + 30.3109i 0.605612 + 1.04895i
\(836\) 0 0
\(837\) −1.83013 6.83013i −0.0632584 0.236084i
\(838\) 21.5988 + 5.78737i 0.746117 + 0.199921i
\(839\) −50.5964 −1.74678 −0.873392 0.487019i \(-0.838084\pi\)
−0.873392 + 0.487019i \(0.838084\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 25.9545 + 6.95448i 0.894451 + 0.239667i
\(843\) −5.20863 19.4389i −0.179395 0.669511i
\(844\) 0 0
\(845\) 4.62990 17.2790i 0.159273 0.594416i
\(846\) 18.9737i 0.652328i
\(847\) 0 0
\(848\) 4.00000 + 4.00000i 0.137361 + 0.137361i
\(849\) 12.9904 7.50000i 0.445829 0.257399i
\(850\) 13.6931 + 7.90569i 0.469668 + 0.271163i
\(851\) 12.0000 20.7846i 0.411355 0.712487i
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 10.0000 + 10.0000i 0.341993 + 0.341993i
\(856\) −6.00000 10.3923i −0.205076 0.355202i
\(857\) −43.1975 + 11.5747i −1.47560 + 0.395386i −0.904847 0.425737i \(-0.860015\pi\)
−0.570752 + 0.821122i \(0.693348\pi\)
\(858\) −6.83013 + 1.83013i −0.233177 + 0.0624795i
\(859\) 6.32456 + 10.9545i 0.215791 + 0.373761i 0.953517 0.301339i \(-0.0974337\pi\)
−0.737726 + 0.675100i \(0.764100\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 23.0000 23.0000i 0.783383 0.783383i
\(863\) −4.75833 + 17.7583i −0.161975 + 0.604501i 0.836431 + 0.548072i \(0.184638\pi\)
−0.998407 + 0.0564286i \(0.982029\pi\)
\(864\) 0 0
\(865\) 30.3109 + 17.5000i 1.03060 + 0.595018i
\(866\) −16.4317 + 9.48683i −0.558371 + 0.322376i
\(867\) 18.9737 + 18.9737i 0.644379 + 0.644379i
\(868\) 0 0
\(869\) 13.0000i 0.440995i
\(870\) 20.4904 + 5.49038i 0.694689 + 0.186141i
\(871\) −2.73861 1.58114i −0.0927944 0.0535748i
\(872\) 5.12436 + 19.1244i 0.173533 + 0.647632i
\(873\) −4.31975 1.15747i −0.146201 0.0391746i
\(874\) 12.6491 0.427863
\(875\) 0 0
\(876\) 0 0
\(877\) −23.2224 6.22243i −0.784166 0.210117i −0.155545 0.987829i \(-0.549713\pi\)
−0.628621 + 0.777712i \(0.716380\pi\)
\(878\) −4.62990 17.2790i −0.156251 0.583138i
\(879\) −21.6506 12.5000i −0.730258 0.421615i
\(880\) 8.63950 + 2.31495i 0.291238 + 0.0780369i
\(881\) 37.9473i 1.27848i −0.769008 0.639239i \(-0.779249\pi\)
0.769008 0.639239i \(-0.220751\pi\)
\(882\) 0 0
\(883\) −18.0000 18.0000i −0.605748 0.605748i 0.336084 0.941832i \(-0.390897\pi\)
−0.941832 + 0.336084i \(0.890897\pi\)
\(884\) 0 0
\(885\) 41.0792 + 23.7171i 1.38086 + 0.797241i
\(886\) 1.00000 1.73205i 0.0335957 0.0581894i
\(887\) −1.15747 + 4.31975i −0.0388642 + 0.145043i −0.982632 0.185567i \(-0.940588\pi\)
0.943767 + 0.330610i \(0.107254\pi\)
\(888\) −37.9473 + 37.9473i −1.27343 + 1.27343i
\(889\) 0 0
\(890\) 20.0000i 0.670402i
\(891\) 5.50000 + 9.52628i 0.184257 + 0.319142i
\(892\) 0 0
\(893\) 20.4904 5.49038i 0.685684 0.183729i
\(894\) −18.9737 32.8634i −0.634574 1.09911i
\(895\) 9.48683 + 9.48683i 0.317110 + 0.317110i
\(896\) 0 0
\(897\) −10.0000 + 10.0000i −0.333890 + 0.333890i
\(898\) −6.22243 + 23.2224i −0.207645 + 0.774943i
\(899\) 4.74342 8.21584i 0.158202 0.274014i
\(900\) 0 0
\(901\) −2.73861 + 1.58114i −0.0912364 + 0.0526754i
\(902\) 9.48683 + 9.48683i 0.315877 + 0.315877i
\(903\) 0 0
\(904\) 48.0000i 1.59646i
\(905\) 12.8109 47.8109i 0.425848 1.58929i
\(906\) 24.6475 + 14.2302i 0.818859 + 0.472768i
\(907\) 8.05256 + 30.0526i 0.267381 + 0.997879i 0.960777 + 0.277322i \(0.0894470\pi\)
−0.693396 + 0.720557i \(0.743886\pi\)
\(908\) 0 0
\(909\) 6.32456 0.209772
\(910\) 0 0
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) −27.3205 7.32051i −0.904672 0.242406i
\(913\) −1.15747 4.31975i −0.0383068 0.142963i
\(914\) 1.73205 + 1.00000i 0.0572911 + 0.0330771i
\(915\) −15.8114 27.3861i −0.522708 0.905357i
\(916\) 0 0
\(917\) 0 0
\(918\) −5.00000 5.00000i −0.165025 0.165025i
\(919\) 23.3827 13.5000i 0.771324 0.445324i −0.0620230 0.998075i \(-0.519755\pi\)
0.833347 + 0.552751i \(0.186422\pi\)
\(920\) 17.2790 4.62990i 0.569672 0.152643i
\(921\) 7.50000 12.9904i 0.247133 0.428048i
\(922\) −2.31495 + 8.63950i −0.0762387 + 0.284527i
\(923\) −9.48683 + 9.48683i −0.312263 + 0.312263i
\(924\) 0 0
\(925\) 30.0000 + 30.0000i 0.986394 + 0.986394i
\(926\) −4.00000 6.92820i −0.131448 0.227675i
\(927\) −30.2383 + 8.10232i −0.993155 + 0.266115i
\(928\) 0 0
\(929\) 1.58114 + 2.73861i 0.0518755 + 0.0898510i 0.890797 0.454401i \(-0.150147\pi\)
−0.838922 + 0.544252i \(0.816813\pi\)
\(930\) −15.8114 + 15.8114i −0.518476 + 0.518476i
\(931\) 0 0
\(932\) 0 0
\(933\) −12.8109 + 47.8109i −0.419410 + 1.56526i
\(934\) 11.0680 19.1703i 0.362155 0.627271i
\(935\) −2.50000 + 4.33013i −0.0817587 + 0.141610i
\(936\) 10.9545 6.32456i 0.358057 0.206725i
\(937\) 14.2302 + 14.2302i 0.464882 + 0.464882i 0.900252 0.435370i \(-0.143382\pi\)
−0.435370 + 0.900252i \(0.643382\pi\)
\(938\) 0 0
\(939\) 45.0000i 1.46852i
\(940\) 0 0
\(941\) −32.8634 18.9737i −1.07131 0.618524i −0.142774 0.989755i \(-0.545602\pi\)
−0.928540 + 0.371231i \(0.878936\pi\)
\(942\) −7.32051 27.3205i −0.238515 0.890150i
\(943\) 25.9185 + 6.94484i 0.844023 + 0.226155i
\(944\) −37.9473 −1.23508
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) −9.56218 2.56218i −0.310729 0.0832596i 0.100085 0.994979i \(-0.468089\pi\)
−0.410814 + 0.911719i \(0.634755\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −5.78737 + 21.5988i −0.187767 + 0.700756i
\(951\) 60.0833i 1.94833i
\(952\) 0 0
\(953\) −3.00000 3.00000i −0.0971795 0.0971795i 0.656846 0.754025i \(-0.271890\pi\)
−0.754025 + 0.656846i \(0.771890\pi\)
\(954\) 3.46410 2.00000i 0.112154 0.0647524i
\(955\) −1.73621 6.47963i −0.0561825 0.209676i
\(956\) 0 0
\(957\) −1.73621 + 6.47963i −0.0561237 + 0.209457i
\(958\) −6.32456 + 6.32456i −0.204337 + 0.204337i
\(959\) 0 0
\(960\) −40.0000 −1.29099
\(961\) −10.5000 18.1865i −0.338710 0.586662i
\(962\) 25.9185 6.94484i 0.835646 0.223911i
\(963\) −8.19615 + 2.19615i −0.264117 + 0.0707700i
\(964\) 0 0
\(965\) −25.2982 −0.814379
\(966\) 0 0
\(967\) −33.0000 + 33.0000i −1.06121 + 1.06121i −0.0632081 + 0.998000i \(0.520133\pi\)
−0.998000 + 0.0632081i \(0.979867\pi\)
\(968\) 7.32051 27.3205i 0.235290 0.878114i
\(969\) 7.90569 13.6931i 0.253967 0.439885i
\(970\) −1.83013 6.83013i −0.0587618 0.219302i
\(971\) 30.1247 17.3925i 0.966749 0.558153i 0.0685054 0.997651i \(-0.478177\pi\)
0.898244 + 0.439498i \(0.144844\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 8.00000i 0.256337i
\(975\) −12.5000 21.6506i −0.400320 0.693375i
\(976\) 21.9089 + 12.6491i 0.701287 + 0.404888i
\(977\) −0.366025 1.36603i −0.0117102 0.0437030i 0.959824 0.280604i \(-0.0905349\pi\)
−0.971534 + 0.236901i \(0.923868\pi\)
\(978\) −25.9185 6.94484i −0.828783 0.222072i
\(979\) −6.32456 −0.202134
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) −56.0070 15.0070i −1.78726 0.478894i
\(983\) 7.52358 + 28.0784i 0.239965 + 0.895561i 0.975848 + 0.218452i \(0.0701008\pi\)
−0.735883 + 0.677109i \(0.763233\pi\)
\(984\) −51.9615 30.0000i −1.65647 0.956365i
\(985\) 2.73861 1.58114i 0.0872595 0.0503793i
\(986\) 9.48683i 0.302122i
\(987\) 0 0
\(988\) 0 0
\(989\) −10.3923 + 6.00000i −0.330456 + 0.190789i
\(990\) 3.16228 5.47723i 0.100504 0.174078i
\(991\) −2.00000 + 3.46410i −0.0635321 + 0.110041i −0.896042 0.443969i \(-0.853570\pi\)
0.832510 + 0.554010i \(0.186903\pi\)
\(992\) 0 0
\(993\) 9.48683 9.48683i 0.301056 0.301056i
\(994\) 0 0
\(995\) 15.0000 15.0000i 0.475532 0.475532i
\(996\) 0 0
\(997\) 19.4389 5.20863i 0.615636 0.164959i 0.0624926 0.998045i \(-0.480095\pi\)
0.553143 + 0.833086i \(0.313428\pi\)
\(998\) −25.9545 + 6.95448i −0.821575 + 0.220140i
\(999\) −9.48683 16.4317i −0.300150 0.519875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.l.c.178.1 8
5.2 odd 4 inner 245.2.l.c.227.1 8
7.2 even 3 inner 245.2.l.c.68.2 8
7.3 odd 6 35.2.f.a.13.2 yes 4
7.4 even 3 35.2.f.a.13.1 4
7.5 odd 6 inner 245.2.l.c.68.1 8
7.6 odd 2 inner 245.2.l.c.178.2 8
21.11 odd 6 315.2.p.c.118.1 4
21.17 even 6 315.2.p.c.118.2 4
28.3 even 6 560.2.bj.a.433.1 4
28.11 odd 6 560.2.bj.a.433.2 4
35.2 odd 12 inner 245.2.l.c.117.2 8
35.3 even 12 175.2.f.c.132.2 4
35.4 even 6 175.2.f.c.118.2 4
35.12 even 12 inner 245.2.l.c.117.1 8
35.17 even 12 35.2.f.a.27.1 yes 4
35.18 odd 12 175.2.f.c.132.1 4
35.24 odd 6 175.2.f.c.118.1 4
35.27 even 4 inner 245.2.l.c.227.2 8
35.32 odd 12 35.2.f.a.27.2 yes 4
105.17 odd 12 315.2.p.c.307.1 4
105.32 even 12 315.2.p.c.307.2 4
140.67 even 12 560.2.bj.a.97.1 4
140.87 odd 12 560.2.bj.a.97.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.f.a.13.1 4 7.4 even 3
35.2.f.a.13.2 yes 4 7.3 odd 6
35.2.f.a.27.1 yes 4 35.17 even 12
35.2.f.a.27.2 yes 4 35.32 odd 12
175.2.f.c.118.1 4 35.24 odd 6
175.2.f.c.118.2 4 35.4 even 6
175.2.f.c.132.1 4 35.18 odd 12
175.2.f.c.132.2 4 35.3 even 12
245.2.l.c.68.1 8 7.5 odd 6 inner
245.2.l.c.68.2 8 7.2 even 3 inner
245.2.l.c.117.1 8 35.12 even 12 inner
245.2.l.c.117.2 8 35.2 odd 12 inner
245.2.l.c.178.1 8 1.1 even 1 trivial
245.2.l.c.178.2 8 7.6 odd 2 inner
245.2.l.c.227.1 8 5.2 odd 4 inner
245.2.l.c.227.2 8 35.27 even 4 inner
315.2.p.c.118.1 4 21.11 odd 6
315.2.p.c.118.2 4 21.17 even 6
315.2.p.c.307.1 4 105.17 odd 12
315.2.p.c.307.2 4 105.32 even 12
560.2.bj.a.97.1 4 140.67 even 12
560.2.bj.a.97.2 4 140.87 odd 12
560.2.bj.a.433.1 4 28.3 even 6
560.2.bj.a.433.2 4 28.11 odd 6