Properties

Label 175.2.f.c.118.1
Level $175$
Weight $2$
Character 175.118
Analytic conductor $1.397$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,2,Mod(118,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,-4,8,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.1
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 175.118
Dual form 175.2.f.c.132.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +(-1.58114 + 1.58114i) q^{3} +3.16228i q^{6} +(0.581139 + 2.58114i) q^{7} +(2.00000 + 2.00000i) q^{8} -2.00000i q^{9} -1.00000 q^{11} +(1.58114 - 1.58114i) q^{13} +(3.16228 + 2.00000i) q^{14} +4.00000 q^{16} +(-1.58114 - 1.58114i) q^{17} +(-2.00000 - 2.00000i) q^{18} +3.16228 q^{19} +(-5.00000 - 3.16228i) q^{21} +(-1.00000 + 1.00000i) q^{22} +(-2.00000 - 2.00000i) q^{23} -6.32456 q^{24} -3.16228i q^{26} +(-1.58114 - 1.58114i) q^{27} -3.00000i q^{29} +3.16228i q^{31} +(1.58114 - 1.58114i) q^{33} -3.16228 q^{34} +(6.00000 - 6.00000i) q^{37} +(3.16228 - 3.16228i) q^{38} +5.00000i q^{39} -9.48683i q^{41} +(-8.16228 + 1.83772i) q^{42} +(3.00000 + 3.00000i) q^{43} -4.00000 q^{46} +(4.74342 + 4.74342i) q^{47} +(-6.32456 + 6.32456i) q^{48} +(-6.32456 + 3.00000i) q^{49} +5.00000 q^{51} +(-1.00000 - 1.00000i) q^{53} -3.16228 q^{54} +(-4.00000 + 6.32456i) q^{56} +(-5.00000 + 5.00000i) q^{57} +(-3.00000 - 3.00000i) q^{58} +9.48683 q^{59} +6.32456i q^{61} +(3.16228 + 3.16228i) q^{62} +(5.16228 - 1.16228i) q^{63} +8.00000i q^{64} -3.16228i q^{66} +(1.00000 - 1.00000i) q^{67} +6.32456 q^{69} -6.00000 q^{71} +(4.00000 - 4.00000i) q^{72} -12.0000i q^{74} +(-0.581139 - 2.58114i) q^{77} +(5.00000 + 5.00000i) q^{78} -13.0000i q^{79} +11.0000 q^{81} +(-9.48683 - 9.48683i) q^{82} +(3.16228 - 3.16228i) q^{83} +6.00000 q^{86} +(4.74342 + 4.74342i) q^{87} +(-2.00000 - 2.00000i) q^{88} -6.32456 q^{89} +(5.00000 + 3.16228i) q^{91} +(-5.00000 - 5.00000i) q^{93} +9.48683 q^{94} +(1.58114 + 1.58114i) q^{97} +(-3.32456 + 9.32456i) q^{98} +2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{7} + 8 q^{8} - 4 q^{11} + 16 q^{16} - 8 q^{18} - 20 q^{21} - 4 q^{22} - 8 q^{23} + 24 q^{37} - 20 q^{42} + 12 q^{43} - 16 q^{46} + 20 q^{51} - 4 q^{53} - 16 q^{56} - 20 q^{57} - 12 q^{58}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) −1.58114 + 1.58114i −0.912871 + 0.912871i −0.996497 0.0836263i \(-0.973350\pi\)
0.0836263 + 0.996497i \(0.473350\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 3.16228i 1.29099i
\(7\) 0.581139 + 2.58114i 0.219650 + 0.975579i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 2.00000i 0.666667i
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 1.58114 1.58114i 0.438529 0.438529i −0.452988 0.891517i \(-0.649642\pi\)
0.891517 + 0.452988i \(0.149642\pi\)
\(14\) 3.16228 + 2.00000i 0.845154 + 0.534522i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −1.58114 1.58114i −0.383482 0.383482i 0.488873 0.872355i \(-0.337408\pi\)
−0.872355 + 0.488873i \(0.837408\pi\)
\(18\) −2.00000 2.00000i −0.471405 0.471405i
\(19\) 3.16228 0.725476 0.362738 0.931891i \(-0.381842\pi\)
0.362738 + 0.931891i \(0.381842\pi\)
\(20\) 0 0
\(21\) −5.00000 3.16228i −1.09109 0.690066i
\(22\) −1.00000 + 1.00000i −0.213201 + 0.213201i
\(23\) −2.00000 2.00000i −0.417029 0.417029i 0.467150 0.884178i \(-0.345281\pi\)
−0.884178 + 0.467150i \(0.845281\pi\)
\(24\) −6.32456 −1.29099
\(25\) 0 0
\(26\) 3.16228i 0.620174i
\(27\) −1.58114 1.58114i −0.304290 0.304290i
\(28\) 0 0
\(29\) 3.00000i 0.557086i −0.960424 0.278543i \(-0.910149\pi\)
0.960424 0.278543i \(-0.0898515\pi\)
\(30\) 0 0
\(31\) 3.16228i 0.567962i 0.958830 + 0.283981i \(0.0916552\pi\)
−0.958830 + 0.283981i \(0.908345\pi\)
\(32\) 0 0
\(33\) 1.58114 1.58114i 0.275241 0.275241i
\(34\) −3.16228 −0.542326
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 6.00000i 0.986394 0.986394i −0.0135147 0.999909i \(-0.504302\pi\)
0.999909 + 0.0135147i \(0.00430201\pi\)
\(38\) 3.16228 3.16228i 0.512989 0.512989i
\(39\) 5.00000i 0.800641i
\(40\) 0 0
\(41\) 9.48683i 1.48159i −0.671729 0.740797i \(-0.734448\pi\)
0.671729 0.740797i \(-0.265552\pi\)
\(42\) −8.16228 + 1.83772i −1.25947 + 0.283567i
\(43\) 3.00000 + 3.00000i 0.457496 + 0.457496i 0.897833 0.440337i \(-0.145141\pi\)
−0.440337 + 0.897833i \(0.645141\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 4.74342 + 4.74342i 0.691898 + 0.691898i 0.962649 0.270751i \(-0.0872720\pi\)
−0.270751 + 0.962649i \(0.587272\pi\)
\(48\) −6.32456 + 6.32456i −0.912871 + 0.912871i
\(49\) −6.32456 + 3.00000i −0.903508 + 0.428571i
\(50\) 0 0
\(51\) 5.00000 0.700140
\(52\) 0 0
\(53\) −1.00000 1.00000i −0.137361 0.137361i 0.635083 0.772444i \(-0.280966\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(54\) −3.16228 −0.430331
\(55\) 0 0
\(56\) −4.00000 + 6.32456i −0.534522 + 0.845154i
\(57\) −5.00000 + 5.00000i −0.662266 + 0.662266i
\(58\) −3.00000 3.00000i −0.393919 0.393919i
\(59\) 9.48683 1.23508 0.617540 0.786539i \(-0.288129\pi\)
0.617540 + 0.786539i \(0.288129\pi\)
\(60\) 0 0
\(61\) 6.32456i 0.809776i 0.914366 + 0.404888i \(0.132690\pi\)
−0.914366 + 0.404888i \(0.867310\pi\)
\(62\) 3.16228 + 3.16228i 0.401610 + 0.401610i
\(63\) 5.16228 1.16228i 0.650386 0.146433i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 3.16228i 0.389249i
\(67\) 1.00000 1.00000i 0.122169 0.122169i −0.643379 0.765548i \(-0.722468\pi\)
0.765548 + 0.643379i \(0.222468\pi\)
\(68\) 0 0
\(69\) 6.32456 0.761387
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 4.00000 4.00000i 0.471405 0.471405i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 12.0000i 1.39497i
\(75\) 0 0
\(76\) 0 0
\(77\) −0.581139 2.58114i −0.0662269 0.294148i
\(78\) 5.00000 + 5.00000i 0.566139 + 0.566139i
\(79\) 13.0000i 1.46261i −0.682048 0.731307i \(-0.738911\pi\)
0.682048 0.731307i \(-0.261089\pi\)
\(80\) 0 0
\(81\) 11.0000 1.22222
\(82\) −9.48683 9.48683i −1.04765 1.04765i
\(83\) 3.16228 3.16228i 0.347105 0.347105i −0.511925 0.859030i \(-0.671067\pi\)
0.859030 + 0.511925i \(0.171067\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 4.74342 + 4.74342i 0.508548 + 0.508548i
\(88\) −2.00000 2.00000i −0.213201 0.213201i
\(89\) −6.32456 −0.670402 −0.335201 0.942147i \(-0.608804\pi\)
−0.335201 + 0.942147i \(0.608804\pi\)
\(90\) 0 0
\(91\) 5.00000 + 3.16228i 0.524142 + 0.331497i
\(92\) 0 0
\(93\) −5.00000 5.00000i −0.518476 0.518476i
\(94\) 9.48683 0.978492
\(95\) 0 0
\(96\) 0 0
\(97\) 1.58114 + 1.58114i 0.160540 + 0.160540i 0.782806 0.622266i \(-0.213788\pi\)
−0.622266 + 0.782806i \(0.713788\pi\)
\(98\) −3.32456 + 9.32456i −0.335831 + 0.941922i
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) 3.16228i 0.314658i −0.987546 0.157329i \(-0.949712\pi\)
0.987546 0.157329i \(-0.0502884\pi\)
\(102\) 5.00000 5.00000i 0.495074 0.495074i
\(103\) −11.0680 + 11.0680i −1.09056 + 1.09056i −0.0950911 + 0.995469i \(0.530314\pi\)
−0.995469 + 0.0950911i \(0.969686\pi\)
\(104\) 6.32456 0.620174
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 3.00000 3.00000i 0.290021 0.290021i −0.547068 0.837088i \(-0.684256\pi\)
0.837088 + 0.547068i \(0.184256\pi\)
\(108\) 0 0
\(109\) 7.00000i 0.670478i 0.942133 + 0.335239i \(0.108817\pi\)
−0.942133 + 0.335239i \(0.891183\pi\)
\(110\) 0 0
\(111\) 18.9737i 1.80090i
\(112\) 2.32456 + 10.3246i 0.219650 + 0.975579i
\(113\) −12.0000 12.0000i −1.12887 1.12887i −0.990362 0.138503i \(-0.955771\pi\)
−0.138503 0.990362i \(-0.544229\pi\)
\(114\) 10.0000i 0.936586i
\(115\) 0 0
\(116\) 0 0
\(117\) −3.16228 3.16228i −0.292353 0.292353i
\(118\) 9.48683 9.48683i 0.873334 0.873334i
\(119\) 3.16228 5.00000i 0.289886 0.458349i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 6.32456 + 6.32456i 0.572598 + 0.572598i
\(123\) 15.0000 + 15.0000i 1.35250 + 1.35250i
\(124\) 0 0
\(125\) 0 0
\(126\) 4.00000 6.32456i 0.356348 0.563436i
\(127\) −9.00000 + 9.00000i −0.798621 + 0.798621i −0.982878 0.184257i \(-0.941012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) −9.48683 −0.835269
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 1.83772 + 8.16228i 0.159351 + 0.707759i
\(134\) 2.00000i 0.172774i
\(135\) 0 0
\(136\) 6.32456i 0.542326i
\(137\) −2.00000 + 2.00000i −0.170872 + 0.170872i −0.787362 0.616491i \(-0.788554\pi\)
0.616491 + 0.787362i \(0.288554\pi\)
\(138\) 6.32456 6.32456i 0.538382 0.538382i
\(139\) −18.9737 −1.60933 −0.804663 0.593732i \(-0.797654\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) −15.0000 −1.26323
\(142\) −6.00000 + 6.00000i −0.503509 + 0.503509i
\(143\) −1.58114 + 1.58114i −0.132221 + 0.132221i
\(144\) 8.00000i 0.666667i
\(145\) 0 0
\(146\) 0 0
\(147\) 5.25658 14.7434i 0.433556 1.21602i
\(148\) 0 0
\(149\) 12.0000i 0.983078i 0.870855 + 0.491539i \(0.163566\pi\)
−0.870855 + 0.491539i \(0.836434\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 6.32456 + 6.32456i 0.512989 + 0.512989i
\(153\) −3.16228 + 3.16228i −0.255655 + 0.255655i
\(154\) −3.16228 2.00000i −0.254824 0.161165i
\(155\) 0 0
\(156\) 0 0
\(157\) −6.32456 6.32456i −0.504754 0.504754i 0.408157 0.912912i \(-0.366172\pi\)
−0.912912 + 0.408157i \(0.866172\pi\)
\(158\) −13.0000 13.0000i −1.03422 1.03422i
\(159\) 3.16228 0.250785
\(160\) 0 0
\(161\) 4.00000 6.32456i 0.315244 0.498445i
\(162\) 11.0000 11.0000i 0.864242 0.864242i
\(163\) −6.00000 6.00000i −0.469956 0.469956i 0.431944 0.901900i \(-0.357828\pi\)
−0.901900 + 0.431944i \(0.857828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.32456i 0.490881i
\(167\) −11.0680 11.0680i −0.856465 0.856465i 0.134454 0.990920i \(-0.457072\pi\)
−0.990920 + 0.134454i \(0.957072\pi\)
\(168\) −3.67544 16.3246i −0.283567 1.25947i
\(169\) 8.00000i 0.615385i
\(170\) 0 0
\(171\) 6.32456i 0.483651i
\(172\) 0 0
\(173\) 11.0680 11.0680i 0.841482 0.841482i −0.147569 0.989052i \(-0.547145\pi\)
0.989052 + 0.147569i \(0.0471450\pi\)
\(174\) 9.48683 0.719195
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) −15.0000 + 15.0000i −1.12747 + 1.12747i
\(178\) −6.32456 + 6.32456i −0.474045 + 0.474045i
\(179\) 6.00000i 0.448461i 0.974536 + 0.224231i \(0.0719869\pi\)
−0.974536 + 0.224231i \(0.928013\pi\)
\(180\) 0 0
\(181\) 22.1359i 1.64535i −0.568511 0.822676i \(-0.692480\pi\)
0.568511 0.822676i \(-0.307520\pi\)
\(182\) 8.16228 1.83772i 0.605028 0.136221i
\(183\) −10.0000 10.0000i −0.739221 0.739221i
\(184\) 8.00000i 0.589768i
\(185\) 0 0
\(186\) −10.0000 −0.733236
\(187\) 1.58114 + 1.58114i 0.115624 + 0.115624i
\(188\) 0 0
\(189\) 3.16228 5.00000i 0.230022 0.363696i
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) −12.6491 12.6491i −0.912871 0.912871i
\(193\) 8.00000 + 8.00000i 0.575853 + 0.575853i 0.933758 0.357905i \(-0.116509\pi\)
−0.357905 + 0.933758i \(0.616509\pi\)
\(194\) 3.16228 0.227038
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000 1.00000i 0.0712470 0.0712470i −0.670585 0.741832i \(-0.733957\pi\)
0.741832 + 0.670585i \(0.233957\pi\)
\(198\) 2.00000 + 2.00000i 0.142134 + 0.142134i
\(199\) −9.48683 −0.672504 −0.336252 0.941772i \(-0.609159\pi\)
−0.336252 + 0.941772i \(0.609159\pi\)
\(200\) 0 0
\(201\) 3.16228i 0.223050i
\(202\) −3.16228 3.16228i −0.222497 0.222497i
\(203\) 7.74342 1.74342i 0.543481 0.122364i
\(204\) 0 0
\(205\) 0 0
\(206\) 22.1359i 1.54228i
\(207\) −4.00000 + 4.00000i −0.278019 + 0.278019i
\(208\) 6.32456 6.32456i 0.438529 0.438529i
\(209\) −3.16228 −0.218739
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 0 0
\(213\) 9.48683 9.48683i 0.650027 0.650027i
\(214\) 6.00000i 0.410152i
\(215\) 0 0
\(216\) 6.32456i 0.430331i
\(217\) −8.16228 + 1.83772i −0.554092 + 0.124753i
\(218\) 7.00000 + 7.00000i 0.474100 + 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 18.9737 + 18.9737i 1.27343 + 1.27343i
\(223\) −14.2302 + 14.2302i −0.952928 + 0.952928i −0.998941 0.0460129i \(-0.985348\pi\)
0.0460129 + 0.998941i \(0.485348\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −24.0000 −1.59646
\(227\) 1.58114 + 1.58114i 0.104944 + 0.104944i 0.757629 0.652685i \(-0.226358\pi\)
−0.652685 + 0.757629i \(0.726358\pi\)
\(228\) 0 0
\(229\) 15.8114 1.04485 0.522423 0.852686i \(-0.325028\pi\)
0.522423 + 0.852686i \(0.325028\pi\)
\(230\) 0 0
\(231\) 5.00000 + 3.16228i 0.328976 + 0.208063i
\(232\) 6.00000 6.00000i 0.393919 0.393919i
\(233\) 18.0000 + 18.0000i 1.17922 + 1.17922i 0.979943 + 0.199276i \(0.0638589\pi\)
0.199276 + 0.979943i \(0.436141\pi\)
\(234\) −6.32456 −0.413449
\(235\) 0 0
\(236\) 0 0
\(237\) 20.5548 + 20.5548i 1.33518 + 1.33518i
\(238\) −1.83772 8.16228i −0.119122 0.529082i
\(239\) 19.0000i 1.22901i −0.788914 0.614504i \(-0.789356\pi\)
0.788914 0.614504i \(-0.210644\pi\)
\(240\) 0 0
\(241\) 25.2982i 1.62960i 0.579741 + 0.814801i \(0.303154\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) −10.0000 + 10.0000i −0.642824 + 0.642824i
\(243\) −12.6491 + 12.6491i −0.811441 + 0.811441i
\(244\) 0 0
\(245\) 0 0
\(246\) 30.0000 1.91273
\(247\) 5.00000 5.00000i 0.318142 0.318142i
\(248\) −6.32456 + 6.32456i −0.401610 + 0.401610i
\(249\) 10.0000i 0.633724i
\(250\) 0 0
\(251\) 12.6491i 0.798405i 0.916863 + 0.399202i \(0.130713\pi\)
−0.916863 + 0.399202i \(0.869287\pi\)
\(252\) 0 0
\(253\) 2.00000 + 2.00000i 0.125739 + 0.125739i
\(254\) 18.0000i 1.12942i
\(255\) 0 0
\(256\) 0 0
\(257\) −12.6491 12.6491i −0.789030 0.789030i 0.192305 0.981335i \(-0.438404\pi\)
−0.981335 + 0.192305i \(0.938404\pi\)
\(258\) −9.48683 + 9.48683i −0.590624 + 0.590624i
\(259\) 18.9737 + 12.0000i 1.17897 + 0.745644i
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −7.00000 7.00000i −0.431638 0.431638i 0.457547 0.889185i \(-0.348728\pi\)
−0.889185 + 0.457547i \(0.848728\pi\)
\(264\) 6.32456 0.389249
\(265\) 0 0
\(266\) 10.0000 + 6.32456i 0.613139 + 0.387783i
\(267\) 10.0000 10.0000i 0.611990 0.611990i
\(268\) 0 0
\(269\) −18.9737 −1.15684 −0.578422 0.815737i \(-0.696331\pi\)
−0.578422 + 0.815737i \(0.696331\pi\)
\(270\) 0 0
\(271\) 12.6491i 0.768379i −0.923254 0.384189i \(-0.874481\pi\)
0.923254 0.384189i \(-0.125519\pi\)
\(272\) −6.32456 6.32456i −0.383482 0.383482i
\(273\) −12.9057 + 2.90569i −0.781088 + 0.175861i
\(274\) 4.00000i 0.241649i
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000 18.0000i 1.08152 1.08152i 0.0851468 0.996368i \(-0.472864\pi\)
0.996368 0.0851468i \(-0.0271359\pi\)
\(278\) −18.9737 + 18.9737i −1.13796 + 1.13796i
\(279\) 6.32456 0.378641
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) −15.0000 + 15.0000i −0.893237 + 0.893237i
\(283\) 4.74342 4.74342i 0.281967 0.281967i −0.551926 0.833893i \(-0.686107\pi\)
0.833893 + 0.551926i \(0.186107\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 3.16228i 0.186989i
\(287\) 24.4868 5.51317i 1.44541 0.325432i
\(288\) 0 0
\(289\) 12.0000i 0.705882i
\(290\) 0 0
\(291\) −5.00000 −0.293105
\(292\) 0 0
\(293\) 7.90569 7.90569i 0.461856 0.461856i −0.437408 0.899263i \(-0.644103\pi\)
0.899263 + 0.437408i \(0.144103\pi\)
\(294\) −9.48683 20.0000i −0.553283 1.16642i
\(295\) 0 0
\(296\) 24.0000 1.39497
\(297\) 1.58114 + 1.58114i 0.0917470 + 0.0917470i
\(298\) 12.0000 + 12.0000i 0.695141 + 0.695141i
\(299\) −6.32456 −0.365758
\(300\) 0 0
\(301\) −6.00000 + 9.48683i −0.345834 + 0.546812i
\(302\) 9.00000 9.00000i 0.517892 0.517892i
\(303\) 5.00000 + 5.00000i 0.287242 + 0.287242i
\(304\) 12.6491 0.725476
\(305\) 0 0
\(306\) 6.32456i 0.361551i
\(307\) 4.74342 + 4.74342i 0.270721 + 0.270721i 0.829390 0.558669i \(-0.188688\pi\)
−0.558669 + 0.829390i \(0.688688\pi\)
\(308\) 0 0
\(309\) 35.0000i 1.99108i
\(310\) 0 0
\(311\) 22.1359i 1.25521i −0.778530 0.627607i \(-0.784034\pi\)
0.778530 0.627607i \(-0.215966\pi\)
\(312\) −10.0000 + 10.0000i −0.566139 + 0.566139i
\(313\) 14.2302 14.2302i 0.804341 0.804341i −0.179430 0.983771i \(-0.557425\pi\)
0.983771 + 0.179430i \(0.0574252\pi\)
\(314\) −12.6491 −0.713831
\(315\) 0 0
\(316\) 0 0
\(317\) −19.0000 + 19.0000i −1.06715 + 1.06715i −0.0695692 + 0.997577i \(0.522162\pi\)
−0.997577 + 0.0695692i \(0.977838\pi\)
\(318\) 3.16228 3.16228i 0.177332 0.177332i
\(319\) 3.00000i 0.167968i
\(320\) 0 0
\(321\) 9.48683i 0.529503i
\(322\) −2.32456 10.3246i −0.129542 0.575365i
\(323\) −5.00000 5.00000i −0.278207 0.278207i
\(324\) 0 0
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) −11.0680 11.0680i −0.612060 0.612060i
\(328\) 18.9737 18.9737i 1.04765 1.04765i
\(329\) −9.48683 + 15.0000i −0.523026 + 0.826977i
\(330\) 0 0
\(331\) −6.00000 −0.329790 −0.164895 0.986311i \(-0.552728\pi\)
−0.164895 + 0.986311i \(0.552728\pi\)
\(332\) 0 0
\(333\) −12.0000 12.0000i −0.657596 0.657596i
\(334\) −22.1359 −1.21122
\(335\) 0 0
\(336\) −20.0000 12.6491i −1.09109 0.690066i
\(337\) 8.00000 8.00000i 0.435788 0.435788i −0.454804 0.890592i \(-0.650291\pi\)
0.890592 + 0.454804i \(0.150291\pi\)
\(338\) 8.00000 + 8.00000i 0.435143 + 0.435143i
\(339\) 37.9473 2.06102
\(340\) 0 0
\(341\) 3.16228i 0.171247i
\(342\) −6.32456 6.32456i −0.341993 0.341993i
\(343\) −11.4189 14.5811i −0.616561 0.787307i
\(344\) 12.0000i 0.646997i
\(345\) 0 0
\(346\) 22.1359i 1.19004i
\(347\) −24.0000 + 24.0000i −1.28839 + 1.28839i −0.352621 + 0.935766i \(0.614710\pi\)
−0.935766 + 0.352621i \(0.885290\pi\)
\(348\) 0 0
\(349\) 34.7851 1.86200 0.931001 0.365018i \(-0.118937\pi\)
0.931001 + 0.365018i \(0.118937\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −14.2302 + 14.2302i −0.757400 + 0.757400i −0.975848 0.218449i \(-0.929900\pi\)
0.218449 + 0.975848i \(0.429900\pi\)
\(354\) 30.0000i 1.59448i
\(355\) 0 0
\(356\) 0 0
\(357\) 2.90569 + 12.9057i 0.153786 + 0.683042i
\(358\) 6.00000 + 6.00000i 0.317110 + 0.317110i
\(359\) 22.0000i 1.16112i 0.814219 + 0.580558i \(0.197165\pi\)
−0.814219 + 0.580558i \(0.802835\pi\)
\(360\) 0 0
\(361\) −9.00000 −0.473684
\(362\) −22.1359 22.1359i −1.16344 1.16344i
\(363\) 15.8114 15.8114i 0.829883 0.829883i
\(364\) 0 0
\(365\) 0 0
\(366\) −20.0000 −1.04542
\(367\) 17.3925 + 17.3925i 0.907883 + 0.907883i 0.996101 0.0882186i \(-0.0281174\pi\)
−0.0882186 + 0.996101i \(0.528117\pi\)
\(368\) −8.00000 8.00000i −0.417029 0.417029i
\(369\) −18.9737 −0.987730
\(370\) 0 0
\(371\) 2.00000 3.16228i 0.103835 0.164177i
\(372\) 0 0
\(373\) −12.0000 12.0000i −0.621336 0.621336i 0.324537 0.945873i \(-0.394792\pi\)
−0.945873 + 0.324537i \(0.894792\pi\)
\(374\) 3.16228 0.163517
\(375\) 0 0
\(376\) 18.9737i 0.978492i
\(377\) −4.74342 4.74342i −0.244298 0.244298i
\(378\) −1.83772 8.16228i −0.0945222 0.419822i
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) 28.4605i 1.45808i
\(382\) −3.00000 + 3.00000i −0.153493 + 0.153493i
\(383\) 15.8114 15.8114i 0.807924 0.807924i −0.176395 0.984319i \(-0.556444\pi\)
0.984319 + 0.176395i \(0.0564437\pi\)
\(384\) −25.2982 −1.29099
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) 6.00000 6.00000i 0.304997 0.304997i
\(388\) 0 0
\(389\) 23.0000i 1.16615i −0.812420 0.583073i \(-0.801850\pi\)
0.812420 0.583073i \(-0.198150\pi\)
\(390\) 0 0
\(391\) 6.32456i 0.319847i
\(392\) −18.6491 6.64911i −0.941922 0.335831i
\(393\) 0 0
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) 0 0
\(397\) 23.7171 + 23.7171i 1.19033 + 1.19033i 0.976976 + 0.213351i \(0.0684376\pi\)
0.213351 + 0.976976i \(0.431562\pi\)
\(398\) −9.48683 + 9.48683i −0.475532 + 0.475532i
\(399\) −15.8114 10.0000i −0.791559 0.500626i
\(400\) 0 0
\(401\) −1.00000 −0.0499376 −0.0249688 0.999688i \(-0.507949\pi\)
−0.0249688 + 0.999688i \(0.507949\pi\)
\(402\) 3.16228 + 3.16228i 0.157720 + 0.157720i
\(403\) 5.00000 + 5.00000i 0.249068 + 0.249068i
\(404\) 0 0
\(405\) 0 0
\(406\) 6.00000 9.48683i 0.297775 0.470824i
\(407\) −6.00000 + 6.00000i −0.297409 + 0.297409i
\(408\) 10.0000 + 10.0000i 0.495074 + 0.495074i
\(409\) 3.16228 0.156365 0.0781823 0.996939i \(-0.475088\pi\)
0.0781823 + 0.996939i \(0.475088\pi\)
\(410\) 0 0
\(411\) 6.32456i 0.311967i
\(412\) 0 0
\(413\) 5.51317 + 24.4868i 0.271285 + 1.20492i
\(414\) 8.00000i 0.393179i
\(415\) 0 0
\(416\) 0 0
\(417\) 30.0000 30.0000i 1.46911 1.46911i
\(418\) −3.16228 + 3.16228i −0.154672 + 0.154672i
\(419\) −15.8114 −0.772437 −0.386218 0.922407i \(-0.626219\pi\)
−0.386218 + 0.922407i \(0.626219\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 17.0000 17.0000i 0.827547 0.827547i
\(423\) 9.48683 9.48683i 0.461266 0.461266i
\(424\) 4.00000i 0.194257i
\(425\) 0 0
\(426\) 18.9737i 0.919277i
\(427\) −16.3246 + 3.67544i −0.790001 + 0.177867i
\(428\) 0 0
\(429\) 5.00000i 0.241402i
\(430\) 0 0
\(431\) −23.0000 −1.10787 −0.553936 0.832560i \(-0.686875\pi\)
−0.553936 + 0.832560i \(0.686875\pi\)
\(432\) −6.32456 6.32456i −0.304290 0.304290i
\(433\) −9.48683 + 9.48683i −0.455908 + 0.455908i −0.897310 0.441402i \(-0.854481\pi\)
0.441402 + 0.897310i \(0.354481\pi\)
\(434\) −6.32456 + 10.0000i −0.303588 + 0.480015i
\(435\) 0 0
\(436\) 0 0
\(437\) −6.32456 6.32456i −0.302545 0.302545i
\(438\) 0 0
\(439\) −12.6491 −0.603709 −0.301855 0.953354i \(-0.597606\pi\)
−0.301855 + 0.953354i \(0.597606\pi\)
\(440\) 0 0
\(441\) 6.00000 + 12.6491i 0.285714 + 0.602339i
\(442\) −5.00000 + 5.00000i −0.237826 + 0.237826i
\(443\) −1.00000 1.00000i −0.0475114 0.0475114i 0.682952 0.730463i \(-0.260696\pi\)
−0.730463 + 0.682952i \(0.760696\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 28.4605i 1.34764i
\(447\) −18.9737 18.9737i −0.897424 0.897424i
\(448\) −20.6491 + 4.64911i −0.975579 + 0.219650i
\(449\) 17.0000i 0.802280i 0.916017 + 0.401140i \(0.131386\pi\)
−0.916017 + 0.401140i \(0.868614\pi\)
\(450\) 0 0
\(451\) 9.48683i 0.446718i
\(452\) 0 0
\(453\) −14.2302 + 14.2302i −0.668595 + 0.668595i
\(454\) 3.16228 0.148413
\(455\) 0 0
\(456\) −20.0000 −0.936586
\(457\) 1.00000 1.00000i 0.0467780 0.0467780i −0.683331 0.730109i \(-0.739469\pi\)
0.730109 + 0.683331i \(0.239469\pi\)
\(458\) 15.8114 15.8114i 0.738818 0.738818i
\(459\) 5.00000i 0.233380i
\(460\) 0 0
\(461\) 6.32456i 0.294564i −0.989095 0.147282i \(-0.952948\pi\)
0.989095 0.147282i \(-0.0470525\pi\)
\(462\) 8.16228 1.83772i 0.379744 0.0854986i
\(463\) 4.00000 + 4.00000i 0.185896 + 0.185896i 0.793919 0.608023i \(-0.208037\pi\)
−0.608023 + 0.793919i \(0.708037\pi\)
\(464\) 12.0000i 0.557086i
\(465\) 0 0
\(466\) 36.0000 1.66767
\(467\) 11.0680 + 11.0680i 0.512165 + 0.512165i 0.915189 0.403025i \(-0.132041\pi\)
−0.403025 + 0.915189i \(0.632041\pi\)
\(468\) 0 0
\(469\) 3.16228 + 2.00000i 0.146020 + 0.0923514i
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 18.9737 + 18.9737i 0.873334 + 0.873334i
\(473\) −3.00000 3.00000i −0.137940 0.137940i
\(474\) 41.1096 1.88823
\(475\) 0 0
\(476\) 0 0
\(477\) −2.00000 + 2.00000i −0.0915737 + 0.0915737i
\(478\) −19.0000 19.0000i −0.869040 0.869040i
\(479\) −6.32456 −0.288976 −0.144488 0.989507i \(-0.546154\pi\)
−0.144488 + 0.989507i \(0.546154\pi\)
\(480\) 0 0
\(481\) 18.9737i 0.865125i
\(482\) 25.2982 + 25.2982i 1.15230 + 1.15230i
\(483\) 3.67544 + 16.3246i 0.167239 + 0.742793i
\(484\) 0 0
\(485\) 0 0
\(486\) 25.2982i 1.14755i
\(487\) −4.00000 + 4.00000i −0.181257 + 0.181257i −0.791904 0.610646i \(-0.790910\pi\)
0.610646 + 0.791904i \(0.290910\pi\)
\(488\) −12.6491 + 12.6491i −0.572598 + 0.572598i
\(489\) 18.9737 0.858019
\(490\) 0 0
\(491\) −41.0000 −1.85030 −0.925152 0.379597i \(-0.876063\pi\)
−0.925152 + 0.379597i \(0.876063\pi\)
\(492\) 0 0
\(493\) −4.74342 + 4.74342i −0.213633 + 0.213633i
\(494\) 10.0000i 0.449921i
\(495\) 0 0
\(496\) 12.6491i 0.567962i
\(497\) −3.48683 15.4868i −0.156406 0.694679i
\(498\) 10.0000 + 10.0000i 0.448111 + 0.448111i
\(499\) 19.0000i 0.850557i −0.905063 0.425278i \(-0.860176\pi\)
0.905063 0.425278i \(-0.139824\pi\)
\(500\) 0 0
\(501\) 35.0000 1.56368
\(502\) 12.6491 + 12.6491i 0.564557 + 0.564557i
\(503\) −7.90569 + 7.90569i −0.352497 + 0.352497i −0.861038 0.508541i \(-0.830185\pi\)
0.508541 + 0.861038i \(0.330185\pi\)
\(504\) 12.6491 + 8.00000i 0.563436 + 0.356348i
\(505\) 0 0
\(506\) 4.00000 0.177822
\(507\) −12.6491 12.6491i −0.561767 0.561767i
\(508\) 0 0
\(509\) 18.9737 0.840993 0.420496 0.907294i \(-0.361856\pi\)
0.420496 + 0.907294i \(0.361856\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −5.00000 5.00000i −0.220755 0.220755i
\(514\) −25.2982 −1.11586
\(515\) 0 0
\(516\) 0 0
\(517\) −4.74342 4.74342i −0.208615 0.208615i
\(518\) 30.9737 6.97367i 1.36090 0.306405i
\(519\) 35.0000i 1.53633i
\(520\) 0 0
\(521\) 41.1096i 1.80104i 0.434810 + 0.900522i \(0.356816\pi\)
−0.434810 + 0.900522i \(0.643184\pi\)
\(522\) −6.00000 + 6.00000i −0.262613 + 0.262613i
\(523\) 18.9737 18.9737i 0.829660 0.829660i −0.157809 0.987470i \(-0.550443\pi\)
0.987470 + 0.157809i \(0.0504431\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −14.0000 −0.610429
\(527\) 5.00000 5.00000i 0.217803 0.217803i
\(528\) 6.32456 6.32456i 0.275241 0.275241i
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 18.9737i 0.823387i
\(532\) 0 0
\(533\) −15.0000 15.0000i −0.649722 0.649722i
\(534\) 20.0000i 0.865485i
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) −9.48683 9.48683i −0.409387 0.409387i
\(538\) −18.9737 + 18.9737i −0.818013 + 0.818013i
\(539\) 6.32456 3.00000i 0.272418 0.129219i
\(540\) 0 0
\(541\) 9.00000 0.386940 0.193470 0.981106i \(-0.438026\pi\)
0.193470 + 0.981106i \(0.438026\pi\)
\(542\) −12.6491 12.6491i −0.543326 0.543326i
\(543\) 35.0000 + 35.0000i 1.50199 + 1.50199i
\(544\) 0 0
\(545\) 0 0
\(546\) −10.0000 + 15.8114i −0.427960 + 0.676665i
\(547\) −14.0000 + 14.0000i −0.598597 + 0.598597i −0.939939 0.341342i \(-0.889118\pi\)
0.341342 + 0.939939i \(0.389118\pi\)
\(548\) 0 0
\(549\) 12.6491 0.539851
\(550\) 0 0
\(551\) 9.48683i 0.404153i
\(552\) 12.6491 + 12.6491i 0.538382 + 0.538382i
\(553\) 33.5548 7.55480i 1.42690 0.321263i
\(554\) 36.0000i 1.52949i
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000 6.00000i 0.254228 0.254228i −0.568473 0.822702i \(-0.692466\pi\)
0.822702 + 0.568473i \(0.192466\pi\)
\(558\) 6.32456 6.32456i 0.267740 0.267740i
\(559\) 9.48683 0.401250
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 9.00000 9.00000i 0.379642 0.379642i
\(563\) −9.48683 + 9.48683i −0.399822 + 0.399822i −0.878170 0.478348i \(-0.841236\pi\)
0.478348 + 0.878170i \(0.341236\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 9.48683i 0.398761i
\(567\) 6.39253 + 28.3925i 0.268461 + 1.19237i
\(568\) −12.0000 12.0000i −0.503509 0.503509i
\(569\) 32.0000i 1.34151i 0.741679 + 0.670755i \(0.234030\pi\)
−0.741679 + 0.670755i \(0.765970\pi\)
\(570\) 0 0
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 0 0
\(573\) 4.74342 4.74342i 0.198159 0.198159i
\(574\) 18.9737 30.0000i 0.791946 1.25218i
\(575\) 0 0
\(576\) 16.0000 0.666667
\(577\) −20.5548 20.5548i −0.855708 0.855708i 0.135121 0.990829i \(-0.456858\pi\)
−0.990829 + 0.135121i \(0.956858\pi\)
\(578\) −12.0000 12.0000i −0.499134 0.499134i
\(579\) −25.2982 −1.05136
\(580\) 0 0
\(581\) 10.0000 + 6.32456i 0.414870 + 0.262387i
\(582\) −5.00000 + 5.00000i −0.207257 + 0.207257i
\(583\) 1.00000 + 1.00000i 0.0414158 + 0.0414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 15.8114i 0.653162i
\(587\) 15.8114 + 15.8114i 0.652606 + 0.652606i 0.953620 0.301014i \(-0.0973251\pi\)
−0.301014 + 0.953620i \(0.597325\pi\)
\(588\) 0 0
\(589\) 10.0000i 0.412043i
\(590\) 0 0
\(591\) 3.16228i 0.130079i
\(592\) 24.0000 24.0000i 0.986394 0.986394i
\(593\) −20.5548 + 20.5548i −0.844085 + 0.844085i −0.989387 0.145303i \(-0.953584\pi\)
0.145303 + 0.989387i \(0.453584\pi\)
\(594\) 3.16228 0.129750
\(595\) 0 0
\(596\) 0 0
\(597\) 15.0000 15.0000i 0.613909 0.613909i
\(598\) −6.32456 + 6.32456i −0.258630 + 0.258630i
\(599\) 13.0000i 0.531166i −0.964088 0.265583i \(-0.914436\pi\)
0.964088 0.265583i \(-0.0855644\pi\)
\(600\) 0 0
\(601\) 22.1359i 0.902944i 0.892285 + 0.451472i \(0.149101\pi\)
−0.892285 + 0.451472i \(0.850899\pi\)
\(602\) 3.48683 + 15.4868i 0.142113 + 0.631196i
\(603\) −2.00000 2.00000i −0.0814463 0.0814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) −14.2302 14.2302i −0.577588 0.577588i 0.356650 0.934238i \(-0.383919\pi\)
−0.934238 + 0.356650i \(0.883919\pi\)
\(608\) 0 0
\(609\) −9.48683 + 15.0000i −0.384426 + 0.607831i
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 0 0
\(613\) −17.0000 17.0000i −0.686624 0.686624i 0.274861 0.961484i \(-0.411368\pi\)
−0.961484 + 0.274861i \(0.911368\pi\)
\(614\) 9.48683 0.382857
\(615\) 0 0
\(616\) 4.00000 6.32456i 0.161165 0.254824i
\(617\) −4.00000 + 4.00000i −0.161034 + 0.161034i −0.783025 0.621991i \(-0.786324\pi\)
0.621991 + 0.783025i \(0.286324\pi\)
\(618\) −35.0000 35.0000i −1.40791 1.40791i
\(619\) −25.2982 −1.01682 −0.508411 0.861115i \(-0.669767\pi\)
−0.508411 + 0.861115i \(0.669767\pi\)
\(620\) 0 0
\(621\) 6.32456i 0.253796i
\(622\) −22.1359 22.1359i −0.887570 0.887570i
\(623\) −3.67544 16.3246i −0.147254 0.654029i
\(624\) 20.0000i 0.800641i
\(625\) 0 0
\(626\) 28.4605i 1.13751i
\(627\) 5.00000 5.00000i 0.199681 0.199681i
\(628\) 0 0
\(629\) −18.9737 −0.756530
\(630\) 0 0
\(631\) −31.0000 −1.23409 −0.617045 0.786928i \(-0.711670\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(632\) 26.0000 26.0000i 1.03422 1.03422i
\(633\) −26.8794 + 26.8794i −1.06836 + 1.06836i
\(634\) 38.0000i 1.50917i
\(635\) 0 0
\(636\) 0 0
\(637\) −5.25658 + 14.7434i −0.208273 + 0.584155i
\(638\) 3.00000 + 3.00000i 0.118771 + 0.118771i
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) 44.0000 1.73790 0.868948 0.494904i \(-0.164797\pi\)
0.868948 + 0.494904i \(0.164797\pi\)
\(642\) 9.48683 + 9.48683i 0.374415 + 0.374415i
\(643\) −4.74342 + 4.74342i −0.187062 + 0.187062i −0.794425 0.607363i \(-0.792228\pi\)
0.607363 + 0.794425i \(0.292228\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) −12.6491 12.6491i −0.497288 0.497288i 0.413305 0.910593i \(-0.364374\pi\)
−0.910593 + 0.413305i \(0.864374\pi\)
\(648\) 22.0000 + 22.0000i 0.864242 + 0.864242i
\(649\) −9.48683 −0.372391
\(650\) 0 0
\(651\) 10.0000 15.8114i 0.391931 0.619697i
\(652\) 0 0
\(653\) 19.0000 + 19.0000i 0.743527 + 0.743527i 0.973255 0.229728i \(-0.0737835\pi\)
−0.229728 + 0.973255i \(0.573784\pi\)
\(654\) −22.1359 −0.865584
\(655\) 0 0
\(656\) 37.9473i 1.48159i
\(657\) 0 0
\(658\) 5.51317 + 24.4868i 0.214926 + 0.954596i
\(659\) 1.00000i 0.0389545i 0.999810 + 0.0194772i \(0.00620019\pi\)
−0.999810 + 0.0194772i \(0.993800\pi\)
\(660\) 0 0
\(661\) 12.6491i 0.491993i −0.969271 0.245997i \(-0.920885\pi\)
0.969271 0.245997i \(-0.0791152\pi\)
\(662\) −6.00000 + 6.00000i −0.233197 + 0.233197i
\(663\) 7.90569 7.90569i 0.307032 0.307032i
\(664\) 12.6491 0.490881
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) −6.00000 + 6.00000i −0.232321 + 0.232321i
\(668\) 0 0
\(669\) 45.0000i 1.73980i
\(670\) 0 0
\(671\) 6.32456i 0.244157i
\(672\) 0 0
\(673\) 24.0000 + 24.0000i 0.925132 + 0.925132i 0.997386 0.0722542i \(-0.0230193\pi\)
−0.0722542 + 0.997386i \(0.523019\pi\)
\(674\) 16.0000i 0.616297i
\(675\) 0 0
\(676\) 0 0
\(677\) 14.2302 + 14.2302i 0.546913 + 0.546913i 0.925547 0.378634i \(-0.123606\pi\)
−0.378634 + 0.925547i \(0.623606\pi\)
\(678\) 37.9473 37.9473i 1.45736 1.45736i
\(679\) −3.16228 + 5.00000i −0.121357 + 0.191882i
\(680\) 0 0
\(681\) −5.00000 −0.191600
\(682\) −3.16228 3.16228i −0.121090 0.121090i
\(683\) −32.0000 32.0000i −1.22445 1.22445i −0.966035 0.258411i \(-0.916801\pi\)
−0.258411 0.966035i \(-0.583199\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −26.0000 3.16228i −0.992685 0.120736i
\(687\) −25.0000 + 25.0000i −0.953809 + 0.953809i
\(688\) 12.0000 + 12.0000i 0.457496 + 0.457496i
\(689\) −3.16228 −0.120473
\(690\) 0 0
\(691\) 31.6228i 1.20299i 0.798878 + 0.601494i \(0.205427\pi\)
−0.798878 + 0.601494i \(0.794573\pi\)
\(692\) 0 0
\(693\) −5.16228 + 1.16228i −0.196099 + 0.0441513i
\(694\) 48.0000i 1.82206i
\(695\) 0 0
\(696\) 18.9737i 0.719195i
\(697\) −15.0000 + 15.0000i −0.568166 + 0.568166i
\(698\) 34.7851 34.7851i 1.31663 1.31663i
\(699\) −56.9210 −2.15295
\(700\) 0 0
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) −5.00000 + 5.00000i −0.188713 + 0.188713i
\(703\) 18.9737 18.9737i 0.715605 0.715605i
\(704\) 8.00000i 0.301511i
\(705\) 0 0
\(706\) 28.4605i 1.07113i
\(707\) 8.16228 1.83772i 0.306974 0.0691147i
\(708\) 0 0
\(709\) 9.00000i 0.338002i −0.985616 0.169001i \(-0.945946\pi\)
0.985616 0.169001i \(-0.0540541\pi\)
\(710\) 0 0
\(711\) −26.0000 −0.975076
\(712\) −12.6491 12.6491i −0.474045 0.474045i
\(713\) 6.32456 6.32456i 0.236856 0.236856i
\(714\) 15.8114 + 10.0000i 0.591726 + 0.374241i
\(715\) 0 0
\(716\) 0 0
\(717\) 30.0416 + 30.0416i 1.12193 + 1.12193i
\(718\) 22.0000 + 22.0000i 0.821033 + 0.821033i
\(719\) 31.6228 1.17933 0.589665 0.807648i \(-0.299260\pi\)
0.589665 + 0.807648i \(0.299260\pi\)
\(720\) 0 0
\(721\) −35.0000 22.1359i −1.30347 0.824386i
\(722\) −9.00000 + 9.00000i −0.334945 + 0.334945i
\(723\) −40.0000 40.0000i −1.48762 1.48762i
\(724\) 0 0
\(725\) 0 0
\(726\) 31.6228i 1.17363i
\(727\) −9.48683 9.48683i −0.351847 0.351847i 0.508949 0.860796i \(-0.330034\pi\)
−0.860796 + 0.508949i \(0.830034\pi\)
\(728\) 3.67544 + 16.3246i 0.136221 + 0.605028i
\(729\) 7.00000i 0.259259i
\(730\) 0 0
\(731\) 9.48683i 0.350883i
\(732\) 0 0
\(733\) −17.3925 + 17.3925i −0.642408 + 0.642408i −0.951147 0.308739i \(-0.900093\pi\)
0.308739 + 0.951147i \(0.400093\pi\)
\(734\) 34.7851 1.28394
\(735\) 0 0
\(736\) 0 0
\(737\) −1.00000 + 1.00000i −0.0368355 + 0.0368355i
\(738\) −18.9737 + 18.9737i −0.698430 + 0.698430i
\(739\) 37.0000i 1.36107i 0.732717 + 0.680534i \(0.238252\pi\)
−0.732717 + 0.680534i \(0.761748\pi\)
\(740\) 0 0
\(741\) 15.8114i 0.580846i
\(742\) −1.16228 5.16228i −0.0426686 0.189513i
\(743\) 9.00000 + 9.00000i 0.330178 + 0.330178i 0.852654 0.522476i \(-0.174992\pi\)
−0.522476 + 0.852654i \(0.674992\pi\)
\(744\) 20.0000i 0.733236i
\(745\) 0 0
\(746\) −24.0000 −0.878702
\(747\) −6.32456 6.32456i −0.231403 0.231403i
\(748\) 0 0
\(749\) 9.48683 + 6.00000i 0.346641 + 0.219235i
\(750\) 0 0
\(751\) 37.0000 1.35015 0.675075 0.737749i \(-0.264111\pi\)
0.675075 + 0.737749i \(0.264111\pi\)
\(752\) 18.9737 + 18.9737i 0.691898 + 0.691898i
\(753\) −20.0000 20.0000i −0.728841 0.728841i
\(754\) −9.48683 −0.345490
\(755\) 0 0
\(756\) 0 0
\(757\) 16.0000 16.0000i 0.581530 0.581530i −0.353794 0.935324i \(-0.615108\pi\)
0.935324 + 0.353794i \(0.115108\pi\)
\(758\) −8.00000 8.00000i −0.290573 0.290573i
\(759\) −6.32456 −0.229567
\(760\) 0 0
\(761\) 25.2982i 0.917060i 0.888679 + 0.458530i \(0.151624\pi\)
−0.888679 + 0.458530i \(0.848376\pi\)
\(762\) −28.4605 28.4605i −1.03102 1.03102i
\(763\) −18.0680 + 4.06797i −0.654104 + 0.147270i
\(764\) 0 0
\(765\) 0 0
\(766\) 31.6228i 1.14258i
\(767\) 15.0000 15.0000i 0.541619 0.541619i
\(768\) 0 0
\(769\) −22.1359 −0.798243 −0.399121 0.916898i \(-0.630685\pi\)
−0.399121 + 0.916898i \(0.630685\pi\)
\(770\) 0 0
\(771\) 40.0000 1.44056
\(772\) 0 0
\(773\) 36.3662 36.3662i 1.30800 1.30800i 0.385145 0.922856i \(-0.374151\pi\)
0.922856 0.385145i \(-0.125849\pi\)
\(774\) 12.0000i 0.431331i
\(775\) 0 0
\(776\) 6.32456i 0.227038i
\(777\) −48.9737 + 11.0263i −1.75692 + 0.395568i
\(778\) −23.0000 23.0000i −0.824590 0.824590i
\(779\) 30.0000i 1.07486i
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 6.32456 + 6.32456i 0.226166 + 0.226166i
\(783\) −4.74342 + 4.74342i −0.169516 + 0.169516i
\(784\) −25.2982 + 12.0000i −0.903508 + 0.428571i
\(785\) 0 0
\(786\) 0 0
\(787\) −17.3925 17.3925i −0.619977 0.619977i 0.325549 0.945525i \(-0.394451\pi\)
−0.945525 + 0.325549i \(0.894451\pi\)
\(788\) 0 0
\(789\) 22.1359 0.788060
\(790\) 0 0
\(791\) 24.0000 37.9473i 0.853342 1.34925i
\(792\) −4.00000 + 4.00000i −0.142134 + 0.142134i
\(793\) 10.0000 + 10.0000i 0.355110 + 0.355110i
\(794\) 47.4342 1.68338
\(795\) 0 0
\(796\) 0 0
\(797\) −1.58114 1.58114i −0.0560068 0.0560068i 0.678549 0.734555i \(-0.262609\pi\)
−0.734555 + 0.678549i \(0.762609\pi\)
\(798\) −25.8114 + 5.81139i −0.913713 + 0.205721i
\(799\) 15.0000i 0.530662i
\(800\) 0 0
\(801\) 12.6491i 0.446934i
\(802\) −1.00000 + 1.00000i −0.0353112 + 0.0353112i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 10.0000 0.352235
\(807\) 30.0000 30.0000i 1.05605 1.05605i
\(808\) 6.32456 6.32456i 0.222497 0.222497i
\(809\) 3.00000i 0.105474i −0.998608 0.0527372i \(-0.983205\pi\)
0.998608 0.0527372i \(-0.0167946\pi\)
\(810\) 0 0
\(811\) 37.9473i 1.33251i −0.745724 0.666256i \(-0.767896\pi\)
0.745724 0.666256i \(-0.232104\pi\)
\(812\) 0 0
\(813\) 20.0000 + 20.0000i 0.701431 + 0.701431i
\(814\) 12.0000i 0.420600i
\(815\) 0 0
\(816\) 20.0000 0.700140
\(817\) 9.48683 + 9.48683i 0.331902 + 0.331902i
\(818\) 3.16228 3.16228i 0.110566 0.110566i
\(819\) 6.32456 10.0000i 0.220998 0.349428i
\(820\) 0 0
\(821\) −23.0000 −0.802706 −0.401353 0.915924i \(-0.631460\pi\)
−0.401353 + 0.915924i \(0.631460\pi\)
\(822\) −6.32456 6.32456i −0.220594 0.220594i
\(823\) 3.00000 + 3.00000i 0.104573 + 0.104573i 0.757458 0.652884i \(-0.226441\pi\)
−0.652884 + 0.757458i \(0.726441\pi\)
\(824\) −44.2719 −1.54228
\(825\) 0 0
\(826\) 30.0000 + 18.9737i 1.04383 + 0.660178i
\(827\) 26.0000 26.0000i 0.904109 0.904109i −0.0916799 0.995789i \(-0.529224\pi\)
0.995789 + 0.0916799i \(0.0292237\pi\)
\(828\) 0 0
\(829\) 28.4605 0.988474 0.494237 0.869327i \(-0.335448\pi\)
0.494237 + 0.869327i \(0.335448\pi\)
\(830\) 0 0
\(831\) 56.9210i 1.97457i
\(832\) 12.6491 + 12.6491i 0.438529 + 0.438529i
\(833\) 14.7434 + 5.25658i 0.510829 + 0.182130i
\(834\) 60.0000i 2.07763i
\(835\) 0 0
\(836\) 0 0
\(837\) 5.00000 5.00000i 0.172825 0.172825i
\(838\) −15.8114 + 15.8114i −0.546195 + 0.546195i
\(839\) 50.5964 1.74678 0.873392 0.487019i \(-0.161916\pi\)
0.873392 + 0.487019i \(0.161916\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 19.0000 19.0000i 0.654783 0.654783i
\(843\) −14.2302 + 14.2302i −0.490116 + 0.490116i
\(844\) 0 0
\(845\) 0 0
\(846\) 18.9737i 0.652328i
\(847\) −5.81139 25.8114i −0.199682 0.886890i
\(848\) −4.00000 4.00000i −0.137361 0.137361i
\(849\) 15.0000i 0.514799i
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) −12.6491 + 20.0000i −0.432844 + 0.684386i
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 31.6228 + 31.6228i 1.08021 + 1.08021i 0.996489 + 0.0837245i \(0.0266816\pi\)
0.0837245 + 0.996489i \(0.473318\pi\)
\(858\) −5.00000 5.00000i −0.170697 0.170697i
\(859\) 12.6491 0.431582 0.215791 0.976440i \(-0.430767\pi\)
0.215791 + 0.976440i \(0.430767\pi\)
\(860\) 0 0
\(861\) −30.0000 + 47.4342i −1.02240 + 1.61655i
\(862\) −23.0000 + 23.0000i −0.783383 + 0.783383i
\(863\) 13.0000 + 13.0000i 0.442525 + 0.442525i 0.892860 0.450335i \(-0.148695\pi\)
−0.450335 + 0.892860i \(0.648695\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 18.9737i 0.644751i
\(867\) 18.9737 + 18.9737i 0.644379 + 0.644379i
\(868\) 0 0
\(869\) 13.0000i 0.440995i
\(870\) 0 0
\(871\) 3.16228i 0.107150i
\(872\) −14.0000 + 14.0000i −0.474100 + 0.474100i
\(873\) 3.16228 3.16228i 0.107027 0.107027i
\(874\) −12.6491 −0.427863
\(875\) 0 0
\(876\) 0 0
\(877\) −17.0000 + 17.0000i −0.574049 + 0.574049i −0.933257 0.359208i \(-0.883047\pi\)
0.359208 + 0.933257i \(0.383047\pi\)
\(878\) −12.6491 + 12.6491i −0.426887 + 0.426887i
\(879\) 25.0000i 0.843229i
\(880\) 0 0
\(881\) 37.9473i 1.27848i 0.769008 + 0.639239i \(0.220751\pi\)
−0.769008 + 0.639239i \(0.779249\pi\)
\(882\) 18.6491 + 6.64911i 0.627948 + 0.223887i
\(883\) 18.0000 + 18.0000i 0.605748 + 0.605748i 0.941832 0.336084i \(-0.109103\pi\)
−0.336084 + 0.941832i \(0.609103\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −2.00000 −0.0671913
\(887\) −3.16228 3.16228i −0.106179 0.106179i 0.652022 0.758200i \(-0.273921\pi\)
−0.758200 + 0.652022i \(0.773921\pi\)
\(888\) −37.9473 + 37.9473i −1.27343 + 1.27343i
\(889\) −28.4605 18.0000i −0.954534 0.603701i
\(890\) 0 0
\(891\) −11.0000 −0.368514
\(892\) 0 0
\(893\) 15.0000 + 15.0000i 0.501956 + 0.501956i
\(894\) −37.9473 −1.26915
\(895\) 0 0
\(896\) −16.0000 + 25.2982i −0.534522 + 0.845154i
\(897\) 10.0000 10.0000i 0.333890 0.333890i
\(898\) 17.0000 + 17.0000i 0.567297 + 0.567297i
\(899\) 9.48683 0.316404
\(900\) 0 0
\(901\) 3.16228i 0.105351i
\(902\) 9.48683 + 9.48683i 0.315877 + 0.315877i
\(903\) −5.51317 24.4868i −0.183467 0.814871i
\(904\) 48.0000i 1.59646i
\(905\) 0 0
\(906\) 28.4605i 0.945537i
\(907\) −22.0000 + 22.0000i −0.730498 + 0.730498i −0.970718 0.240220i \(-0.922780\pi\)
0.240220 + 0.970718i \(0.422780\pi\)
\(908\) 0 0
\(909\) −6.32456 −0.209772
\(910\) 0 0
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) −20.0000 + 20.0000i −0.662266 + 0.662266i
\(913\) −3.16228 + 3.16228i −0.104656 + 0.104656i
\(914\) 2.00000i 0.0661541i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 5.00000 + 5.00000i 0.165025 + 0.165025i
\(919\) 27.0000i 0.890648i 0.895370 + 0.445324i \(0.146911\pi\)
−0.895370 + 0.445324i \(0.853089\pi\)
\(920\) 0 0
\(921\) −15.0000 −0.494267
\(922\) −6.32456 6.32456i −0.208288 0.208288i
\(923\) −9.48683 + 9.48683i −0.312263 + 0.312263i
\(924\) 0 0
\(925\) 0 0
\(926\) 8.00000 0.262896
\(927\) 22.1359 + 22.1359i 0.727040 + 0.727040i
\(928\) 0 0
\(929\) 3.16228 0.103751 0.0518755 0.998654i \(-0.483480\pi\)
0.0518755 + 0.998654i \(0.483480\pi\)
\(930\) 0 0
\(931\) −20.0000 + 9.48683i −0.655474 + 0.310918i
\(932\) 0 0
\(933\) 35.0000 + 35.0000i 1.14585 + 1.14585i
\(934\) 22.1359 0.724310
\(935\) 0 0
\(936\) 12.6491i 0.413449i
\(937\) 14.2302 + 14.2302i 0.464882 + 0.464882i 0.900252 0.435370i \(-0.143382\pi\)
−0.435370 + 0.900252i \(0.643382\pi\)
\(938\) 5.16228 1.16228i 0.168554 0.0379497i
\(939\) 45.0000i 1.46852i
\(940\) 0 0
\(941\) 37.9473i 1.23705i −0.785766 0.618524i \(-0.787731\pi\)
0.785766 0.618524i \(-0.212269\pi\)
\(942\) 20.0000 20.0000i 0.651635 0.651635i
\(943\) −18.9737 + 18.9737i −0.617868 + 0.617868i
\(944\) 37.9473 1.23508
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) −7.00000 + 7.00000i −0.227469 + 0.227469i −0.811635 0.584165i \(-0.801422\pi\)
0.584165 + 0.811635i \(0.301422\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 60.0833i 1.94833i
\(952\) 16.3246 3.67544i 0.529082 0.119122i
\(953\) 3.00000 + 3.00000i 0.0971795 + 0.0971795i 0.754025 0.656846i \(-0.228110\pi\)
−0.656846 + 0.754025i \(0.728110\pi\)
\(954\) 4.00000i 0.129505i
\(955\) 0 0
\(956\) 0 0
\(957\) −4.74342 4.74342i −0.153333 0.153333i
\(958\) −6.32456 + 6.32456i −0.204337 + 0.204337i
\(959\) −6.32456 4.00000i −0.204231 0.129167i
\(960\) 0 0
\(961\) 21.0000 0.677419
\(962\) −18.9737 18.9737i −0.611736 0.611736i
\(963\) −6.00000 6.00000i −0.193347 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 20.0000 + 12.6491i 0.643489 + 0.406978i
\(967\) 33.0000 33.0000i 1.06121 1.06121i 0.0632081 0.998000i \(-0.479867\pi\)
0.998000 0.0632081i \(-0.0201332\pi\)
\(968\) −20.0000 20.0000i −0.642824 0.642824i
\(969\) 15.8114 0.507935
\(970\) 0 0
\(971\) 34.7851i 1.11631i −0.829738 0.558153i \(-0.811510\pi\)
0.829738 0.558153i \(-0.188490\pi\)
\(972\) 0 0
\(973\) −11.0263 48.9737i −0.353488 1.57002i
\(974\) 8.00000i 0.256337i
\(975\) 0 0
\(976\) 25.2982i 0.809776i
\(977\) 1.00000 1.00000i 0.0319928 0.0319928i −0.690929 0.722922i \(-0.742798\pi\)
0.722922 + 0.690929i \(0.242798\pi\)
\(978\) 18.9737 18.9737i 0.606711 0.606711i
\(979\) 6.32456 0.202134
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) −41.0000 + 41.0000i −1.30836 + 1.30836i
\(983\) 20.5548 20.5548i 0.655596 0.655596i −0.298739 0.954335i \(-0.596566\pi\)
0.954335 + 0.298739i \(0.0965658\pi\)
\(984\) 60.0000i 1.91273i
\(985\) 0 0
\(986\) 9.48683i 0.302122i
\(987\) −8.71708 38.7171i −0.277468 1.23238i
\(988\) 0 0
\(989\) 12.0000i 0.381578i
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 0 0
\(993\) 9.48683 9.48683i 0.301056 0.301056i
\(994\) −18.9737 12.0000i −0.601808 0.380617i
\(995\) 0 0
\(996\) 0 0
\(997\) −14.2302 14.2302i −0.450677 0.450677i 0.444902 0.895579i \(-0.353238\pi\)
−0.895579 + 0.444902i \(0.853238\pi\)
\(998\) −19.0000 19.0000i −0.601434 0.601434i
\(999\) −18.9737 −0.600300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.f.c.118.1 4
5.2 odd 4 inner 175.2.f.c.132.2 4
5.3 odd 4 35.2.f.a.27.1 yes 4
5.4 even 2 35.2.f.a.13.2 yes 4
7.6 odd 2 inner 175.2.f.c.118.2 4
15.8 even 4 315.2.p.c.307.1 4
15.14 odd 2 315.2.p.c.118.2 4
20.3 even 4 560.2.bj.a.97.2 4
20.19 odd 2 560.2.bj.a.433.1 4
35.3 even 12 245.2.l.c.117.2 8
35.4 even 6 245.2.l.c.68.1 8
35.9 even 6 245.2.l.c.178.2 8
35.13 even 4 35.2.f.a.27.2 yes 4
35.18 odd 12 245.2.l.c.117.1 8
35.19 odd 6 245.2.l.c.178.1 8
35.23 odd 12 245.2.l.c.227.2 8
35.24 odd 6 245.2.l.c.68.2 8
35.27 even 4 inner 175.2.f.c.132.1 4
35.33 even 12 245.2.l.c.227.1 8
35.34 odd 2 35.2.f.a.13.1 4
105.83 odd 4 315.2.p.c.307.2 4
105.104 even 2 315.2.p.c.118.1 4
140.83 odd 4 560.2.bj.a.97.1 4
140.139 even 2 560.2.bj.a.433.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.f.a.13.1 4 35.34 odd 2
35.2.f.a.13.2 yes 4 5.4 even 2
35.2.f.a.27.1 yes 4 5.3 odd 4
35.2.f.a.27.2 yes 4 35.13 even 4
175.2.f.c.118.1 4 1.1 even 1 trivial
175.2.f.c.118.2 4 7.6 odd 2 inner
175.2.f.c.132.1 4 35.27 even 4 inner
175.2.f.c.132.2 4 5.2 odd 4 inner
245.2.l.c.68.1 8 35.4 even 6
245.2.l.c.68.2 8 35.24 odd 6
245.2.l.c.117.1 8 35.18 odd 12
245.2.l.c.117.2 8 35.3 even 12
245.2.l.c.178.1 8 35.19 odd 6
245.2.l.c.178.2 8 35.9 even 6
245.2.l.c.227.1 8 35.33 even 12
245.2.l.c.227.2 8 35.23 odd 12
315.2.p.c.118.1 4 105.104 even 2
315.2.p.c.118.2 4 15.14 odd 2
315.2.p.c.307.1 4 15.8 even 4
315.2.p.c.307.2 4 105.83 odd 4
560.2.bj.a.97.1 4 140.83 odd 4
560.2.bj.a.97.2 4 20.3 even 4
560.2.bj.a.433.1 4 20.19 odd 2
560.2.bj.a.433.2 4 140.139 even 2