Properties

Label 243.3.f.c.215.1
Level $243$
Weight $3$
Character 243.215
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,3,0,3,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.1
Character \(\chi\) \(=\) 243.215
Dual form 243.3.f.c.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.27361 + 0.577226i) q^{2} +(6.62455 - 2.41114i) q^{4} +(-4.42119 + 5.26897i) q^{5} +(-5.99653 - 2.18256i) q^{7} +(-8.77937 + 5.06877i) q^{8} +(11.4319 - 19.8006i) q^{10} +(0.799933 + 0.953323i) q^{11} +(-0.927217 + 5.25851i) q^{13} +(20.8901 + 3.68349i) q^{14} +(4.21287 - 3.53502i) q^{16} +(-13.7418 - 7.93385i) q^{17} +(6.78917 + 11.7592i) q^{19} +(-16.5842 + 45.5647i) q^{20} +(-3.16895 - 2.65907i) q^{22} +(-8.48610 - 23.3154i) q^{23} +(-3.87391 - 21.9701i) q^{25} -17.7495i q^{26} -44.9868 q^{28} +(30.5171 - 5.38098i) q^{29} +(14.9211 - 5.43084i) q^{31} +(14.3144 - 17.0592i) q^{32} +(49.5650 + 18.0402i) q^{34} +(38.0116 - 21.9460i) q^{35} +(26.0365 - 45.0965i) q^{37} +(-29.0128 - 34.5761i) q^{38} +(12.1081 - 68.6683i) q^{40} +(1.06400 + 0.187611i) q^{41} +(37.0026 - 31.0488i) q^{43} +(7.59780 + 4.38659i) q^{44} +(41.2384 + 71.4270i) q^{46} +(19.7018 - 54.1303i) q^{47} +(-6.34137 - 5.32104i) q^{49} +(25.3634 + 69.6853i) q^{50} +(6.53661 + 37.0709i) q^{52} +13.8414i q^{53} -8.55969 q^{55} +(63.7087 - 11.2336i) q^{56} +(-96.7949 + 35.2305i) q^{58} +(38.7615 - 46.1941i) q^{59} +(-94.8938 - 34.5385i) q^{61} +(-45.7111 + 26.3913i) q^{62} +(-48.0117 + 83.1587i) q^{64} +(-23.6075 - 28.1344i) q^{65} +(-13.6531 + 77.4304i) q^{67} +(-110.163 - 19.4247i) q^{68} +(-111.767 + 93.7840i) q^{70} +(39.7545 + 22.9523i) q^{71} +(-34.4926 - 59.7430i) q^{73} +(-59.2024 + 162.657i) q^{74} +(73.3283 + 61.5297i) q^{76} +(-2.71614 - 7.46253i) q^{77} +(6.86682 + 38.9437i) q^{79} +37.8265i q^{80} -3.59141 q^{82} +(41.5621 - 7.32852i) q^{83} +(102.558 - 37.3282i) q^{85} +(-103.210 + 123.001i) q^{86} +(-11.8551 - 4.31490i) q^{88} +(-61.8262 + 35.6954i) q^{89} +(17.0371 - 29.5091i) q^{91} +(-112.433 - 133.993i) q^{92} +(-33.2506 + 188.574i) q^{94} +(-91.9750 - 16.2177i) q^{95} +(0.867150 - 0.727625i) q^{97} +(23.8306 + 13.7586i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 9 q^{8} - 3 q^{10} - 51 q^{11} + 3 q^{13} + 129 q^{14} - 9 q^{16} - 9 q^{17} - 3 q^{19} - 30 q^{20} - 33 q^{22} - 168 q^{23} - 6 q^{25} - 12 q^{28} + 246 q^{29}+ \cdots + 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.27361 + 0.577226i −1.63680 + 0.288613i −0.914991 0.403475i \(-0.867802\pi\)
−0.721814 + 0.692088i \(0.756691\pi\)
\(3\) 0 0
\(4\) 6.62455 2.41114i 1.65614 0.602785i
\(5\) −4.42119 + 5.26897i −0.884238 + 1.05379i 0.113942 + 0.993487i \(0.463652\pi\)
−0.998180 + 0.0603067i \(0.980792\pi\)
\(6\) 0 0
\(7\) −5.99653 2.18256i −0.856647 0.311794i −0.123900 0.992295i \(-0.539540\pi\)
−0.732747 + 0.680501i \(0.761762\pi\)
\(8\) −8.77937 + 5.06877i −1.09742 + 0.633597i
\(9\) 0 0
\(10\) 11.4319 19.8006i 1.14319 1.98006i
\(11\) 0.799933 + 0.953323i 0.0727212 + 0.0866658i 0.801178 0.598425i \(-0.204207\pi\)
−0.728457 + 0.685091i \(0.759762\pi\)
\(12\) 0 0
\(13\) −0.927217 + 5.25851i −0.0713244 + 0.404501i 0.928154 + 0.372197i \(0.121395\pi\)
−0.999478 + 0.0323036i \(0.989716\pi\)
\(14\) 20.8901 + 3.68349i 1.49215 + 0.263107i
\(15\) 0 0
\(16\) 4.21287 3.53502i 0.263304 0.220938i
\(17\) −13.7418 7.93385i −0.808343 0.466697i 0.0380373 0.999276i \(-0.487889\pi\)
−0.846380 + 0.532579i \(0.821223\pi\)
\(18\) 0 0
\(19\) 6.78917 + 11.7592i 0.357325 + 0.618905i 0.987513 0.157538i \(-0.0503556\pi\)
−0.630188 + 0.776442i \(0.717022\pi\)
\(20\) −16.5842 + 45.5647i −0.829210 + 2.27823i
\(21\) 0 0
\(22\) −3.16895 2.65907i −0.144043 0.120867i
\(23\) −8.48610 23.3154i −0.368961 1.01371i −0.975758 0.218854i \(-0.929768\pi\)
0.606797 0.794857i \(-0.292454\pi\)
\(24\) 0 0
\(25\) −3.87391 21.9701i −0.154957 0.878802i
\(26\) 17.7495i 0.682674i
\(27\) 0 0
\(28\) −44.9868 −1.60667
\(29\) 30.5171 5.38098i 1.05231 0.185551i 0.379370 0.925245i \(-0.376141\pi\)
0.672943 + 0.739694i \(0.265030\pi\)
\(30\) 0 0
\(31\) 14.9211 5.43084i 0.481327 0.175189i −0.0899498 0.995946i \(-0.528671\pi\)
0.571276 + 0.820758i \(0.306448\pi\)
\(32\) 14.3144 17.0592i 0.447325 0.533101i
\(33\) 0 0
\(34\) 49.5650 + 18.0402i 1.45779 + 0.530593i
\(35\) 38.0116 21.9460i 1.08605 0.627029i
\(36\) 0 0
\(37\) 26.0365 45.0965i 0.703688 1.21882i −0.263474 0.964666i \(-0.584868\pi\)
0.967163 0.254158i \(-0.0817982\pi\)
\(38\) −29.0128 34.5761i −0.763495 0.909897i
\(39\) 0 0
\(40\) 12.1081 68.6683i 0.302702 1.71671i
\(41\) 1.06400 + 0.187611i 0.0259512 + 0.00457589i 0.186609 0.982434i \(-0.440250\pi\)
−0.160658 + 0.987010i \(0.551361\pi\)
\(42\) 0 0
\(43\) 37.0026 31.0488i 0.860525 0.722066i −0.101556 0.994830i \(-0.532382\pi\)
0.962081 + 0.272764i \(0.0879377\pi\)
\(44\) 7.59780 + 4.38659i 0.172677 + 0.0996953i
\(45\) 0 0
\(46\) 41.2384 + 71.4270i 0.896487 + 1.55276i
\(47\) 19.7018 54.1303i 0.419187 1.15171i −0.532979 0.846128i \(-0.678928\pi\)
0.952167 0.305579i \(-0.0988501\pi\)
\(48\) 0 0
\(49\) −6.34137 5.32104i −0.129416 0.108593i
\(50\) 25.3634 + 69.6853i 0.507267 + 1.39371i
\(51\) 0 0
\(52\) 6.53661 + 37.0709i 0.125704 + 0.712903i
\(53\) 13.8414i 0.261159i 0.991438 + 0.130579i \(0.0416837\pi\)
−0.991438 + 0.130579i \(0.958316\pi\)
\(54\) 0 0
\(55\) −8.55969 −0.155631
\(56\) 63.7087 11.2336i 1.13766 0.200599i
\(57\) 0 0
\(58\) −96.7949 + 35.2305i −1.66888 + 0.607422i
\(59\) 38.7615 46.1941i 0.656974 0.782952i −0.329974 0.943990i \(-0.607040\pi\)
0.986948 + 0.161039i \(0.0514843\pi\)
\(60\) 0 0
\(61\) −94.8938 34.5385i −1.55564 0.566205i −0.585905 0.810380i \(-0.699261\pi\)
−0.969731 + 0.244175i \(0.921483\pi\)
\(62\) −45.7111 + 26.3913i −0.737276 + 0.425666i
\(63\) 0 0
\(64\) −48.0117 + 83.1587i −0.750183 + 1.29935i
\(65\) −23.6075 28.1344i −0.363193 0.432836i
\(66\) 0 0
\(67\) −13.6531 + 77.4304i −0.203777 + 1.15568i 0.695575 + 0.718453i \(0.255150\pi\)
−0.899352 + 0.437225i \(0.855961\pi\)
\(68\) −110.163 19.4247i −1.62005 0.285658i
\(69\) 0 0
\(70\) −111.767 + 93.7840i −1.59668 + 1.33977i
\(71\) 39.7545 + 22.9523i 0.559922 + 0.323271i 0.753114 0.657890i \(-0.228551\pi\)
−0.193192 + 0.981161i \(0.561884\pi\)
\(72\) 0 0
\(73\) −34.4926 59.7430i −0.472502 0.818397i 0.527003 0.849863i \(-0.323316\pi\)
−0.999505 + 0.0314663i \(0.989982\pi\)
\(74\) −59.2024 + 162.657i −0.800032 + 2.19807i
\(75\) 0 0
\(76\) 73.3283 + 61.5297i 0.964846 + 0.809602i
\(77\) −2.71614 7.46253i −0.0352745 0.0969160i
\(78\) 0 0
\(79\) 6.86682 + 38.9437i 0.0869218 + 0.492958i 0.996925 + 0.0783576i \(0.0249676\pi\)
−0.910003 + 0.414601i \(0.863921\pi\)
\(80\) 37.8265i 0.472831i
\(81\) 0 0
\(82\) −3.59141 −0.0437976
\(83\) 41.5621 7.32852i 0.500748 0.0882955i 0.0824318 0.996597i \(-0.473731\pi\)
0.418317 + 0.908301i \(0.362620\pi\)
\(84\) 0 0
\(85\) 102.558 37.3282i 1.20657 0.439156i
\(86\) −103.210 + 123.001i −1.20011 + 1.43024i
\(87\) 0 0
\(88\) −11.8551 4.31490i −0.134717 0.0490330i
\(89\) −61.8262 + 35.6954i −0.694676 + 0.401072i −0.805361 0.592784i \(-0.798029\pi\)
0.110685 + 0.993856i \(0.464695\pi\)
\(90\) 0 0
\(91\) 17.0371 29.5091i 0.187221 0.324276i
\(92\) −112.433 133.993i −1.22210 1.45644i
\(93\) 0 0
\(94\) −33.2506 + 188.574i −0.353730 + 2.00610i
\(95\) −91.9750 16.2177i −0.968158 0.170712i
\(96\) 0 0
\(97\) 0.867150 0.727625i 0.00893969 0.00750129i −0.638307 0.769782i \(-0.720365\pi\)
0.647247 + 0.762281i \(0.275920\pi\)
\(98\) 23.8306 + 13.7586i 0.243169 + 0.140394i
\(99\) 0 0
\(100\) −78.6359 136.201i −0.786359 1.36201i
\(101\) −3.88344 + 10.6697i −0.0384499 + 0.105640i −0.957432 0.288659i \(-0.906791\pi\)
0.918982 + 0.394299i \(0.129013\pi\)
\(102\) 0 0
\(103\) −126.072 105.787i −1.22400 1.02706i −0.998606 0.0527901i \(-0.983189\pi\)
−0.225394 0.974268i \(-0.572367\pi\)
\(104\) −18.5138 50.8663i −0.178017 0.489099i
\(105\) 0 0
\(106\) −7.98961 45.3113i −0.0753737 0.427465i
\(107\) 107.863i 1.00807i 0.863685 + 0.504033i \(0.168151\pi\)
−0.863685 + 0.504033i \(0.831849\pi\)
\(108\) 0 0
\(109\) 176.312 1.61754 0.808770 0.588125i \(-0.200134\pi\)
0.808770 + 0.588125i \(0.200134\pi\)
\(110\) 28.0211 4.94087i 0.254737 0.0449170i
\(111\) 0 0
\(112\) −32.9780 + 12.0030i −0.294446 + 0.107170i
\(113\) −80.4991 + 95.9351i −0.712381 + 0.848983i −0.993867 0.110583i \(-0.964728\pi\)
0.281486 + 0.959565i \(0.409173\pi\)
\(114\) 0 0
\(115\) 160.367 + 58.3687i 1.39449 + 0.507554i
\(116\) 189.188 109.228i 1.63093 0.941617i
\(117\) 0 0
\(118\) −100.226 + 173.596i −0.849369 + 1.47115i
\(119\) 65.0872 + 77.5679i 0.546951 + 0.651831i
\(120\) 0 0
\(121\) 20.7425 117.637i 0.171426 0.972203i
\(122\) 330.582 + 58.2905i 2.70969 + 0.477791i
\(123\) 0 0
\(124\) 85.7513 71.9539i 0.691542 0.580273i
\(125\) −16.0295 9.25462i −0.128236 0.0740369i
\(126\) 0 0
\(127\) −0.644295 1.11595i −0.00507319 0.00878702i 0.863478 0.504387i \(-0.168282\pi\)
−0.868551 + 0.495600i \(0.834948\pi\)
\(128\) 78.7041 216.238i 0.614876 1.68936i
\(129\) 0 0
\(130\) 93.5217 + 78.4740i 0.719397 + 0.603646i
\(131\) −31.4312 86.3564i −0.239933 0.659209i −0.999957 0.00931439i \(-0.997035\pi\)
0.760024 0.649895i \(-0.225187\pi\)
\(132\) 0 0
\(133\) −15.0463 85.3321i −0.113130 0.641595i
\(134\) 261.358i 1.95043i
\(135\) 0 0
\(136\) 160.860 1.18279
\(137\) −58.1686 + 10.2567i −0.424588 + 0.0748664i −0.381860 0.924220i \(-0.624716\pi\)
−0.0427287 + 0.999087i \(0.513605\pi\)
\(138\) 0 0
\(139\) 47.4498 17.2703i 0.341365 0.124247i −0.165648 0.986185i \(-0.552972\pi\)
0.507013 + 0.861938i \(0.330749\pi\)
\(140\) 198.895 237.034i 1.42068 1.69310i
\(141\) 0 0
\(142\) −143.389 52.1894i −1.00978 0.367531i
\(143\) −5.75477 + 3.32252i −0.0402432 + 0.0232344i
\(144\) 0 0
\(145\) −106.570 + 184.584i −0.734963 + 1.27299i
\(146\) 147.401 + 175.665i 1.00959 + 1.20319i
\(147\) 0 0
\(148\) 63.7460 361.522i 0.430717 2.44271i
\(149\) 71.5827 + 12.6220i 0.480421 + 0.0847112i 0.408614 0.912707i \(-0.366012\pi\)
0.0718072 + 0.997419i \(0.477123\pi\)
\(150\) 0 0
\(151\) −2.59942 + 2.18117i −0.0172147 + 0.0144449i −0.651354 0.758774i \(-0.725799\pi\)
0.634140 + 0.773219i \(0.281354\pi\)
\(152\) −119.209 68.8255i −0.784272 0.452800i
\(153\) 0 0
\(154\) 13.1991 + 22.8616i 0.0857087 + 0.148452i
\(155\) −37.3542 + 102.630i −0.240995 + 0.662127i
\(156\) 0 0
\(157\) −196.581 164.951i −1.25211 1.05064i −0.996477 0.0838678i \(-0.973273\pi\)
−0.255630 0.966775i \(-0.582283\pi\)
\(158\) −44.9586 123.523i −0.284548 0.781789i
\(159\) 0 0
\(160\) 26.5979 + 150.844i 0.166237 + 0.942776i
\(161\) 158.333i 0.983433i
\(162\) 0 0
\(163\) −265.211 −1.62706 −0.813530 0.581523i \(-0.802457\pi\)
−0.813530 + 0.581523i \(0.802457\pi\)
\(164\) 7.50087 1.32261i 0.0457370 0.00806467i
\(165\) 0 0
\(166\) −131.828 + 47.9814i −0.794144 + 0.289045i
\(167\) −2.08108 + 2.48014i −0.0124616 + 0.0148511i −0.772239 0.635332i \(-0.780863\pi\)
0.759778 + 0.650183i \(0.225308\pi\)
\(168\) 0 0
\(169\) 132.016 + 48.0498i 0.781159 + 0.284319i
\(170\) −314.189 + 181.397i −1.84817 + 1.06704i
\(171\) 0 0
\(172\) 170.262 294.903i 0.989898 1.71455i
\(173\) −123.720 147.444i −0.715145 0.852276i 0.279005 0.960290i \(-0.409995\pi\)
−0.994149 + 0.108013i \(0.965551\pi\)
\(174\) 0 0
\(175\) −24.7209 + 140.199i −0.141262 + 0.801138i
\(176\) 6.74003 + 1.18845i 0.0382956 + 0.00675255i
\(177\) 0 0
\(178\) 181.790 152.540i 1.02129 0.856968i
\(179\) −191.363 110.484i −1.06907 0.617228i −0.141142 0.989989i \(-0.545078\pi\)
−0.927927 + 0.372762i \(0.878411\pi\)
\(180\) 0 0
\(181\) −72.7860 126.069i −0.402133 0.696514i 0.591851 0.806048i \(-0.298398\pi\)
−0.993983 + 0.109534i \(0.965064\pi\)
\(182\) −38.7394 + 106.435i −0.212854 + 0.584810i
\(183\) 0 0
\(184\) 192.683 + 161.680i 1.04719 + 0.878697i
\(185\) 122.500 + 336.566i 0.662161 + 1.81927i
\(186\) 0 0
\(187\) −3.42902 19.4470i −0.0183370 0.103994i
\(188\) 406.093i 2.16007i
\(189\) 0 0
\(190\) 310.452 1.63396
\(191\) −76.9588 + 13.5699i −0.402926 + 0.0710466i −0.371439 0.928458i \(-0.621135\pi\)
−0.0314869 + 0.999504i \(0.510024\pi\)
\(192\) 0 0
\(193\) 210.410 76.5828i 1.09020 0.396802i 0.266508 0.963833i \(-0.414130\pi\)
0.823697 + 0.567031i \(0.191908\pi\)
\(194\) −2.41871 + 2.88250i −0.0124676 + 0.0148583i
\(195\) 0 0
\(196\) −54.8385 19.9596i −0.279788 0.101835i
\(197\) 299.369 172.841i 1.51964 0.877364i 0.519907 0.854223i \(-0.325967\pi\)
0.999732 0.0231411i \(-0.00736671\pi\)
\(198\) 0 0
\(199\) 78.7794 136.450i 0.395876 0.685678i −0.597336 0.801991i \(-0.703774\pi\)
0.993213 + 0.116313i \(0.0371075\pi\)
\(200\) 145.372 + 173.247i 0.726859 + 0.866237i
\(201\) 0 0
\(202\) 6.55405 37.1699i 0.0324458 0.184009i
\(203\) −194.741 34.3381i −0.959315 0.169153i
\(204\) 0 0
\(205\) −5.69266 + 4.77671i −0.0277691 + 0.0233010i
\(206\) 473.773 + 273.533i 2.29987 + 1.32783i
\(207\) 0 0
\(208\) 14.6827 + 25.4311i 0.0705897 + 0.122265i
\(209\) −5.77943 + 15.8788i −0.0276528 + 0.0759753i
\(210\) 0 0
\(211\) 285.220 + 239.328i 1.35175 + 1.13425i 0.978436 + 0.206549i \(0.0662234\pi\)
0.373315 + 0.927705i \(0.378221\pi\)
\(212\) 33.3736 + 91.6931i 0.157422 + 0.432515i
\(213\) 0 0
\(214\) −62.2613 353.101i −0.290940 1.65001i
\(215\) 332.238i 1.54529i
\(216\) 0 0
\(217\) −101.328 −0.466950
\(218\) −577.176 + 101.772i −2.64760 + 0.466843i
\(219\) 0 0
\(220\) −56.7041 + 20.6386i −0.257746 + 0.0938119i
\(221\) 54.4619 64.9051i 0.246434 0.293688i
\(222\) 0 0
\(223\) −87.7683 31.9451i −0.393580 0.143251i 0.137646 0.990481i \(-0.456046\pi\)
−0.531226 + 0.847230i \(0.678269\pi\)
\(224\) −123.069 + 71.0541i −0.549417 + 0.317206i
\(225\) 0 0
\(226\) 208.146 360.520i 0.921001 1.59522i
\(227\) 234.731 + 279.742i 1.03406 + 1.23234i 0.972174 + 0.234261i \(0.0752669\pi\)
0.0618854 + 0.998083i \(0.480289\pi\)
\(228\) 0 0
\(229\) −18.4988 + 104.912i −0.0807808 + 0.458131i 0.917407 + 0.397951i \(0.130279\pi\)
−0.998188 + 0.0601798i \(0.980833\pi\)
\(230\) −558.669 98.5085i −2.42900 0.428298i
\(231\) 0 0
\(232\) −240.646 + 201.926i −1.03727 + 0.870370i
\(233\) −206.035 118.954i −0.884270 0.510533i −0.0122058 0.999926i \(-0.503885\pi\)
−0.872064 + 0.489392i \(0.837219\pi\)
\(234\) 0 0
\(235\) 198.105 + 343.128i 0.843001 + 1.46012i
\(236\) 145.397 399.475i 0.616089 1.69269i
\(237\) 0 0
\(238\) −257.844 216.357i −1.08338 0.909063i
\(239\) −29.3909 80.7509i −0.122975 0.337870i 0.862895 0.505383i \(-0.168649\pi\)
−0.985870 + 0.167513i \(0.946426\pi\)
\(240\) 0 0
\(241\) −5.09875 28.9164i −0.0211566 0.119985i 0.972400 0.233318i \(-0.0749584\pi\)
−0.993557 + 0.113333i \(0.963847\pi\)
\(242\) 397.069i 1.64078i
\(243\) 0 0
\(244\) −711.906 −2.91765
\(245\) 56.0728 9.88715i 0.228869 0.0403557i
\(246\) 0 0
\(247\) −68.1308 + 24.7976i −0.275833 + 0.100395i
\(248\) −103.470 + 123.311i −0.417219 + 0.497223i
\(249\) 0 0
\(250\) 57.8162 + 21.0434i 0.231265 + 0.0841735i
\(251\) −108.333 + 62.5458i −0.431604 + 0.249186i −0.700030 0.714114i \(-0.746830\pi\)
0.268426 + 0.963300i \(0.413497\pi\)
\(252\) 0 0
\(253\) 15.4388 26.7407i 0.0610228 0.105695i
\(254\) 2.75333 + 3.28129i 0.0108399 + 0.0129184i
\(255\) 0 0
\(256\) −66.1313 + 375.049i −0.258325 + 1.46504i
\(257\) 229.989 + 40.5533i 0.894899 + 0.157795i 0.602139 0.798391i \(-0.294315\pi\)
0.292760 + 0.956186i \(0.405426\pi\)
\(258\) 0 0
\(259\) −254.554 + 213.596i −0.982835 + 0.824696i
\(260\) −224.225 129.456i −0.862405 0.497910i
\(261\) 0 0
\(262\) 152.740 + 264.554i 0.582979 + 1.00975i
\(263\) 42.2322 116.032i 0.160579 0.441186i −0.833144 0.553056i \(-0.813462\pi\)
0.993723 + 0.111869i \(0.0356839\pi\)
\(264\) 0 0
\(265\) −72.9299 61.1955i −0.275207 0.230926i
\(266\) 98.5117 + 270.659i 0.370345 + 1.01751i
\(267\) 0 0
\(268\) 96.2501 + 545.862i 0.359142 + 2.03680i
\(269\) 509.553i 1.89425i −0.320867 0.947124i \(-0.603974\pi\)
0.320867 0.947124i \(-0.396026\pi\)
\(270\) 0 0
\(271\) 49.6722 0.183292 0.0916461 0.995792i \(-0.470787\pi\)
0.0916461 + 0.995792i \(0.470787\pi\)
\(272\) −85.9388 + 15.1533i −0.315951 + 0.0557107i
\(273\) 0 0
\(274\) 184.501 67.1528i 0.673361 0.245083i
\(275\) 17.8457 21.2677i 0.0648934 0.0773370i
\(276\) 0 0
\(277\) −107.224 39.0265i −0.387092 0.140890i 0.141141 0.989989i \(-0.454923\pi\)
−0.528233 + 0.849100i \(0.677145\pi\)
\(278\) −145.363 + 83.9254i −0.522889 + 0.301890i
\(279\) 0 0
\(280\) −222.479 + 385.345i −0.794568 + 1.37623i
\(281\) −16.6521 19.8451i −0.0592600 0.0706233i 0.735600 0.677416i \(-0.236900\pi\)
−0.794860 + 0.606793i \(0.792456\pi\)
\(282\) 0 0
\(283\) −27.3526 + 155.125i −0.0966525 + 0.548143i 0.897576 + 0.440860i \(0.145326\pi\)
−0.994228 + 0.107284i \(0.965785\pi\)
\(284\) 318.697 + 56.1948i 1.12217 + 0.197869i
\(285\) 0 0
\(286\) 16.9210 14.1984i 0.0591644 0.0496449i
\(287\) −5.97082 3.44725i −0.0208042 0.0120113i
\(288\) 0 0
\(289\) −18.6082 32.2303i −0.0643881 0.111523i
\(290\) 242.321 665.770i 0.835588 2.29576i
\(291\) 0 0
\(292\) −372.547 312.604i −1.27585 1.07056i
\(293\) −143.626 394.610i −0.490192 1.34679i −0.900505 0.434846i \(-0.856803\pi\)
0.410313 0.911945i \(-0.365419\pi\)
\(294\) 0 0
\(295\) 72.0236 + 408.466i 0.244148 + 1.38463i
\(296\) 527.892i 1.78342i
\(297\) 0 0
\(298\) −241.620 −0.810804
\(299\) 130.472 23.0058i 0.436363 0.0769425i
\(300\) 0 0
\(301\) −289.653 + 105.425i −0.962302 + 0.350249i
\(302\) 7.25046 8.64076i 0.0240082 0.0286118i
\(303\) 0 0
\(304\) 70.1708 + 25.5401i 0.230825 + 0.0840134i
\(305\) 601.526 347.291i 1.97222 1.13866i
\(306\) 0 0
\(307\) −101.037 + 175.001i −0.329110 + 0.570035i −0.982336 0.187128i \(-0.940082\pi\)
0.653225 + 0.757163i \(0.273415\pi\)
\(308\) −35.9864 42.8870i −0.116839 0.139243i
\(309\) 0 0
\(310\) 63.0424 357.531i 0.203363 1.15333i
\(311\) 261.202 + 46.0570i 0.839879 + 0.148093i 0.577009 0.816738i \(-0.304220\pi\)
0.262870 + 0.964831i \(0.415331\pi\)
\(312\) 0 0
\(313\) 211.230 177.243i 0.674858 0.566273i −0.239641 0.970862i \(-0.577030\pi\)
0.914499 + 0.404589i \(0.132585\pi\)
\(314\) 738.742 + 426.513i 2.35268 + 1.35832i
\(315\) 0 0
\(316\) 139.388 + 241.428i 0.441102 + 0.764012i
\(317\) −11.9728 + 32.8949i −0.0377689 + 0.103769i −0.957144 0.289614i \(-0.906473\pi\)
0.919375 + 0.393383i \(0.128695\pi\)
\(318\) 0 0
\(319\) 29.5414 + 24.7882i 0.0926064 + 0.0777060i
\(320\) −225.892 620.633i −0.705912 1.93948i
\(321\) 0 0
\(322\) −91.3937 518.319i −0.283831 1.60969i
\(323\) 215.457i 0.667049i
\(324\) 0 0
\(325\) 119.122 0.366528
\(326\) 868.197 153.086i 2.66318 0.469590i
\(327\) 0 0
\(328\) −10.2922 + 3.74605i −0.0313786 + 0.0114209i
\(329\) −236.285 + 281.593i −0.718191 + 0.855907i
\(330\) 0 0
\(331\) −198.147 72.1197i −0.598633 0.217884i 0.0248895 0.999690i \(-0.492077\pi\)
−0.623522 + 0.781806i \(0.714299\pi\)
\(332\) 257.660 148.760i 0.776086 0.448073i
\(333\) 0 0
\(334\) 5.38105 9.32025i 0.0161109 0.0279049i
\(335\) −347.616 414.272i −1.03766 1.23663i
\(336\) 0 0
\(337\) 26.7884 151.925i 0.0794908 0.450815i −0.918919 0.394446i \(-0.870937\pi\)
0.998410 0.0563691i \(-0.0179523\pi\)
\(338\) −459.904 81.0935i −1.36066 0.239921i
\(339\) 0 0
\(340\) 589.400 494.566i 1.73353 1.45460i
\(341\) 17.1133 + 9.88034i 0.0501855 + 0.0289746i
\(342\) 0 0
\(343\) 182.756 + 316.543i 0.532817 + 0.922867i
\(344\) −167.480 + 460.147i −0.486860 + 1.33764i
\(345\) 0 0
\(346\) 490.119 + 411.259i 1.41653 + 1.18861i
\(347\) 100.310 + 275.600i 0.289078 + 0.794236i 0.996196 + 0.0871403i \(0.0277728\pi\)
−0.707118 + 0.707096i \(0.750005\pi\)
\(348\) 0 0
\(349\) −71.0269 402.813i −0.203515 1.15419i −0.899759 0.436387i \(-0.856258\pi\)
0.696244 0.717806i \(-0.254853\pi\)
\(350\) 473.227i 1.35208i
\(351\) 0 0
\(352\) 27.7135 0.0787316
\(353\) −492.465 + 86.8349i −1.39508 + 0.245991i −0.820122 0.572188i \(-0.806095\pi\)
−0.574963 + 0.818180i \(0.694983\pi\)
\(354\) 0 0
\(355\) −296.697 + 107.989i −0.835766 + 0.304194i
\(356\) −323.504 + 385.538i −0.908720 + 1.08297i
\(357\) 0 0
\(358\) 690.223 + 251.221i 1.92800 + 0.701734i
\(359\) −216.295 + 124.878i −0.602492 + 0.347849i −0.770021 0.638018i \(-0.779754\pi\)
0.167529 + 0.985867i \(0.446421\pi\)
\(360\) 0 0
\(361\) 88.3143 152.965i 0.244638 0.423725i
\(362\) 311.043 + 370.687i 0.859235 + 1.02400i
\(363\) 0 0
\(364\) 41.7125 236.563i 0.114595 0.649900i
\(365\) 467.283 + 82.3945i 1.28023 + 0.225738i
\(366\) 0 0
\(367\) −245.235 + 205.776i −0.668215 + 0.560699i −0.912536 0.408996i \(-0.865879\pi\)
0.244322 + 0.969694i \(0.421435\pi\)
\(368\) −118.171 68.2260i −0.321117 0.185397i
\(369\) 0 0
\(370\) −595.291 1031.07i −1.60889 2.78669i
\(371\) 30.2097 83.0004i 0.0814277 0.223721i
\(372\) 0 0
\(373\) 151.452 + 127.083i 0.406038 + 0.340706i 0.822822 0.568299i \(-0.192398\pi\)
−0.416784 + 0.909006i \(0.636843\pi\)
\(374\) 22.4506 + 61.6824i 0.0600282 + 0.164926i
\(375\) 0 0
\(376\) 101.405 + 575.094i 0.269693 + 1.52950i
\(377\) 165.464i 0.438896i
\(378\) 0 0
\(379\) 364.905 0.962811 0.481405 0.876498i \(-0.340127\pi\)
0.481405 + 0.876498i \(0.340127\pi\)
\(380\) −648.397 + 114.330i −1.70631 + 0.300868i
\(381\) 0 0
\(382\) 244.100 88.8451i 0.639005 0.232579i
\(383\) 416.048 495.827i 1.08629 1.29459i 0.133466 0.991053i \(-0.457389\pi\)
0.952821 0.303533i \(-0.0981663\pi\)
\(384\) 0 0
\(385\) 51.3284 + 18.6820i 0.133321 + 0.0485247i
\(386\) −644.593 + 372.156i −1.66993 + 0.964134i
\(387\) 0 0
\(388\) 3.99007 6.91101i 0.0102837 0.0178119i
\(389\) 36.3692 + 43.3431i 0.0934940 + 0.111422i 0.810763 0.585375i \(-0.199053\pi\)
−0.717269 + 0.696796i \(0.754608\pi\)
\(390\) 0 0
\(391\) −68.3660 + 387.723i −0.174849 + 0.991619i
\(392\) 82.6444 + 14.5724i 0.210828 + 0.0371746i
\(393\) 0 0
\(394\) −880.249 + 738.616i −2.23413 + 1.87466i
\(395\) −235.553 135.996i −0.596336 0.344295i
\(396\) 0 0
\(397\) −327.487 567.224i −0.824905 1.42878i −0.901992 0.431752i \(-0.857895\pi\)
0.0770876 0.997024i \(-0.475438\pi\)
\(398\) −179.131 + 492.157i −0.450077 + 1.23658i
\(399\) 0 0
\(400\) −93.9848 78.8626i −0.234962 0.197156i
\(401\) −43.3291 119.046i −0.108053 0.296872i 0.873869 0.486162i \(-0.161604\pi\)
−0.981921 + 0.189290i \(0.939381\pi\)
\(402\) 0 0
\(403\) 14.7230 + 83.4984i 0.0365336 + 0.207192i
\(404\) 80.0452i 0.198132i
\(405\) 0 0
\(406\) 657.326 1.61903
\(407\) 63.8190 11.2530i 0.156803 0.0276487i
\(408\) 0 0
\(409\) −511.819 + 186.287i −1.25139 + 0.455469i −0.880871 0.473356i \(-0.843042\pi\)
−0.370519 + 0.928825i \(0.620820\pi\)
\(410\) 15.8783 18.9230i 0.0387275 0.0461537i
\(411\) 0 0
\(412\) −1090.24 396.814i −2.64621 0.963141i
\(413\) −333.256 + 192.405i −0.806915 + 0.465873i
\(414\) 0 0
\(415\) −145.140 + 251.390i −0.349736 + 0.605760i
\(416\) 76.4335 + 91.0899i 0.183734 + 0.218966i
\(417\) 0 0
\(418\) 9.75391 55.3171i 0.0233347 0.132338i
\(419\) −657.974 116.018i −1.57034 0.276894i −0.680356 0.732881i \(-0.738175\pi\)
−0.889986 + 0.455988i \(0.849286\pi\)
\(420\) 0 0
\(421\) 174.221 146.189i 0.413827 0.347242i −0.411982 0.911192i \(-0.635163\pi\)
0.825809 + 0.563950i \(0.190719\pi\)
\(422\) −1071.84 618.829i −2.53991 1.46642i
\(423\) 0 0
\(424\) −70.1589 121.519i −0.165469 0.286601i
\(425\) −121.072 + 332.644i −0.284876 + 0.782691i
\(426\) 0 0
\(427\) 493.651 + 414.222i 1.15609 + 0.970076i
\(428\) 260.073 + 714.544i 0.607647 + 1.66950i
\(429\) 0 0
\(430\) −191.776 1087.62i −0.445992 2.52934i
\(431\) 429.608i 0.996769i 0.866956 + 0.498385i \(0.166073\pi\)
−0.866956 + 0.498385i \(0.833927\pi\)
\(432\) 0 0
\(433\) −11.9987 −0.0277106 −0.0138553 0.999904i \(-0.504410\pi\)
−0.0138553 + 0.999904i \(0.504410\pi\)
\(434\) 331.709 58.4892i 0.764305 0.134768i
\(435\) 0 0
\(436\) 1167.99 425.113i 2.67887 0.975029i
\(437\) 216.556 258.082i 0.495552 0.590576i
\(438\) 0 0
\(439\) 70.8223 + 25.7772i 0.161327 + 0.0587180i 0.421421 0.906865i \(-0.361531\pi\)
−0.260094 + 0.965583i \(0.583754\pi\)
\(440\) 75.1487 43.3871i 0.170793 0.0986071i
\(441\) 0 0
\(442\) −140.822 + 243.911i −0.318602 + 0.551834i
\(443\) 159.401 + 189.967i 0.359822 + 0.428819i 0.915338 0.402687i \(-0.131924\pi\)
−0.555516 + 0.831506i \(0.687479\pi\)
\(444\) 0 0
\(445\) 85.2676 483.576i 0.191612 1.08669i
\(446\) 305.759 + 53.9135i 0.685558 + 0.120882i
\(447\) 0 0
\(448\) 469.402 393.875i 1.04777 0.879186i
\(449\) 178.012 + 102.775i 0.396462 + 0.228898i 0.684956 0.728584i \(-0.259821\pi\)
−0.288494 + 0.957482i \(0.593155\pi\)
\(450\) 0 0
\(451\) 0.672273 + 1.16441i 0.00149063 + 0.00258184i
\(452\) −301.958 + 829.622i −0.668048 + 1.83545i
\(453\) 0 0
\(454\) −929.893 780.273i −2.04822 1.71866i
\(455\) 80.1584 + 220.233i 0.176172 + 0.484029i
\(456\) 0 0
\(457\) 110.972 + 629.353i 0.242827 + 1.37714i 0.825486 + 0.564423i \(0.190901\pi\)
−0.582659 + 0.812717i \(0.697988\pi\)
\(458\) 354.118i 0.773184i
\(459\) 0 0
\(460\) 1203.09 2.61542
\(461\) −139.493 + 24.5964i −0.302588 + 0.0533545i −0.322881 0.946440i \(-0.604651\pi\)
0.0202925 + 0.999794i \(0.493540\pi\)
\(462\) 0 0
\(463\) 264.759 96.3643i 0.571833 0.208130i −0.0398874 0.999204i \(-0.512700\pi\)
0.611721 + 0.791074i \(0.290478\pi\)
\(464\) 109.543 130.548i 0.236083 0.281353i
\(465\) 0 0
\(466\) 743.141 + 270.481i 1.59472 + 0.580432i
\(467\) 462.423 266.980i 0.990199 0.571692i 0.0848656 0.996392i \(-0.472954\pi\)
0.905334 + 0.424700i \(0.139621\pi\)
\(468\) 0 0
\(469\) 250.868 434.515i 0.534899 0.926472i
\(470\) −846.582 1008.92i −1.80124 2.14663i
\(471\) 0 0
\(472\) −106.154 + 602.029i −0.224902 + 1.27549i
\(473\) 59.1992 + 10.4384i 0.125157 + 0.0220685i
\(474\) 0 0
\(475\) 232.049 194.713i 0.488525 0.409921i
\(476\) 618.201 + 356.918i 1.29874 + 0.749828i
\(477\) 0 0
\(478\) 142.826 + 247.382i 0.298799 + 0.517535i
\(479\) 58.0298 159.436i 0.121148 0.332851i −0.864264 0.503039i \(-0.832215\pi\)
0.985412 + 0.170188i \(0.0544375\pi\)
\(480\) 0 0
\(481\) 212.999 + 178.727i 0.442825 + 0.371574i
\(482\) 33.3826 + 91.7180i 0.0692585 + 0.190286i
\(483\) 0 0
\(484\) −146.228 829.303i −0.302125 1.71344i
\(485\) 7.78596i 0.0160535i
\(486\) 0 0
\(487\) 20.8058 0.0427223 0.0213612 0.999772i \(-0.493200\pi\)
0.0213612 + 0.999772i \(0.493200\pi\)
\(488\) 1008.18 177.769i 2.06593 0.364280i
\(489\) 0 0
\(490\) −177.853 + 64.7333i −0.362966 + 0.132109i
\(491\) 97.1410 115.768i 0.197843 0.235780i −0.657997 0.753020i \(-0.728596\pi\)
0.855840 + 0.517240i \(0.173041\pi\)
\(492\) 0 0
\(493\) −462.052 168.173i −0.937226 0.341122i
\(494\) 208.720 120.504i 0.422510 0.243936i
\(495\) 0 0
\(496\) 43.6626 75.6258i 0.0880294 0.152471i
\(497\) −188.294 224.400i −0.378862 0.451510i
\(498\) 0 0
\(499\) 141.971 805.156i 0.284510 1.61354i −0.422519 0.906354i \(-0.638854\pi\)
0.707029 0.707184i \(-0.250035\pi\)
\(500\) −128.502 22.6584i −0.257005 0.0453168i
\(501\) 0 0
\(502\) 318.535 267.283i 0.634532 0.532436i
\(503\) −201.176 116.149i −0.399953 0.230913i 0.286511 0.958077i \(-0.407505\pi\)
−0.686464 + 0.727164i \(0.740838\pi\)
\(504\) 0 0
\(505\) −39.0487 67.6343i −0.0773241 0.133929i
\(506\) −35.1050 + 96.4503i −0.0693776 + 0.190613i
\(507\) 0 0
\(508\) −6.95888 5.83920i −0.0136986 0.0114945i
\(509\) 110.730 + 304.227i 0.217543 + 0.597696i 0.999677 0.0254151i \(-0.00809074\pi\)
−0.782133 + 0.623111i \(0.785869\pi\)
\(510\) 0 0
\(511\) 76.4435 + 433.533i 0.149596 + 0.848401i
\(512\) 345.476i 0.674758i
\(513\) 0 0
\(514\) −776.303 −1.51032
\(515\) 1114.78 196.565i 2.16461 0.381680i
\(516\) 0 0
\(517\) 67.3638 24.5184i 0.130297 0.0474244i
\(518\) 710.018 846.166i 1.37069 1.63353i
\(519\) 0 0
\(520\) 349.866 + 127.341i 0.672819 + 0.244886i
\(521\) 480.156 277.218i 0.921604 0.532088i 0.0374577 0.999298i \(-0.488074\pi\)
0.884146 + 0.467210i \(0.154741\pi\)
\(522\) 0 0
\(523\) −472.881 + 819.053i −0.904170 + 1.56607i −0.0821414 + 0.996621i \(0.526176\pi\)
−0.822028 + 0.569447i \(0.807157\pi\)
\(524\) −416.435 496.288i −0.794723 0.947114i
\(525\) 0 0
\(526\) −71.2750 + 404.221i −0.135504 + 0.768481i
\(527\) −248.131 43.7522i −0.470837 0.0830212i
\(528\) 0 0
\(529\) −66.3546 + 55.6782i −0.125434 + 0.105252i
\(530\) 274.068 + 158.233i 0.517109 + 0.298553i
\(531\) 0 0
\(532\) −305.423 529.008i −0.574103 0.994376i
\(533\) −1.97311 + 5.42108i −0.00370190 + 0.0101709i
\(534\) 0 0
\(535\) −568.327 476.883i −1.06229 0.891370i
\(536\) −272.612 748.995i −0.508604 1.39738i
\(537\) 0 0
\(538\) 294.127 + 1668.08i 0.546704 + 3.10051i
\(539\) 10.3019i 0.0191129i
\(540\) 0 0
\(541\) −390.158 −0.721179 −0.360590 0.932725i \(-0.617425\pi\)
−0.360590 + 0.932725i \(0.617425\pi\)
\(542\) −162.607 + 28.6721i −0.300013 + 0.0529005i
\(543\) 0 0
\(544\) −332.051 + 120.857i −0.610388 + 0.222163i
\(545\) −779.509 + 928.982i −1.43029 + 1.70455i
\(546\) 0 0
\(547\) 436.230 + 158.775i 0.797495 + 0.290265i 0.708448 0.705763i \(-0.249396\pi\)
0.0890472 + 0.996027i \(0.471618\pi\)
\(548\) −360.611 + 208.199i −0.658049 + 0.379925i
\(549\) 0 0
\(550\) −46.1436 + 79.9230i −0.0838974 + 0.145315i
\(551\) 270.462 + 322.324i 0.490856 + 0.584979i
\(552\) 0 0
\(553\) 43.8198 248.514i 0.0792401 0.449393i
\(554\) 373.538 + 65.8648i 0.674256 + 0.118889i
\(555\) 0 0
\(556\) 272.692 228.816i 0.490454 0.411540i
\(557\) −203.531 117.509i −0.365406 0.210967i 0.306043 0.952018i \(-0.400995\pi\)
−0.671450 + 0.741050i \(0.734328\pi\)
\(558\) 0 0
\(559\) 128.961 + 223.367i 0.230700 + 0.399584i
\(560\) 82.5584 226.827i 0.147426 0.405049i
\(561\) 0 0
\(562\) 65.9674 + 55.3532i 0.117380 + 0.0984933i
\(563\) 28.5919 + 78.5555i 0.0507849 + 0.139530i 0.962492 0.271311i \(-0.0874572\pi\)
−0.911707 + 0.410841i \(0.865235\pi\)
\(564\) 0 0
\(565\) −149.577 848.294i −0.264738 1.50141i
\(566\) 523.606i 0.925099i
\(567\) 0 0
\(568\) −465.359 −0.819295
\(569\) −907.958 + 160.097i −1.59571 + 0.281366i −0.899647 0.436617i \(-0.856176\pi\)
−0.696060 + 0.717983i \(0.745065\pi\)
\(570\) 0 0
\(571\) −374.563 + 136.330i −0.655977 + 0.238756i −0.648499 0.761216i \(-0.724603\pi\)
−0.00747873 + 0.999972i \(0.502381\pi\)
\(572\) −30.1117 + 35.8858i −0.0526429 + 0.0627374i
\(573\) 0 0
\(574\) 21.5360 + 7.83845i 0.0375191 + 0.0136558i
\(575\) −479.365 + 276.762i −0.833679 + 0.481325i
\(576\) 0 0
\(577\) 8.33213 14.4317i 0.0144404 0.0250116i −0.858715 0.512454i \(-0.828737\pi\)
0.873155 + 0.487442i \(0.162070\pi\)
\(578\) 79.5200 + 94.7682i 0.137578 + 0.163959i
\(579\) 0 0
\(580\) −260.918 + 1479.74i −0.449859 + 2.55128i
\(581\) −265.223 46.7660i −0.456495 0.0804923i
\(582\) 0 0
\(583\) −13.1953 + 11.0722i −0.0226335 + 0.0189918i
\(584\) 605.648 + 349.671i 1.03707 + 0.598751i
\(585\) 0 0
\(586\) 697.955 + 1208.89i 1.19105 + 2.06296i
\(587\) −63.7700 + 175.207i −0.108637 + 0.298478i −0.982085 0.188440i \(-0.939657\pi\)
0.873448 + 0.486918i \(0.161879\pi\)
\(588\) 0 0
\(589\) 165.164 + 138.589i 0.280415 + 0.235296i
\(590\) −471.554 1295.58i −0.799245 2.19591i
\(591\) 0 0
\(592\) −49.7286 282.025i −0.0840010 0.476393i
\(593\) 373.725i 0.630228i 0.949054 + 0.315114i \(0.102043\pi\)
−0.949054 + 0.315114i \(0.897957\pi\)
\(594\) 0 0
\(595\) −696.466 −1.17053
\(596\) 504.637 88.9811i 0.846706 0.149297i
\(597\) 0 0
\(598\) −413.836 + 150.624i −0.692034 + 0.251880i
\(599\) 9.51395 11.3383i 0.0158831 0.0189287i −0.758044 0.652203i \(-0.773845\pi\)
0.773928 + 0.633274i \(0.218289\pi\)
\(600\) 0 0
\(601\) 182.608 + 66.4637i 0.303839 + 0.110589i 0.489441 0.872037i \(-0.337201\pi\)
−0.185601 + 0.982625i \(0.559423\pi\)
\(602\) 887.356 512.315i 1.47401 0.851022i
\(603\) 0 0
\(604\) −11.9609 + 20.7169i −0.0198028 + 0.0342995i
\(605\) 528.117 + 629.385i 0.872921 + 1.04031i
\(606\) 0 0
\(607\) 100.749 571.378i 0.165979 0.941315i −0.782070 0.623191i \(-0.785836\pi\)
0.948049 0.318124i \(-0.103053\pi\)
\(608\) 297.785 + 52.5076i 0.489779 + 0.0863612i
\(609\) 0 0
\(610\) −1768.70 + 1484.11i −2.89950 + 2.43297i
\(611\) 266.377 + 153.793i 0.435968 + 0.251706i
\(612\) 0 0
\(613\) 80.1803 + 138.876i 0.130800 + 0.226552i 0.923985 0.382428i \(-0.124912\pi\)
−0.793185 + 0.608980i \(0.791579\pi\)
\(614\) 229.740 631.205i 0.374169 1.02802i
\(615\) 0 0
\(616\) 61.6719 + 51.7489i 0.100117 + 0.0840079i
\(617\) −142.229 390.772i −0.230518 0.633343i 0.769468 0.638685i \(-0.220521\pi\)
−0.999986 + 0.00534297i \(0.998299\pi\)
\(618\) 0 0
\(619\) −113.862 645.746i −0.183946 1.04321i −0.927302 0.374313i \(-0.877878\pi\)
0.743356 0.668895i \(-0.233233\pi\)
\(620\) 769.943i 1.24184i
\(621\) 0 0
\(622\) −881.659 −1.41746
\(623\) 448.650 79.1091i 0.720144 0.126981i
\(624\) 0 0
\(625\) 643.721 234.295i 1.02995 0.374873i
\(626\) −589.176 + 702.153i −0.941176 + 1.12165i
\(627\) 0 0
\(628\) −1699.98 618.742i −2.70697 0.985258i
\(629\) −715.577 + 413.139i −1.13764 + 0.656818i
\(630\) 0 0
\(631\) 321.500 556.855i 0.509509 0.882496i −0.490430 0.871481i \(-0.663160\pi\)
0.999939 0.0110155i \(-0.00350642\pi\)
\(632\) −257.683 307.095i −0.407727 0.485910i
\(633\) 0 0
\(634\) 20.2063 114.596i 0.0318712 0.180751i
\(635\) 8.72847 + 1.53906i 0.0137456 + 0.00242372i
\(636\) 0 0
\(637\) 33.8606 28.4124i 0.0531563 0.0446034i
\(638\) −111.016 64.0948i −0.174006 0.100462i
\(639\) 0 0
\(640\) 791.384 + 1370.72i 1.23654 + 2.14175i
\(641\) 40.2366 110.549i 0.0627717 0.172464i −0.904342 0.426809i \(-0.859638\pi\)
0.967114 + 0.254345i \(0.0818599\pi\)
\(642\) 0 0
\(643\) 332.529 + 279.025i 0.517153 + 0.433943i 0.863638 0.504113i \(-0.168180\pi\)
−0.346485 + 0.938055i \(0.612625\pi\)
\(644\) 381.762 + 1048.88i 0.592799 + 1.62870i
\(645\) 0 0
\(646\) 124.367 + 705.322i 0.192519 + 1.09183i
\(647\) 202.797i 0.313443i 0.987643 + 0.156721i \(0.0500924\pi\)
−0.987643 + 0.156721i \(0.949908\pi\)
\(648\) 0 0
\(649\) 75.0446 0.115631
\(650\) −389.958 + 68.7601i −0.599935 + 0.105785i
\(651\) 0 0
\(652\) −1756.90 + 639.461i −2.69464 + 0.980768i
\(653\) −575.359 + 685.687i −0.881102 + 1.05006i 0.117275 + 0.993099i \(0.462584\pi\)
−0.998377 + 0.0569567i \(0.981860\pi\)
\(654\) 0 0
\(655\) 593.973 + 216.188i 0.906828 + 0.330059i
\(656\) 5.14569 2.97087i 0.00784404 0.00452876i
\(657\) 0 0
\(658\) 610.961 1058.22i 0.928513 1.60823i
\(659\) −541.106 644.865i −0.821102 0.978551i 0.178884 0.983870i \(-0.442751\pi\)
−0.999986 + 0.00531879i \(0.998307\pi\)
\(660\) 0 0
\(661\) 39.2395 222.538i 0.0593639 0.336669i −0.940632 0.339427i \(-0.889767\pi\)
0.999996 + 0.00275788i \(0.000877862\pi\)
\(662\) 690.286 + 121.716i 1.04273 + 0.183861i
\(663\) 0 0
\(664\) −327.743 + 275.009i −0.493589 + 0.414170i
\(665\) 516.135 + 297.991i 0.776143 + 0.448106i
\(666\) 0 0
\(667\) −384.430 665.853i −0.576357 0.998280i
\(668\) −7.80628 + 21.4476i −0.0116860 + 0.0321071i
\(669\) 0 0
\(670\) 1377.09 + 1155.51i 2.05535 + 1.72465i
\(671\) −42.9823 118.093i −0.0640571 0.175996i
\(672\) 0 0
\(673\) −19.1977 108.875i −0.0285255 0.161776i 0.967217 0.253950i \(-0.0817297\pi\)
−0.995743 + 0.0921733i \(0.970619\pi\)
\(674\) 512.805i 0.760838i
\(675\) 0 0
\(676\) 990.401 1.46509
\(677\) −2.81567 + 0.496479i −0.00415904 + 0.000733352i −0.175727 0.984439i \(-0.556228\pi\)
0.171568 + 0.985172i \(0.445117\pi\)
\(678\) 0 0
\(679\) −6.78797 + 2.47062i −0.00999702 + 0.00363862i
\(680\) −711.191 + 847.564i −1.04587 + 1.24642i
\(681\) 0 0
\(682\) −61.7253 22.4662i −0.0905063 0.0329416i
\(683\) −843.279 + 486.868i −1.23467 + 0.712837i −0.968000 0.250951i \(-0.919257\pi\)
−0.266670 + 0.963788i \(0.585923\pi\)
\(684\) 0 0
\(685\) 203.132 351.835i 0.296543 0.513628i
\(686\) −780.990 930.747i −1.13847 1.35677i
\(687\) 0 0
\(688\) 46.1288 261.609i 0.0670476 0.380246i
\(689\) −72.7851 12.8340i −0.105639 0.0186270i
\(690\) 0 0
\(691\) 501.018 420.404i 0.725063 0.608400i −0.203718 0.979030i \(-0.565303\pi\)
0.928781 + 0.370630i \(0.120858\pi\)
\(692\) −1175.10 678.443i −1.69812 0.980409i
\(693\) 0 0
\(694\) −487.460 844.305i −0.702391 1.21658i
\(695\) −118.788 + 326.367i −0.170918 + 0.469592i
\(696\) 0 0
\(697\) −13.1328 11.0197i −0.0188419 0.0158102i
\(698\) 465.028 + 1277.65i 0.666230 + 1.83045i
\(699\) 0 0
\(700\) 174.275 + 988.362i 0.248964 + 1.41195i
\(701\) 41.7083i 0.0594983i −0.999557 0.0297492i \(-0.990529\pi\)
0.999557 0.0297492i \(-0.00947085\pi\)
\(702\) 0 0
\(703\) 707.064 1.00578
\(704\) −117.683 + 20.7507i −0.167164 + 0.0294755i
\(705\) 0 0
\(706\) 1562.01 568.527i 2.21249 0.805279i
\(707\) 46.5743 55.5051i 0.0658759 0.0785079i
\(708\) 0 0
\(709\) 465.612 + 169.469i 0.656716 + 0.239025i 0.648818 0.760944i \(-0.275264\pi\)
0.00789831 + 0.999969i \(0.497486\pi\)
\(710\) 908.936 524.774i 1.28019 0.739119i
\(711\) 0 0
\(712\) 361.863 626.766i 0.508235 0.880289i
\(713\) −253.244 301.805i −0.355181 0.423288i
\(714\) 0 0
\(715\) 7.93669 45.0112i 0.0111003 0.0629527i
\(716\) −1534.09 270.501i −2.14258 0.377795i
\(717\) 0 0
\(718\) 635.981 533.652i 0.885768 0.743248i
\(719\) 124.160 + 71.6839i 0.172684 + 0.0996994i 0.583851 0.811861i \(-0.301545\pi\)
−0.411167 + 0.911560i \(0.634879\pi\)
\(720\) 0 0
\(721\) 525.108 + 909.514i 0.728305 + 1.26146i
\(722\) −200.811 + 551.725i −0.278132 + 0.764161i
\(723\) 0 0
\(724\) −786.145 659.654i −1.08584 0.911124i
\(725\) −236.441 649.616i −0.326126 0.896023i
\(726\) 0 0
\(727\) −57.2876 324.894i −0.0788001 0.446897i −0.998523 0.0543294i \(-0.982698\pi\)
0.919723 0.392568i \(-0.128413\pi\)
\(728\) 345.429i 0.474490i
\(729\) 0 0
\(730\) −1577.26 −2.16063
\(731\) −754.820 + 133.095i −1.03258 + 0.182073i
\(732\) 0 0
\(733\) −173.220 + 63.0471i −0.236317 + 0.0860124i −0.457464 0.889228i \(-0.651242\pi\)
0.221147 + 0.975240i \(0.429020\pi\)
\(734\) 684.023 815.187i 0.931912 1.11061i
\(735\) 0 0
\(736\) −519.215 188.979i −0.705455 0.256765i
\(737\) −84.7378 + 48.9234i −0.114977 + 0.0663818i
\(738\) 0 0
\(739\) 225.818 391.128i 0.305572 0.529267i −0.671816 0.740718i \(-0.734486\pi\)
0.977389 + 0.211451i \(0.0678189\pi\)
\(740\) 1623.01 + 1934.23i 2.19326 + 2.61383i
\(741\) 0 0
\(742\) −50.9847 + 289.149i −0.0687125 + 0.389688i
\(743\) −588.697 103.803i −0.792325 0.139708i −0.237184 0.971465i \(-0.576224\pi\)
−0.555141 + 0.831757i \(0.687336\pi\)
\(744\) 0 0
\(745\) −382.986 + 321.363i −0.514075 + 0.431360i
\(746\) −569.151 328.600i −0.762937 0.440482i
\(747\) 0 0
\(748\) −69.6051 120.560i −0.0930549 0.161176i
\(749\) 235.417 646.804i 0.314309 0.863556i
\(750\) 0 0
\(751\) −477.323 400.522i −0.635584 0.533318i 0.267075 0.963676i \(-0.413943\pi\)
−0.902658 + 0.430358i \(0.858387\pi\)
\(752\) −108.350 297.690i −0.144083 0.395864i
\(753\) 0 0
\(754\) −95.5099 541.663i −0.126671 0.718386i
\(755\) 23.3397i 0.0309135i
\(756\) 0 0
\(757\) −1029.21 −1.35960 −0.679798 0.733399i \(-0.737933\pi\)
−0.679798 + 0.733399i \(0.737933\pi\)
\(758\) −1194.56 + 210.633i −1.57593 + 0.277879i
\(759\) 0 0
\(760\) 889.687 323.820i 1.17064 0.426078i
\(761\) 400.389 477.165i 0.526135 0.627023i −0.435885 0.900002i \(-0.643565\pi\)
0.962020 + 0.272979i \(0.0880090\pi\)
\(762\) 0 0
\(763\) −1057.26 384.811i −1.38566 0.504340i
\(764\) −477.099 + 275.453i −0.624475 + 0.360541i
\(765\) 0 0
\(766\) −1075.77 + 1863.30i −1.40441 + 2.43250i
\(767\) 206.972 + 246.660i 0.269846 + 0.321590i
\(768\) 0 0
\(769\) −182.061 + 1032.52i −0.236751 + 1.34268i 0.602144 + 0.798388i \(0.294313\pi\)
−0.838895 + 0.544294i \(0.816798\pi\)
\(770\) −178.813 31.5296i −0.232225 0.0409475i
\(771\) 0 0
\(772\) 1209.22 1014.65i 1.56634 1.31432i
\(773\) 719.632 + 415.480i 0.930960 + 0.537490i 0.887115 0.461549i \(-0.152706\pi\)
0.0438447 + 0.999038i \(0.486039\pi\)
\(774\) 0 0
\(775\) −177.119 306.779i −0.228541 0.395844i
\(776\) −3.92487 + 10.7835i −0.00505782 + 0.0138962i
\(777\) 0 0
\(778\) −144.077 120.895i −0.185189 0.155392i
\(779\) 5.01750 + 13.7855i 0.00644095 + 0.0176964i
\(780\) 0 0
\(781\) 9.92001 + 56.2592i 0.0127017 + 0.0720348i
\(782\) 1308.72i 1.67355i
\(783\) 0 0
\(784\) −45.5253 −0.0580680
\(785\) 1738.24 306.499i 2.21432 0.390445i
\(786\) 0 0
\(787\) −174.476 + 63.5042i −0.221698 + 0.0806915i −0.450481 0.892786i \(-0.648748\pi\)
0.228783 + 0.973477i \(0.426525\pi\)
\(788\) 1566.44 1866.81i 1.98787 2.36905i
\(789\) 0 0
\(790\) 849.608 + 309.232i 1.07545 + 0.391433i
\(791\) 692.099 399.584i 0.874967 0.505162i
\(792\) 0 0
\(793\) 269.608 466.975i 0.339985 0.588872i
\(794\) 1399.48 + 1667.84i 1.76257 + 2.10055i
\(795\) 0 0
\(796\) 192.878 1093.87i 0.242310 1.37421i
\(797\) 1454.45 + 256.458i 1.82490 + 0.321779i 0.977782 0.209623i \(-0.0672237\pi\)
0.847119 + 0.531402i \(0.178335\pi\)
\(798\) 0 0
\(799\) −700.200 + 587.537i −0.876345 + 0.735341i
\(800\) −430.245 248.402i −0.537806 0.310502i
\(801\) 0 0
\(802\) 210.559 + 364.699i 0.262542 + 0.454737i
\(803\) 29.3626 80.6730i 0.0365661 0.100465i
\(804\) 0 0
\(805\) −834.250 700.019i −1.03634 0.869589i
\(806\) −96.3949 264.843i −0.119597 0.328589i
\(807\) 0 0
\(808\) −19.9879 113.357i −0.0247375 0.140293i
\(809\) 1487.78i 1.83903i −0.393055 0.919515i \(-0.628582\pi\)
0.393055 0.919515i \(-0.371418\pi\)
\(810\) 0 0
\(811\) 391.709 0.482995 0.241497 0.970401i \(-0.422361\pi\)
0.241497 + 0.970401i \(0.422361\pi\)
\(812\) −1372.87 + 242.073i −1.69072 + 0.298120i
\(813\) 0 0
\(814\) −202.423 + 73.6759i −0.248677 + 0.0905109i
\(815\) 1172.55 1397.39i 1.43871 1.71459i
\(816\) 0 0
\(817\) 616.326 + 224.324i 0.754377 + 0.274571i
\(818\) 1567.96 905.265i 1.91683 1.10668i
\(819\) 0 0
\(820\) −26.1940 + 45.3693i −0.0319439 + 0.0553285i
\(821\) 1.93532 + 2.30642i 0.00235727 + 0.00280928i 0.767222 0.641382i \(-0.221639\pi\)
−0.764865 + 0.644191i \(0.777194\pi\)
\(822\) 0 0
\(823\) −235.153 + 1333.62i −0.285727 + 1.62044i 0.416949 + 0.908930i \(0.363099\pi\)
−0.702676 + 0.711510i \(0.748012\pi\)
\(824\) 1643.04 + 289.713i 1.99398 + 0.351593i
\(825\) 0 0
\(826\) 979.888 822.224i 1.18631 0.995428i
\(827\) 1186.03 + 684.755i 1.43414 + 0.827999i 0.997433 0.0716069i \(-0.0228127\pi\)
0.436703 + 0.899606i \(0.356146\pi\)
\(828\) 0 0
\(829\) −39.8034 68.9416i −0.0480138 0.0831623i 0.841020 0.541005i \(-0.181956\pi\)
−0.889033 + 0.457842i \(0.848622\pi\)
\(830\) 330.024 906.732i 0.397619 1.09245i
\(831\) 0 0
\(832\) −392.773 329.576i −0.472084 0.396125i
\(833\) 44.9257 + 123.432i 0.0539324 + 0.148178i
\(834\) 0 0
\(835\) −3.86690 21.9303i −0.00463102 0.0262638i
\(836\) 119.125i 0.142494i
\(837\) 0 0
\(838\) 2220.92 2.65026
\(839\) −990.232 + 174.605i −1.18025 + 0.208110i −0.729145 0.684359i \(-0.760082\pi\)
−0.451108 + 0.892470i \(0.648971\pi\)
\(840\) 0 0
\(841\) 112.055 40.7849i 0.133241 0.0484957i
\(842\) −485.949 + 579.131i −0.577136 + 0.687804i
\(843\) 0 0
\(844\) 2466.50 + 897.734i 2.92240 + 1.06367i
\(845\) −836.841 + 483.150i −0.990344 + 0.571775i
\(846\) 0 0
\(847\) −381.132 + 660.139i −0.449978 + 0.779385i
\(848\) 48.9296 + 58.3120i 0.0577000 + 0.0687641i
\(849\) 0 0
\(850\) 204.333 1158.83i 0.240392 1.36333i
\(851\) −1272.39 224.357i −1.49517 0.263639i
\(852\) 0 0
\(853\) 270.040 226.590i 0.316577 0.265639i −0.470627 0.882332i \(-0.655972\pi\)
0.787204 + 0.616693i \(0.211528\pi\)
\(854\) −1855.12 1071.05i −2.17227 1.25416i
\(855\) 0 0
\(856\) −546.733 946.969i −0.638707 1.10627i
\(857\) 412.239 1132.62i 0.481025 1.32161i −0.427590 0.903973i \(-0.640637\pi\)
0.908615 0.417634i \(-0.137140\pi\)
\(858\) 0 0
\(859\) 484.551 + 406.587i 0.564088 + 0.473326i 0.879678 0.475570i \(-0.157758\pi\)
−0.315590 + 0.948896i \(0.602202\pi\)
\(860\) 801.073 + 2200.93i 0.931480 + 2.55922i
\(861\) 0 0
\(862\) −247.980 1406.37i −0.287680 1.63152i
\(863\) 1076.50i 1.24739i −0.781668 0.623695i \(-0.785631\pi\)
0.781668 0.623695i \(-0.214369\pi\)
\(864\) 0 0
\(865\) 1323.87 1.53048
\(866\) 39.2789 6.92594i 0.0453568 0.00799762i
\(867\) 0 0
\(868\) −671.253 + 244.316i −0.773334 + 0.281470i
\(869\) −31.6329 + 37.6987i −0.0364015 + 0.0433817i
\(870\) 0 0
\(871\) −394.509 143.590i −0.452938 0.164856i
\(872\) −1547.91 + 893.685i −1.77512 + 1.02487i
\(873\) 0 0
\(874\) −559.949 + 969.860i −0.640674 + 1.10968i
\(875\) 75.9224 + 90.4809i 0.0867685 + 0.103407i
\(876\) 0 0
\(877\) 222.484 1261.77i 0.253688 1.43873i −0.545732 0.837960i \(-0.683748\pi\)
0.799419 0.600774i \(-0.205141\pi\)
\(878\) −246.724 43.5041i −0.281007 0.0495491i
\(879\) 0 0
\(880\) −36.0608 + 30.2586i −0.0409782 + 0.0343848i
\(881\) −787.917 454.904i −0.894344 0.516350i −0.0189831 0.999820i \(-0.506043\pi\)
−0.875361 + 0.483470i \(0.839376\pi\)
\(882\) 0 0
\(883\) −817.068 1415.20i −0.925332 1.60272i −0.791027 0.611782i \(-0.790453\pi\)
−0.134305 0.990940i \(-0.542880\pi\)
\(884\) 204.290 561.283i 0.231098 0.634935i
\(885\) 0 0
\(886\) −631.471 529.867i −0.712721 0.598044i
\(887\) 203.394 + 558.821i 0.229306 + 0.630013i 0.999974 0.00722414i \(-0.00229954\pi\)
−0.770668 + 0.637237i \(0.780077\pi\)
\(888\) 0 0
\(889\) 1.42790 + 8.09805i 0.00160619 + 0.00910917i
\(890\) 1632.26i 1.83400i
\(891\) 0 0
\(892\) −658.450 −0.738173
\(893\) 770.287 135.822i 0.862583 0.152097i
\(894\) 0 0
\(895\) 1428.19 519.819i 1.59574 0.580803i
\(896\) −943.903 + 1124.90i −1.05346 + 1.25547i
\(897\) 0 0
\(898\) −642.065 233.692i −0.714994 0.260237i
\(899\) 426.126 246.024i 0.474000 0.273664i
\(900\) 0 0
\(901\) 109.816 190.206i 0.121882 0.211106i
\(902\) −2.87289 3.42377i −0.00318502 0.00379576i
\(903\) 0 0
\(904\) 220.458 1250.28i 0.243870 1.38305i
\(905\) 986.055 + 173.868i 1.08956 + 0.192119i
\(906\) 0 0
\(907\) 225.773 189.446i 0.248923 0.208871i −0.509785 0.860302i \(-0.670275\pi\)
0.758708 + 0.651430i \(0.225831\pi\)
\(908\) 2229.49 + 1287.20i 2.45538 + 1.41762i
\(909\) 0 0
\(910\) −389.531 674.688i −0.428056 0.741416i
\(911\) 285.060 783.197i 0.312909 0.859711i −0.679157 0.733993i \(-0.737654\pi\)
0.992066 0.125718i \(-0.0401234\pi\)
\(912\) 0 0
\(913\) 40.2334 + 33.7598i 0.0440672 + 0.0369768i
\(914\) −726.557 1996.20i −0.794920 2.18403i
\(915\) 0 0
\(916\) 130.411 + 739.598i 0.142370 + 0.807421i
\(917\) 586.439i 0.639519i
\(918\) 0 0
\(919\) 1687.49 1.83623 0.918114 0.396315i \(-0.129711\pi\)
0.918114 + 0.396315i \(0.129711\pi\)
\(920\) −1703.78 + 300.422i −1.85193 + 0.326545i
\(921\) 0 0
\(922\) 442.449 161.038i 0.479879 0.174662i
\(923\) −157.556 + 187.768i −0.170700 + 0.203432i
\(924\) 0 0
\(925\) −1091.64 397.323i −1.18015 0.429538i
\(926\) −811.093 + 468.285i −0.875910 + 0.505707i
\(927\) 0 0
\(928\) 345.038 597.623i 0.371808 0.643990i
\(929\) −665.672 793.316i −0.716546 0.853947i 0.277744 0.960655i \(-0.410413\pi\)
−0.994290 + 0.106708i \(0.965969\pi\)
\(930\) 0 0
\(931\) 19.5185 110.695i 0.0209651 0.118899i
\(932\) −1651.70 291.240i −1.77222 0.312489i
\(933\) 0 0
\(934\) −1359.68 + 1140.91i −1.45577 + 1.22153i
\(935\) 117.626 + 67.9113i 0.125803 + 0.0726324i
\(936\) 0 0
\(937\) 687.817 + 1191.33i 0.734063 + 1.27143i 0.955133 + 0.296176i \(0.0957115\pi\)
−0.221071 + 0.975258i \(0.570955\pi\)
\(938\) −570.429 + 1567.24i −0.608133 + 1.67083i
\(939\) 0 0
\(940\) 2139.69 + 1795.41i 2.27627 + 1.91001i
\(941\) −582.906 1601.52i −0.619454 1.70193i −0.708320 0.705891i \(-0.750547\pi\)
0.0888666 0.996044i \(-0.471676\pi\)
\(942\) 0 0
\(943\) −4.65496 26.3996i −0.00493633 0.0279953i
\(944\) 331.632i 0.351305i
\(945\) 0 0
\(946\) −199.820 −0.211226
\(947\) 22.2441 3.92223i 0.0234890 0.00414175i −0.161891 0.986809i \(-0.551759\pi\)
0.185380 + 0.982667i \(0.440648\pi\)
\(948\) 0 0
\(949\) 346.141 125.985i 0.364743 0.132756i
\(950\) −647.246 + 771.358i −0.681311 + 0.811955i
\(951\) 0 0
\(952\) −964.599 351.085i −1.01323 0.368787i
\(953\) 877.360 506.544i 0.920630 0.531526i 0.0367941 0.999323i \(-0.488285\pi\)
0.883836 + 0.467797i \(0.154952\pi\)
\(954\) 0 0
\(955\) 268.750 465.489i 0.281414 0.487423i
\(956\) −389.403 464.073i −0.407326 0.485432i
\(957\) 0 0
\(958\) −97.9366 + 555.426i −0.102230 + 0.579777i
\(959\) 371.196 + 65.4518i 0.387065 + 0.0682500i
\(960\) 0 0
\(961\) −543.023 + 455.650i −0.565060 + 0.474142i
\(962\) −800.441 462.135i −0.832059 0.480390i
\(963\) 0 0
\(964\) −103.499 179.265i −0.107364 0.185959i
\(965\) −526.748 + 1447.23i −0.545853 + 1.49972i
\(966\) 0 0
\(967\) 75.7208 + 63.5373i 0.0783048 + 0.0657055i 0.681100 0.732190i \(-0.261502\pi\)
−0.602795 + 0.797896i \(0.705946\pi\)
\(968\) 414.167 + 1137.91i 0.427858 + 1.17553i
\(969\) 0 0
\(970\) −4.49425 25.4882i −0.00463325 0.0262765i
\(971\) 415.261i 0.427664i −0.976871 0.213832i \(-0.931406\pi\)
0.976871 0.213832i \(-0.0685944\pi\)
\(972\) 0 0
\(973\) −322.227 −0.331169
\(974\) −68.1100 + 12.0096i −0.0699281 + 0.0123302i
\(975\) 0 0
\(976\) −521.869 + 189.945i −0.534702 + 0.194616i
\(977\) −202.742 + 241.619i −0.207515 + 0.247307i −0.859756 0.510705i \(-0.829384\pi\)
0.652241 + 0.758011i \(0.273829\pi\)
\(978\) 0 0
\(979\) −83.4861 30.3864i −0.0852769 0.0310382i
\(980\) 347.618 200.697i 0.354712 0.204793i
\(981\) 0 0
\(982\) −251.177 + 435.052i −0.255781 + 0.443027i
\(983\) 412.028 + 491.036i 0.419154 + 0.499528i 0.933761 0.357898i \(-0.116507\pi\)
−0.514607 + 0.857426i \(0.672062\pi\)
\(984\) 0 0
\(985\) −412.875 + 2341.53i −0.419162 + 2.37719i
\(986\) 1609.65 + 283.825i 1.63251 + 0.287855i
\(987\) 0 0
\(988\) −391.546 + 328.546i −0.396302 + 0.332536i
\(989\) −1037.92 599.245i −1.04947 0.605910i
\(990\) 0 0
\(991\) −464.001 803.674i −0.468215 0.810973i 0.531125 0.847294i \(-0.321769\pi\)
−0.999340 + 0.0363209i \(0.988436\pi\)
\(992\) 120.941 332.282i 0.121916 0.334962i
\(993\) 0 0
\(994\) 745.931 + 625.911i 0.750434 + 0.629689i
\(995\) 370.652 + 1018.36i 0.372514 + 1.02348i
\(996\) 0 0
\(997\) 197.850 + 1122.06i 0.198446 + 1.12544i 0.907426 + 0.420212i \(0.138044\pi\)
−0.708980 + 0.705228i \(0.750844\pi\)
\(998\) 2717.71i 2.72316i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.c.215.1 30
3.2 odd 2 243.3.f.b.215.5 30
9.2 odd 6 81.3.f.a.44.1 30
9.4 even 3 243.3.f.d.53.5 30
9.5 odd 6 243.3.f.a.53.1 30
9.7 even 3 27.3.f.a.5.5 30
27.2 odd 18 inner 243.3.f.c.26.1 30
27.5 odd 18 729.3.b.a.728.4 30
27.7 even 9 81.3.f.a.35.1 30
27.11 odd 18 243.3.f.d.188.5 30
27.16 even 9 243.3.f.a.188.1 30
27.20 odd 18 27.3.f.a.11.5 yes 30
27.22 even 9 729.3.b.a.728.27 30
27.25 even 9 243.3.f.b.26.5 30
36.7 odd 6 432.3.bc.a.113.4 30
108.47 even 18 432.3.bc.a.65.4 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.5 30 9.7 even 3
27.3.f.a.11.5 yes 30 27.20 odd 18
81.3.f.a.35.1 30 27.7 even 9
81.3.f.a.44.1 30 9.2 odd 6
243.3.f.a.53.1 30 9.5 odd 6
243.3.f.a.188.1 30 27.16 even 9
243.3.f.b.26.5 30 27.25 even 9
243.3.f.b.215.5 30 3.2 odd 2
243.3.f.c.26.1 30 27.2 odd 18 inner
243.3.f.c.215.1 30 1.1 even 1 trivial
243.3.f.d.53.5 30 9.4 even 3
243.3.f.d.188.5 30 27.11 odd 18
432.3.bc.a.65.4 30 108.47 even 18
432.3.bc.a.113.4 30 36.7 odd 6
729.3.b.a.728.4 30 27.5 odd 18
729.3.b.a.728.27 30 27.22 even 9