Properties

Label 243.3.f.a.188.1
Level $243$
Weight $3$
Character 243.188
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-3,0,3,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 188.1
Character \(\chi\) \(=\) 243.188
Dual form 243.3.f.a.53.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13691 - 3.12364i) q^{2} +(-5.40039 + 4.53146i) q^{4} +(-6.77366 + 1.19438i) q^{5} +(4.88842 + 4.10187i) q^{7} +(8.77937 + 5.06877i) q^{8} +(11.4319 + 19.8006i) q^{10} +(1.22557 + 0.216101i) q^{11} +(5.01761 + 1.82626i) q^{13} +(7.25506 - 19.9331i) q^{14} +(0.954979 - 5.41596i) q^{16} +(13.7418 - 7.93385i) q^{17} +(6.78917 - 11.7592i) q^{19} +(31.1681 - 37.1447i) q^{20} +(-0.718343 - 4.07393i) q^{22} +(15.9486 + 19.0069i) q^{23} +(20.9636 - 7.63012i) q^{25} -17.7495i q^{26} -44.9868 q^{28} +(10.5985 + 29.1191i) q^{29} +(-12.1638 + 10.2066i) q^{31} +(21.9309 - 3.86701i) q^{32} +(-40.4057 - 33.9044i) q^{34} +(-38.0116 - 21.9460i) q^{35} +(26.0365 + 45.0965i) q^{37} +(-44.4502 - 7.83777i) q^{38} +(-65.5225 - 23.8482i) q^{40} +(0.369522 - 1.01525i) q^{41} +(8.38780 - 47.5696i) q^{43} +(-7.59780 + 4.38659i) q^{44} +(41.2384 - 71.4270i) q^{46} +(-37.0273 + 44.1274i) q^{47} +(-1.43747 - 8.15231i) q^{49} +(-47.6675 - 56.8079i) q^{50} +(-35.3727 + 12.8746i) q^{52} +13.8414i q^{53} -8.55969 q^{55} +(22.1258 + 60.7901i) q^{56} +(78.9079 - 66.2116i) q^{58} +(59.3860 - 10.4714i) q^{59} +(77.3581 + 64.9112i) q^{61} +(45.7111 + 26.3913i) q^{62} +(-48.0117 - 83.1587i) q^{64} +(-36.1688 - 6.37754i) q^{65} +(73.8833 + 26.8913i) q^{67} +(-38.2592 + 105.116i) q^{68} +(-25.3356 + 143.685i) q^{70} +(-39.7545 + 22.9523i) q^{71} +(-34.4926 + 59.7430i) q^{73} +(111.264 - 132.599i) q^{74} +(16.6222 + 94.2690i) q^{76} +(5.10467 + 6.08351i) q^{77} +(-37.1596 + 13.5250i) q^{79} +37.8265i q^{80} -3.59141 q^{82} +(14.4344 + 39.6581i) q^{83} +(-83.6064 + 70.1541i) q^{85} +(-158.126 + 27.8820i) q^{86} +(9.66436 + 8.10936i) q^{88} +(61.8262 + 35.6954i) q^{89} +(17.0371 + 29.5091i) q^{91} +(-172.258 - 30.3737i) q^{92} +(179.935 + 65.4909i) q^{94} +(-31.9426 + 87.7616i) q^{95} +(0.196567 - 1.11479i) q^{97} +(-23.8306 + 13.7586i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} - 21 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} - 57 q^{11} + 3 q^{13} + 114 q^{14} + 27 q^{16} + 9 q^{17} - 3 q^{19} + 183 q^{20} + 75 q^{22} - 48 q^{23} + 21 q^{25} - 12 q^{28} + 78 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13691 3.12364i −0.568456 1.56182i −0.806915 0.590668i \(-0.798864\pi\)
0.238459 0.971153i \(-0.423358\pi\)
\(3\) 0 0
\(4\) −5.40039 + 4.53146i −1.35010 + 1.13287i
\(5\) −6.77366 + 1.19438i −1.35473 + 0.238876i −0.803415 0.595420i \(-0.796986\pi\)
−0.551317 + 0.834296i \(0.685875\pi\)
\(6\) 0 0
\(7\) 4.88842 + 4.10187i 0.698345 + 0.585981i 0.921302 0.388847i \(-0.127127\pi\)
−0.222957 + 0.974828i \(0.571571\pi\)
\(8\) 8.77937 + 5.06877i 1.09742 + 0.633597i
\(9\) 0 0
\(10\) 11.4319 + 19.8006i 1.14319 + 1.98006i
\(11\) 1.22557 + 0.216101i 0.111415 + 0.0196455i 0.229078 0.973408i \(-0.426429\pi\)
−0.117662 + 0.993054i \(0.537540\pi\)
\(12\) 0 0
\(13\) 5.01761 + 1.82626i 0.385970 + 0.140482i 0.527715 0.849422i \(-0.323049\pi\)
−0.141745 + 0.989903i \(0.545271\pi\)
\(14\) 7.25506 19.9331i 0.518219 1.42379i
\(15\) 0 0
\(16\) 0.954979 5.41596i 0.0596862 0.338497i
\(17\) 13.7418 7.93385i 0.808343 0.466697i −0.0380373 0.999276i \(-0.512111\pi\)
0.846380 + 0.532579i \(0.178777\pi\)
\(18\) 0 0
\(19\) 6.78917 11.7592i 0.357325 0.618905i −0.630188 0.776442i \(-0.717022\pi\)
0.987513 + 0.157538i \(0.0503556\pi\)
\(20\) 31.1681 37.1447i 1.55840 1.85723i
\(21\) 0 0
\(22\) −0.718343 4.07393i −0.0326520 0.185178i
\(23\) 15.9486 + 19.0069i 0.693419 + 0.826385i 0.991765 0.128073i \(-0.0408792\pi\)
−0.298345 + 0.954458i \(0.596435\pi\)
\(24\) 0 0
\(25\) 20.9636 7.63012i 0.838543 0.305205i
\(26\) 17.7495i 0.682674i
\(27\) 0 0
\(28\) −44.9868 −1.60667
\(29\) 10.5985 + 29.1191i 0.365464 + 1.00411i 0.977065 + 0.212939i \(0.0683036\pi\)
−0.611601 + 0.791166i \(0.709474\pi\)
\(30\) 0 0
\(31\) −12.1638 + 10.2066i −0.392381 + 0.329247i −0.817540 0.575872i \(-0.804663\pi\)
0.425159 + 0.905119i \(0.360218\pi\)
\(32\) 21.9309 3.86701i 0.685341 0.120844i
\(33\) 0 0
\(34\) −40.4057 33.9044i −1.18840 0.997189i
\(35\) −38.0116 21.9460i −1.08605 0.627029i
\(36\) 0 0
\(37\) 26.0365 + 45.0965i 0.703688 + 1.21882i 0.967163 + 0.254158i \(0.0817982\pi\)
−0.263474 + 0.964666i \(0.584868\pi\)
\(38\) −44.4502 7.83777i −1.16974 0.206257i
\(39\) 0 0
\(40\) −65.5225 23.8482i −1.63806 0.596206i
\(41\) 0.369522 1.01525i 0.00901274 0.0247623i −0.935105 0.354372i \(-0.884695\pi\)
0.944117 + 0.329609i \(0.106917\pi\)
\(42\) 0 0
\(43\) 8.38780 47.5696i 0.195065 1.10627i −0.717261 0.696805i \(-0.754604\pi\)
0.912326 0.409465i \(-0.134284\pi\)
\(44\) −7.59780 + 4.38659i −0.172677 + 0.0996953i
\(45\) 0 0
\(46\) 41.2384 71.4270i 0.896487 1.55276i
\(47\) −37.0273 + 44.1274i −0.787814 + 0.938881i −0.999258 0.0385095i \(-0.987739\pi\)
0.211444 + 0.977390i \(0.432183\pi\)
\(48\) 0 0
\(49\) −1.43747 8.15231i −0.0293362 0.166374i
\(50\) −47.6675 56.8079i −0.953350 1.13616i
\(51\) 0 0
\(52\) −35.3727 + 12.8746i −0.680244 + 0.247588i
\(53\) 13.8414i 0.261159i 0.991438 + 0.130579i \(0.0416837\pi\)
−0.991438 + 0.130579i \(0.958316\pi\)
\(54\) 0 0
\(55\) −8.55969 −0.155631
\(56\) 22.1258 + 60.7901i 0.395103 + 1.08554i
\(57\) 0 0
\(58\) 78.9079 66.2116i 1.36048 1.14158i
\(59\) 59.3860 10.4714i 1.00654 0.177481i 0.354011 0.935241i \(-0.384818\pi\)
0.652533 + 0.757761i \(0.273707\pi\)
\(60\) 0 0
\(61\) 77.3581 + 64.9112i 1.26817 + 1.06412i 0.994762 + 0.102218i \(0.0325941\pi\)
0.273404 + 0.961899i \(0.411850\pi\)
\(62\) 45.7111 + 26.3913i 0.737276 + 0.425666i
\(63\) 0 0
\(64\) −48.0117 83.1587i −0.750183 1.29935i
\(65\) −36.1688 6.37754i −0.556443 0.0981160i
\(66\) 0 0
\(67\) 73.8833 + 26.8913i 1.10274 + 0.401363i 0.828324 0.560250i \(-0.189295\pi\)
0.274411 + 0.961612i \(0.411517\pi\)
\(68\) −38.2592 + 105.116i −0.562636 + 1.54583i
\(69\) 0 0
\(70\) −25.3356 + 143.685i −0.361937 + 2.05265i
\(71\) −39.7545 + 22.9523i −0.559922 + 0.323271i −0.753114 0.657890i \(-0.771449\pi\)
0.193192 + 0.981161i \(0.438116\pi\)
\(72\) 0 0
\(73\) −34.4926 + 59.7430i −0.472502 + 0.818397i −0.999505 0.0314663i \(-0.989982\pi\)
0.527003 + 0.849863i \(0.323316\pi\)
\(74\) 111.264 132.599i 1.50357 1.79188i
\(75\) 0 0
\(76\) 16.6222 + 94.2690i 0.218713 + 1.24038i
\(77\) 5.10467 + 6.08351i 0.0662945 + 0.0790067i
\(78\) 0 0
\(79\) −37.1596 + 13.5250i −0.470375 + 0.171203i −0.566322 0.824184i \(-0.691634\pi\)
0.0959471 + 0.995386i \(0.469412\pi\)
\(80\) 37.8265i 0.472831i
\(81\) 0 0
\(82\) −3.59141 −0.0437976
\(83\) 14.4344 + 39.6581i 0.173908 + 0.477809i 0.995770 0.0918778i \(-0.0292869\pi\)
−0.821862 + 0.569686i \(0.807065\pi\)
\(84\) 0 0
\(85\) −83.6064 + 70.1541i −0.983605 + 0.825342i
\(86\) −158.126 + 27.8820i −1.83868 + 0.324209i
\(87\) 0 0
\(88\) 9.66436 + 8.10936i 0.109822 + 0.0921519i
\(89\) 61.8262 + 35.6954i 0.694676 + 0.401072i 0.805361 0.592784i \(-0.201971\pi\)
−0.110685 + 0.993856i \(0.535305\pi\)
\(90\) 0 0
\(91\) 17.0371 + 29.5091i 0.187221 + 0.324276i
\(92\) −172.258 30.3737i −1.87237 0.330149i
\(93\) 0 0
\(94\) 179.935 + 65.4909i 1.91420 + 0.696712i
\(95\) −31.9426 + 87.7616i −0.336238 + 0.923806i
\(96\) 0 0
\(97\) 0.196567 1.11479i 0.00202646 0.0114926i −0.983778 0.179392i \(-0.942587\pi\)
0.985804 + 0.167899i \(0.0536982\pi\)
\(98\) −23.8306 + 13.7586i −0.243169 + 0.140394i
\(99\) 0 0
\(100\) −78.6359 + 136.201i −0.786359 + 1.36201i
\(101\) 7.29847 8.69798i 0.0722621 0.0861186i −0.728702 0.684831i \(-0.759876\pi\)
0.800964 + 0.598712i \(0.204321\pi\)
\(102\) 0 0
\(103\) −28.5782 162.075i −0.277458 1.57354i −0.731043 0.682331i \(-0.760966\pi\)
0.453585 0.891213i \(-0.350145\pi\)
\(104\) 34.7946 + 41.4666i 0.334563 + 0.398717i
\(105\) 0 0
\(106\) 43.2356 15.7365i 0.407883 0.148457i
\(107\) 107.863i 1.00807i 0.863685 + 0.504033i \(0.168151\pi\)
−0.863685 + 0.504033i \(0.831849\pi\)
\(108\) 0 0
\(109\) 176.312 1.61754 0.808770 0.588125i \(-0.200134\pi\)
0.808770 + 0.588125i \(0.200134\pi\)
\(110\) 9.73162 + 26.7374i 0.0884693 + 0.243067i
\(111\) 0 0
\(112\) 26.8839 22.5583i 0.240035 0.201413i
\(113\) −123.332 + 21.7467i −1.09143 + 0.192449i −0.690265 0.723557i \(-0.742506\pi\)
−0.401166 + 0.916005i \(0.631395\pi\)
\(114\) 0 0
\(115\) −130.732 109.697i −1.13680 0.953889i
\(116\) −189.188 109.228i −1.63093 0.941617i
\(117\) 0 0
\(118\) −100.226 173.596i −0.849369 1.47115i
\(119\) 99.7194 + 17.5832i 0.837978 + 0.147758i
\(120\) 0 0
\(121\) −112.247 40.8547i −0.927665 0.337643i
\(122\) 114.810 315.437i 0.941064 2.58555i
\(123\) 0 0
\(124\) 19.4382 110.240i 0.156760 0.889030i
\(125\) 16.0295 9.25462i 0.128236 0.0740369i
\(126\) 0 0
\(127\) −0.644295 + 1.11595i −0.00507319 + 0.00878702i −0.868551 0.495600i \(-0.834948\pi\)
0.863478 + 0.504387i \(0.168282\pi\)
\(128\) −147.915 + 176.279i −1.15559 + 1.37718i
\(129\) 0 0
\(130\) 21.1996 + 120.229i 0.163074 + 0.924840i
\(131\) 59.0713 + 70.3984i 0.450926 + 0.537392i 0.942838 0.333253i \(-0.108146\pi\)
−0.491912 + 0.870645i \(0.663702\pi\)
\(132\) 0 0
\(133\) 81.4229 29.6355i 0.612202 0.222823i
\(134\) 261.358i 1.95043i
\(135\) 0 0
\(136\) 160.860 1.18279
\(137\) −20.2017 55.5038i −0.147458 0.405137i 0.843870 0.536547i \(-0.180272\pi\)
−0.991328 + 0.131410i \(0.958050\pi\)
\(138\) 0 0
\(139\) −38.6814 + 32.4575i −0.278283 + 0.233508i −0.771237 0.636548i \(-0.780362\pi\)
0.492954 + 0.870056i \(0.335917\pi\)
\(140\) 304.725 53.7313i 2.17661 0.383795i
\(141\) 0 0
\(142\) 116.892 + 98.0840i 0.823183 + 0.690732i
\(143\) 5.75477 + 3.32252i 0.0402432 + 0.0232344i
\(144\) 0 0
\(145\) −106.570 184.584i −0.734963 1.27299i
\(146\) 225.831 + 39.8201i 1.54679 + 0.272740i
\(147\) 0 0
\(148\) −344.960 125.555i −2.33081 0.848346i
\(149\) 24.8604 68.3034i 0.166848 0.458412i −0.827886 0.560896i \(-0.810457\pi\)
0.994735 + 0.102484i \(0.0326789\pi\)
\(150\) 0 0
\(151\) −0.589241 + 3.34175i −0.00390226 + 0.0221308i −0.986697 0.162572i \(-0.948021\pi\)
0.982794 + 0.184703i \(0.0591322\pi\)
\(152\) 119.209 68.8255i 0.784272 0.452800i
\(153\) 0 0
\(154\) 13.1991 22.8616i 0.0857087 0.148452i
\(155\) 70.2029 83.6645i 0.452922 0.539771i
\(156\) 0 0
\(157\) −44.5612 252.719i −0.283830 1.60968i −0.709436 0.704769i \(-0.751050\pi\)
0.425607 0.904908i \(-0.360061\pi\)
\(158\) 84.4945 + 100.697i 0.534775 + 0.637321i
\(159\) 0 0
\(160\) −143.934 + 52.3876i −0.899586 + 0.327423i
\(161\) 158.333i 0.983433i
\(162\) 0 0
\(163\) −265.211 −1.62706 −0.813530 0.581523i \(-0.802457\pi\)
−0.813530 + 0.581523i \(0.802457\pi\)
\(164\) 2.60502 + 7.15724i 0.0158843 + 0.0436417i
\(165\) 0 0
\(166\) 107.467 90.1756i 0.647392 0.543226i
\(167\) −3.18840 + 0.562201i −0.0190922 + 0.00336647i −0.183186 0.983078i \(-0.558641\pi\)
0.164094 + 0.986445i \(0.447530\pi\)
\(168\) 0 0
\(169\) −107.620 90.3042i −0.636807 0.534344i
\(170\) 314.189 + 181.397i 1.84817 + 1.06704i
\(171\) 0 0
\(172\) 170.262 + 294.903i 0.989898 + 1.71455i
\(173\) −189.550 33.4228i −1.09567 0.193195i −0.403532 0.914965i \(-0.632218\pi\)
−0.692133 + 0.721770i \(0.743329\pi\)
\(174\) 0 0
\(175\) 133.776 + 48.6907i 0.764437 + 0.278232i
\(176\) 2.34079 6.43126i 0.0132999 0.0365412i
\(177\) 0 0
\(178\) 41.2086 233.705i 0.231509 1.31295i
\(179\) 191.363 110.484i 1.06907 0.617228i 0.141142 0.989989i \(-0.454922\pi\)
0.927927 + 0.372762i \(0.121589\pi\)
\(180\) 0 0
\(181\) −72.7860 + 126.069i −0.402133 + 0.696514i −0.993983 0.109534i \(-0.965064\pi\)
0.591851 + 0.806048i \(0.298398\pi\)
\(182\) 72.8062 86.7670i 0.400034 0.476742i
\(183\) 0 0
\(184\) 43.6777 + 247.708i 0.237379 + 1.34624i
\(185\) −230.224 274.371i −1.24446 1.48309i
\(186\) 0 0
\(187\) 18.5561 6.75386i 0.0992303 0.0361169i
\(188\) 406.093i 2.16007i
\(189\) 0 0
\(190\) 310.452 1.63396
\(191\) −26.7275 73.4332i −0.139935 0.384467i 0.849853 0.527021i \(-0.176691\pi\)
−0.989787 + 0.142554i \(0.954469\pi\)
\(192\) 0 0
\(193\) −171.527 + 143.929i −0.888743 + 0.745744i −0.967958 0.251114i \(-0.919203\pi\)
0.0792145 + 0.996858i \(0.474759\pi\)
\(194\) −3.70567 + 0.653410i −0.0191014 + 0.00336809i
\(195\) 0 0
\(196\) 44.7048 + 37.5118i 0.228086 + 0.191386i
\(197\) −299.369 172.841i −1.51964 0.877364i −0.999732 0.0231411i \(-0.992633\pi\)
−0.519907 0.854223i \(-0.674033\pi\)
\(198\) 0 0
\(199\) 78.7794 + 136.450i 0.395876 + 0.685678i 0.993213 0.116313i \(-0.0371075\pi\)
−0.597336 + 0.801991i \(0.703774\pi\)
\(200\) 222.723 + 39.2720i 1.11361 + 0.196360i
\(201\) 0 0
\(202\) −35.4671 12.9090i −0.175580 0.0639058i
\(203\) −67.6328 + 185.820i −0.333166 + 0.915367i
\(204\) 0 0
\(205\) −1.29042 + 7.31834i −0.00629473 + 0.0356992i
\(206\) −473.773 + 273.533i −2.29987 + 1.32783i
\(207\) 0 0
\(208\) 14.6827 25.4311i 0.0705897 0.122265i
\(209\) 10.8618 12.9446i 0.0519702 0.0619356i
\(210\) 0 0
\(211\) 64.6540 + 366.671i 0.306417 + 1.73778i 0.616758 + 0.787153i \(0.288446\pi\)
−0.310341 + 0.950625i \(0.600443\pi\)
\(212\) −62.7218 74.7489i −0.295858 0.352589i
\(213\) 0 0
\(214\) 336.925 122.631i 1.57442 0.573041i
\(215\) 332.238i 1.54529i
\(216\) 0 0
\(217\) −101.328 −0.466950
\(218\) −200.451 550.735i −0.919501 2.52631i
\(219\) 0 0
\(220\) 46.2256 38.7879i 0.210117 0.176309i
\(221\) 83.4404 14.7128i 0.377558 0.0665737i
\(222\) 0 0
\(223\) 71.5494 + 60.0371i 0.320849 + 0.269225i 0.788959 0.614446i \(-0.210620\pi\)
−0.468110 + 0.883670i \(0.655065\pi\)
\(224\) 123.069 + 71.0541i 0.549417 + 0.317206i
\(225\) 0 0
\(226\) 208.146 + 360.520i 0.921001 + 1.59522i
\(227\) 359.629 + 63.4124i 1.58427 + 0.279350i 0.895308 0.445447i \(-0.146955\pi\)
0.688963 + 0.724797i \(0.258066\pi\)
\(228\) 0 0
\(229\) 100.106 + 36.4355i 0.437143 + 0.159107i 0.551211 0.834366i \(-0.314166\pi\)
−0.114068 + 0.993473i \(0.536388\pi\)
\(230\) −194.024 + 533.076i −0.843582 + 2.31772i
\(231\) 0 0
\(232\) −54.5500 + 309.368i −0.235129 + 1.33348i
\(233\) 206.035 118.954i 0.884270 0.510533i 0.0122058 0.999926i \(-0.496115\pi\)
0.872064 + 0.489392i \(0.162781\pi\)
\(234\) 0 0
\(235\) 198.105 343.128i 0.843001 1.46012i
\(236\) −273.257 + 325.655i −1.15787 + 1.37989i
\(237\) 0 0
\(238\) −58.4485 331.478i −0.245582 1.39276i
\(239\) 55.2369 + 65.8287i 0.231117 + 0.275434i 0.869122 0.494598i \(-0.164685\pi\)
−0.638005 + 0.770032i \(0.720240\pi\)
\(240\) 0 0
\(241\) 27.5917 10.0426i 0.114489 0.0416704i −0.284141 0.958783i \(-0.591708\pi\)
0.398629 + 0.917112i \(0.369486\pi\)
\(242\) 397.069i 1.64078i
\(243\) 0 0
\(244\) −711.906 −2.91765
\(245\) 19.4739 + 53.5040i 0.0794852 + 0.218384i
\(246\) 0 0
\(247\) 55.5408 46.6042i 0.224861 0.188681i
\(248\) −158.526 + 27.9524i −0.639217 + 0.112711i
\(249\) 0 0
\(250\) −47.1322 39.5486i −0.188529 0.158194i
\(251\) 108.333 + 62.5458i 0.431604 + 0.249186i 0.700030 0.714114i \(-0.253170\pi\)
−0.268426 + 0.963300i \(0.586503\pi\)
\(252\) 0 0
\(253\) 15.4388 + 26.7407i 0.0610228 + 0.105695i
\(254\) 4.21834 + 0.743807i 0.0166076 + 0.00292837i
\(255\) 0 0
\(256\) 357.868 + 130.253i 1.39792 + 0.508802i
\(257\) 79.8744 219.453i 0.310795 0.853903i −0.681701 0.731631i \(-0.738760\pi\)
0.992497 0.122272i \(-0.0390182\pi\)
\(258\) 0 0
\(259\) −57.7028 + 327.249i −0.222791 + 1.26351i
\(260\) 224.225 129.456i 0.862405 0.497910i
\(261\) 0 0
\(262\) 152.740 264.554i 0.582979 1.00975i
\(263\) −79.3706 + 94.5901i −0.301789 + 0.359658i −0.895532 0.444996i \(-0.853205\pi\)
0.593743 + 0.804655i \(0.297649\pi\)
\(264\) 0 0
\(265\) −16.5319 93.7569i −0.0623844 0.353800i
\(266\) −185.141 220.643i −0.696021 0.829485i
\(267\) 0 0
\(268\) −520.855 + 189.576i −1.94349 + 0.707372i
\(269\) 509.553i 1.89425i −0.320867 0.947124i \(-0.603974\pi\)
0.320867 0.947124i \(-0.396026\pi\)
\(270\) 0 0
\(271\) 49.6722 0.183292 0.0916461 0.995792i \(-0.470787\pi\)
0.0916461 + 0.995792i \(0.470787\pi\)
\(272\) −29.8462 82.0018i −0.109729 0.301477i
\(273\) 0 0
\(274\) −150.406 + 126.206i −0.548929 + 0.460606i
\(275\) 27.3412 4.82099i 0.0994225 0.0175309i
\(276\) 0 0
\(277\) 87.4101 + 73.3458i 0.315560 + 0.264786i 0.786785 0.617227i \(-0.211744\pi\)
−0.471226 + 0.882013i \(0.656188\pi\)
\(278\) 145.363 + 83.9254i 0.522889 + 0.301890i
\(279\) 0 0
\(280\) −222.479 385.345i −0.794568 1.37623i
\(281\) −25.5124 4.49853i −0.0907915 0.0160090i 0.128068 0.991765i \(-0.459122\pi\)
−0.218859 + 0.975756i \(0.570234\pi\)
\(282\) 0 0
\(283\) 148.018 + 53.8742i 0.523032 + 0.190368i 0.590025 0.807385i \(-0.299118\pi\)
−0.0669923 + 0.997753i \(0.521340\pi\)
\(284\) 110.682 304.097i 0.389726 1.07076i
\(285\) 0 0
\(286\) 3.83569 21.7533i 0.0134115 0.0760603i
\(287\) 5.97082 3.44725i 0.0208042 0.0120113i
\(288\) 0 0
\(289\) −18.6082 + 32.2303i −0.0643881 + 0.111523i
\(290\) −455.414 + 542.741i −1.57039 + 1.87152i
\(291\) 0 0
\(292\) −84.4496 478.937i −0.289211 1.64020i
\(293\) 269.929 + 321.689i 0.921259 + 1.09791i 0.994924 + 0.100631i \(0.0320860\pi\)
−0.0736650 + 0.997283i \(0.523470\pi\)
\(294\) 0 0
\(295\) −389.754 + 141.859i −1.32120 + 0.480877i
\(296\) 527.892i 1.78342i
\(297\) 0 0
\(298\) −241.620 −0.810804
\(299\) 45.3126 + 124.495i 0.151547 + 0.416373i
\(300\) 0 0
\(301\) 236.127 198.134i 0.784476 0.658253i
\(302\) 11.1084 1.95870i 0.0367826 0.00648577i
\(303\) 0 0
\(304\) −57.2037 47.9996i −0.188170 0.157894i
\(305\) −601.526 347.291i −1.97222 1.13866i
\(306\) 0 0
\(307\) −101.037 175.001i −0.329110 0.570035i 0.653225 0.757163i \(-0.273415\pi\)
−0.982336 + 0.187128i \(0.940082\pi\)
\(308\) −55.1344 9.72169i −0.179008 0.0315639i
\(309\) 0 0
\(310\) −341.153 124.169i −1.10049 0.400546i
\(311\) 90.7146 249.236i 0.291687 0.801403i −0.704133 0.710068i \(-0.748664\pi\)
0.995820 0.0913353i \(-0.0291135\pi\)
\(312\) 0 0
\(313\) 47.8820 271.553i 0.152978 0.867580i −0.807634 0.589685i \(-0.799252\pi\)
0.960611 0.277895i \(-0.0896369\pi\)
\(314\) −738.742 + 426.513i −2.35268 + 1.35832i
\(315\) 0 0
\(316\) 139.388 241.428i 0.441102 0.764012i
\(317\) 22.5014 26.8161i 0.0709824 0.0845935i −0.729385 0.684104i \(-0.760194\pi\)
0.800367 + 0.599510i \(0.204638\pi\)
\(318\) 0 0
\(319\) 6.69650 + 37.9777i 0.0209922 + 0.119053i
\(320\) 424.538 + 505.944i 1.32668 + 1.58108i
\(321\) 0 0
\(322\) 494.574 180.010i 1.53595 0.559038i
\(323\) 215.457i 0.667049i
\(324\) 0 0
\(325\) 119.122 0.366528
\(326\) 301.522 + 828.424i 0.924913 + 2.54118i
\(327\) 0 0
\(328\) 8.39027 7.04027i 0.0255801 0.0214643i
\(329\) −362.009 + 63.8320i −1.10033 + 0.194018i
\(330\) 0 0
\(331\) 161.531 + 135.541i 0.488010 + 0.409489i 0.853312 0.521400i \(-0.174590\pi\)
−0.365303 + 0.930889i \(0.619035\pi\)
\(332\) −257.660 148.760i −0.776086 0.448073i
\(333\) 0 0
\(334\) 5.38105 + 9.32025i 0.0161109 + 0.0279049i
\(335\) −532.578 93.9079i −1.58979 0.280322i
\(336\) 0 0
\(337\) −144.965 52.7629i −0.430163 0.156566i 0.117859 0.993030i \(-0.462397\pi\)
−0.548022 + 0.836464i \(0.684619\pi\)
\(338\) −159.723 + 438.835i −0.472553 + 1.29833i
\(339\) 0 0
\(340\) 133.606 757.719i 0.392959 2.22858i
\(341\) −17.1133 + 9.88034i −0.0501855 + 0.0289746i
\(342\) 0 0
\(343\) 182.756 316.543i 0.532817 0.922867i
\(344\) 314.759 375.115i 0.914997 1.09045i
\(345\) 0 0
\(346\) 111.101 + 630.085i 0.321101 + 1.82106i
\(347\) −188.521 224.671i −0.543289 0.647467i 0.422632 0.906301i \(-0.361106\pi\)
−0.965922 + 0.258834i \(0.916662\pi\)
\(348\) 0 0
\(349\) 384.360 139.896i 1.10132 0.400847i 0.273516 0.961867i \(-0.411813\pi\)
0.827802 + 0.561020i \(0.189591\pi\)
\(350\) 473.227i 1.35208i
\(351\) 0 0
\(352\) 27.7135 0.0787316
\(353\) −171.031 469.905i −0.484508 1.33117i −0.905591 0.424152i \(-0.860572\pi\)
0.421083 0.907022i \(-0.361650\pi\)
\(354\) 0 0
\(355\) 241.870 202.953i 0.681323 0.571698i
\(356\) −495.637 + 87.3943i −1.39224 + 0.245489i
\(357\) 0 0
\(358\) −562.675 472.140i −1.57172 1.31883i
\(359\) 216.295 + 124.878i 0.602492 + 0.347849i 0.770021 0.638018i \(-0.220246\pi\)
−0.167529 + 0.985867i \(0.553579\pi\)
\(360\) 0 0
\(361\) 88.3143 + 152.965i 0.244638 + 0.423725i
\(362\) 476.546 + 84.0279i 1.31642 + 0.232121i
\(363\) 0 0
\(364\) −225.726 82.1576i −0.620127 0.225708i
\(365\) 162.286 445.876i 0.444618 1.22158i
\(366\) 0 0
\(367\) −55.5902 + 315.268i −0.151472 + 0.859040i 0.810469 + 0.585782i \(0.199212\pi\)
−0.961941 + 0.273258i \(0.911899\pi\)
\(368\) 118.171 68.2260i 0.321117 0.185397i
\(369\) 0 0
\(370\) −595.291 + 1031.07i −1.60889 + 2.78669i
\(371\) −56.7756 + 67.6625i −0.153034 + 0.182379i
\(372\) 0 0
\(373\) 34.3314 + 194.703i 0.0920414 + 0.521993i 0.995614 + 0.0935574i \(0.0298239\pi\)
−0.903573 + 0.428435i \(0.859065\pi\)
\(374\) −42.1932 50.2839i −0.112816 0.134449i
\(375\) 0 0
\(376\) −548.748 + 199.728i −1.45944 + 0.531191i
\(377\) 165.464i 0.438896i
\(378\) 0 0
\(379\) 364.905 0.962811 0.481405 0.876498i \(-0.340127\pi\)
0.481405 + 0.876498i \(0.340127\pi\)
\(380\) −225.186 618.693i −0.592594 1.62814i
\(381\) 0 0
\(382\) −198.992 + 166.974i −0.520922 + 0.437105i
\(383\) 637.422 112.395i 1.66429 0.293459i 0.739278 0.673400i \(-0.235167\pi\)
0.925011 + 0.379941i \(0.124056\pi\)
\(384\) 0 0
\(385\) −41.8433 35.1107i −0.108684 0.0911967i
\(386\) 644.593 + 372.156i 1.66993 + 0.964134i
\(387\) 0 0
\(388\) 3.99007 + 6.91101i 0.0102837 + 0.0178119i
\(389\) 55.7208 + 9.82508i 0.143241 + 0.0252573i 0.244809 0.969571i \(-0.421275\pi\)
−0.101568 + 0.994829i \(0.532386\pi\)
\(390\) 0 0
\(391\) 369.961 + 134.655i 0.946192 + 0.344386i
\(392\) 28.7021 78.8584i 0.0732196 0.201169i
\(393\) 0 0
\(394\) −199.536 + 1131.63i −0.506437 + 2.87215i
\(395\) 235.553 135.996i 0.596336 0.344295i
\(396\) 0 0
\(397\) −327.487 + 567.224i −0.824905 + 1.42878i 0.0770876 + 0.997024i \(0.475438\pi\)
−0.901992 + 0.431752i \(0.857895\pi\)
\(398\) 336.655 401.210i 0.845868 1.00807i
\(399\) 0 0
\(400\) −21.3046 120.824i −0.0532615 0.302061i
\(401\) 81.4322 + 97.0471i 0.203073 + 0.242013i 0.857963 0.513711i \(-0.171730\pi\)
−0.654890 + 0.755724i \(0.727285\pi\)
\(402\) 0 0
\(403\) −79.6733 + 28.9987i −0.197700 + 0.0719571i
\(404\) 80.0452i 0.198132i
\(405\) 0 0
\(406\) 657.326 1.61903
\(407\) 22.1641 + 60.8954i 0.0544572 + 0.149620i
\(408\) 0 0
\(409\) 417.238 350.105i 1.02014 0.856001i 0.0304973 0.999535i \(-0.490291\pi\)
0.989645 + 0.143533i \(0.0458464\pi\)
\(410\) 24.3270 4.28950i 0.0593340 0.0104622i
\(411\) 0 0
\(412\) 888.770 + 745.767i 2.15721 + 1.81011i
\(413\) 333.256 + 192.405i 0.806915 + 0.465873i
\(414\) 0 0
\(415\) −145.140 251.390i −0.349736 0.605760i
\(416\) 117.103 + 20.6484i 0.281497 + 0.0496356i
\(417\) 0 0
\(418\) −52.7830 19.2114i −0.126275 0.0459604i
\(419\) −228.512 + 627.831i −0.545374 + 1.49840i 0.294516 + 0.955647i \(0.404842\pi\)
−0.839890 + 0.542757i \(0.817381\pi\)
\(420\) 0 0
\(421\) 39.4928 223.975i 0.0938071 0.532006i −0.901299 0.433197i \(-0.857385\pi\)
0.995106 0.0988094i \(-0.0315034\pi\)
\(422\) 1071.84 618.829i 2.53991 1.46642i
\(423\) 0 0
\(424\) −70.1589 + 121.519i −0.165469 + 0.286601i
\(425\) 227.542 271.174i 0.535392 0.638056i
\(426\) 0 0
\(427\) 111.902 + 634.626i 0.262065 + 1.48624i
\(428\) −488.777 582.502i −1.14200 1.36099i
\(429\) 0 0
\(430\) 1037.79 377.726i 2.41347 0.878432i
\(431\) 429.608i 0.996769i 0.866956 + 0.498385i \(0.166073\pi\)
−0.866956 + 0.498385i \(0.833927\pi\)
\(432\) 0 0
\(433\) −11.9987 −0.0277106 −0.0138553 0.999904i \(-0.504410\pi\)
−0.0138553 + 0.999904i \(0.504410\pi\)
\(434\) 115.201 + 316.513i 0.265440 + 0.729292i
\(435\) 0 0
\(436\) −952.153 + 798.951i −2.18384 + 1.83246i
\(437\) 331.783 58.5023i 0.759229 0.133873i
\(438\) 0 0
\(439\) −57.7349 48.4453i −0.131515 0.110354i 0.574658 0.818394i \(-0.305135\pi\)
−0.706172 + 0.708040i \(0.749580\pi\)
\(440\) −75.1487 43.3871i −0.170793 0.0986071i
\(441\) 0 0
\(442\) −140.822 243.911i −0.318602 0.551834i
\(443\) 244.217 + 43.0620i 0.551279 + 0.0972054i 0.442347 0.896844i \(-0.354146\pi\)
0.108932 + 0.994049i \(0.465257\pi\)
\(444\) 0 0
\(445\) −461.423 167.944i −1.03691 0.377403i
\(446\) 106.189 291.752i 0.238092 0.654151i
\(447\) 0 0
\(448\) 106.405 603.452i 0.237511 1.34699i
\(449\) −178.012 + 102.775i −0.396462 + 0.228898i −0.684956 0.728584i \(-0.740179\pi\)
0.288494 + 0.957482i \(0.406845\pi\)
\(450\) 0 0
\(451\) 0.672273 1.16441i 0.00149063 0.00258184i
\(452\) 567.495 676.314i 1.25552 1.49627i
\(453\) 0 0
\(454\) −210.790 1195.45i −0.464294 2.63314i
\(455\) −150.648 179.536i −0.331095 0.394584i
\(456\) 0 0
\(457\) −600.521 + 218.572i −1.31405 + 0.478276i −0.901547 0.432680i \(-0.857568\pi\)
−0.412504 + 0.910956i \(0.635346\pi\)
\(458\) 354.118i 0.773184i
\(459\) 0 0
\(460\) 1203.09 2.61542
\(461\) −48.4455 133.103i −0.105088 0.288727i 0.875993 0.482323i \(-0.160207\pi\)
−0.981081 + 0.193597i \(0.937985\pi\)
\(462\) 0 0
\(463\) −215.833 + 181.106i −0.466163 + 0.391157i −0.845393 0.534146i \(-0.820633\pi\)
0.379230 + 0.925303i \(0.376189\pi\)
\(464\) 167.829 29.5928i 0.361700 0.0637775i
\(465\) 0 0
\(466\) −605.814 508.338i −1.30003 1.09085i
\(467\) −462.423 266.980i −0.990199 0.571692i −0.0848656 0.996392i \(-0.527046\pi\)
−0.905334 + 0.424700i \(0.860379\pi\)
\(468\) 0 0
\(469\) 250.868 + 434.515i 0.534899 + 0.926472i
\(470\) −1297.04 228.703i −2.75966 0.486602i
\(471\) 0 0
\(472\) 574.449 + 209.082i 1.21705 + 0.442971i
\(473\) 20.5597 56.4872i 0.0434665 0.119423i
\(474\) 0 0
\(475\) 52.6013 298.317i 0.110740 0.628036i
\(476\) −618.201 + 356.918i −1.29874 + 0.749828i
\(477\) 0 0
\(478\) 142.826 247.382i 0.298799 0.517535i
\(479\) −109.060 + 129.973i −0.227683 + 0.271343i −0.867776 0.496955i \(-0.834451\pi\)
0.640093 + 0.768298i \(0.278896\pi\)
\(480\) 0 0
\(481\) 48.2829 + 273.826i 0.100380 + 0.569285i
\(482\) −62.7388 74.7692i −0.130163 0.155123i
\(483\) 0 0
\(484\) 791.312 288.014i 1.63494 0.595070i
\(485\) 7.78596i 0.0160535i
\(486\) 0 0
\(487\) 20.8058 0.0427223 0.0213612 0.999772i \(-0.493200\pi\)
0.0213612 + 0.999772i \(0.493200\pi\)
\(488\) 350.136 + 961.990i 0.717492 + 1.97129i
\(489\) 0 0
\(490\) 144.987 121.659i 0.295893 0.248283i
\(491\) 148.829 26.2425i 0.303113 0.0534471i −0.0200228 0.999800i \(-0.506374\pi\)
0.323136 + 0.946352i \(0.395263\pi\)
\(492\) 0 0
\(493\) 376.668 + 316.062i 0.764033 + 0.641100i
\(494\) −208.720 120.504i −0.422510 0.243936i
\(495\) 0 0
\(496\) 43.6626 + 75.6258i 0.0880294 + 0.152471i
\(497\) −288.484 50.8674i −0.580450 0.102349i
\(498\) 0 0
\(499\) −768.271 279.628i −1.53962 0.560376i −0.573666 0.819089i \(-0.694479\pi\)
−0.965954 + 0.258713i \(0.916702\pi\)
\(500\) −44.6284 + 122.615i −0.0892568 + 0.245231i
\(501\) 0 0
\(502\) 72.2061 409.501i 0.143837 0.815739i
\(503\) 201.176 116.149i 0.399953 0.230913i −0.286511 0.958077i \(-0.592495\pi\)
0.686464 + 0.727164i \(0.259162\pi\)
\(504\) 0 0
\(505\) −39.0487 + 67.6343i −0.0773241 + 0.133929i
\(506\) 65.9759 78.6270i 0.130387 0.155389i
\(507\) 0 0
\(508\) −1.57745 8.94617i −0.00310522 0.0176106i
\(509\) −208.104 248.008i −0.408848 0.487246i 0.521849 0.853038i \(-0.325243\pi\)
−0.930697 + 0.365792i \(0.880798\pi\)
\(510\) 0 0
\(511\) −413.672 + 150.564i −0.809535 + 0.294647i
\(512\) 345.476i 0.674758i
\(513\) 0 0
\(514\) −776.303 −1.51032
\(515\) 387.158 + 1063.71i 0.751763 + 2.06545i
\(516\) 0 0
\(517\) −54.9154 + 46.0795i −0.106219 + 0.0891287i
\(518\) 1087.81 191.810i 2.10002 0.370290i
\(519\) 0 0
\(520\) −285.213 239.322i −0.548487 0.460235i
\(521\) −480.156 277.218i −0.921604 0.532088i −0.0374577 0.999298i \(-0.511926\pi\)
−0.884146 + 0.467210i \(0.845259\pi\)
\(522\) 0 0
\(523\) −472.881 819.053i −0.904170 1.56607i −0.822028 0.569447i \(-0.807157\pi\)
−0.0821414 0.996621i \(-0.526176\pi\)
\(524\) −638.015 112.499i −1.21759 0.214693i
\(525\) 0 0
\(526\) 385.703 + 140.384i 0.733276 + 0.266891i
\(527\) −86.1750 + 236.764i −0.163520 + 0.449267i
\(528\) 0 0
\(529\) −15.0414 + 85.3039i −0.0284336 + 0.161255i
\(530\) −274.068 + 158.233i −0.517109 + 0.298553i
\(531\) 0 0
\(532\) −305.423 + 529.008i −0.574103 + 0.994376i
\(533\) 3.70824 4.41931i 0.00695730 0.00829138i
\(534\) 0 0
\(535\) −128.829 730.627i −0.240802 1.36566i
\(536\) 512.343 + 610.586i 0.955864 + 1.13915i
\(537\) 0 0
\(538\) −1591.66 + 579.317i −2.95848 + 1.07680i
\(539\) 10.3019i 0.0191129i
\(540\) 0 0
\(541\) −390.158 −0.721179 −0.360590 0.932725i \(-0.617425\pi\)
−0.360590 + 0.932725i \(0.617425\pi\)
\(542\) −56.4729 155.158i −0.104194 0.286270i
\(543\) 0 0
\(544\) 270.690 227.136i 0.497593 0.417530i
\(545\) −1194.28 + 210.583i −2.19133 + 0.386391i
\(546\) 0 0
\(547\) −355.618 298.399i −0.650124 0.545519i 0.256984 0.966416i \(-0.417271\pi\)
−0.907109 + 0.420897i \(0.861716\pi\)
\(548\) 360.611 + 208.199i 0.658049 + 0.379925i
\(549\) 0 0
\(550\) −46.1436 79.9230i −0.0838974 0.145315i
\(551\) 414.371 + 73.0648i 0.752035 + 0.132604i
\(552\) 0 0
\(553\) −237.130 86.3081i −0.428806 0.156073i
\(554\) 129.728 356.425i 0.234167 0.643367i
\(555\) 0 0
\(556\) 61.8144 350.567i 0.111177 0.630515i
\(557\) 203.531 117.509i 0.365406 0.210967i −0.306043 0.952018i \(-0.599005\pi\)
0.671450 + 0.741050i \(0.265672\pi\)
\(558\) 0 0
\(559\) 128.961 223.367i 0.230700 0.399584i
\(560\) −155.159 + 184.911i −0.277070 + 0.330199i
\(561\) 0 0
\(562\) 14.9536 + 84.8061i 0.0266078 + 0.150901i
\(563\) −53.7352 64.0391i −0.0954443 0.113746i 0.716208 0.697887i \(-0.245876\pi\)
−0.811652 + 0.584141i \(0.801432\pi\)
\(564\) 0 0
\(565\) 809.433 294.610i 1.43263 0.521433i
\(566\) 523.606i 0.925099i
\(567\) 0 0
\(568\) −465.359 −0.819295
\(569\) −315.330 866.363i −0.554183 1.52261i −0.827945 0.560809i \(-0.810490\pi\)
0.273762 0.961798i \(-0.411732\pi\)
\(570\) 0 0
\(571\) 305.347 256.216i 0.534758 0.448715i −0.334983 0.942224i \(-0.608731\pi\)
0.869741 + 0.493509i \(0.164286\pi\)
\(572\) −46.1339 + 8.13464i −0.0806536 + 0.0142214i
\(573\) 0 0
\(574\) −17.5563 14.7315i −0.0305859 0.0256646i
\(575\) 479.365 + 276.762i 0.833679 + 0.481325i
\(576\) 0 0
\(577\) 8.33213 + 14.4317i 0.0144404 + 0.0250116i 0.873155 0.487442i \(-0.162070\pi\)
−0.858715 + 0.512454i \(0.828737\pi\)
\(578\) 121.832 + 21.4822i 0.210781 + 0.0371664i
\(579\) 0 0
\(580\) 1411.95 + 513.909i 2.43440 + 0.886049i
\(581\) −92.1111 + 253.073i −0.158539 + 0.435582i
\(582\) 0 0
\(583\) −2.99114 + 16.9636i −0.00513060 + 0.0290971i
\(584\) −605.648 + 349.671i −1.03707 + 0.598751i
\(585\) 0 0
\(586\) 697.955 1208.89i 1.19105 2.06296i
\(587\) 119.848 142.830i 0.204171 0.243321i −0.654236 0.756290i \(-0.727010\pi\)
0.858407 + 0.512969i \(0.171454\pi\)
\(588\) 0 0
\(589\) 37.4397 + 212.331i 0.0635649 + 0.360494i
\(590\) 886.232 + 1056.17i 1.50209 + 1.79012i
\(591\) 0 0
\(592\) 269.105 97.9462i 0.454569 0.165450i
\(593\) 373.725i 0.630228i 0.949054 + 0.315114i \(0.102043\pi\)
−0.949054 + 0.315114i \(0.897957\pi\)
\(594\) 0 0
\(595\) −696.466 −1.17053
\(596\) 175.259 + 481.519i 0.294058 + 0.807918i
\(597\) 0 0
\(598\) 337.362 283.081i 0.564151 0.473379i
\(599\) 14.5762 2.57018i 0.0243343 0.00429079i −0.161468 0.986878i \(-0.551623\pi\)
0.185802 + 0.982587i \(0.440512\pi\)
\(600\) 0 0
\(601\) −148.863 124.911i −0.247692 0.207838i 0.510486 0.859886i \(-0.329466\pi\)
−0.758178 + 0.652048i \(0.773910\pi\)
\(602\) −887.356 512.315i −1.47401 0.851022i
\(603\) 0 0
\(604\) −11.9609 20.7169i −0.0198028 0.0342995i
\(605\) 809.122 + 142.670i 1.33739 + 0.235818i
\(606\) 0 0
\(607\) −545.203 198.438i −0.898192 0.326915i −0.148664 0.988888i \(-0.547497\pi\)
−0.749528 + 0.661973i \(0.769720\pi\)
\(608\) 103.420 284.144i 0.170098 0.467341i
\(609\) 0 0
\(610\) −400.931 + 2273.79i −0.657263 + 3.72753i
\(611\) −266.377 + 153.793i −0.435968 + 0.251706i
\(612\) 0 0
\(613\) 80.1803 138.876i 0.130800 0.226552i −0.793185 0.608980i \(-0.791579\pi\)
0.923985 + 0.382428i \(0.124912\pi\)
\(614\) −431.770 + 514.563i −0.703208 + 0.838051i
\(615\) 0 0
\(616\) 13.9799 + 79.2839i 0.0226946 + 0.128708i
\(617\) 267.304 + 318.561i 0.433232 + 0.516306i 0.937852 0.347036i \(-0.112812\pi\)
−0.504620 + 0.863342i \(0.668367\pi\)
\(618\) 0 0
\(619\) 616.164 224.265i 0.995418 0.362303i 0.207602 0.978213i \(-0.433434\pi\)
0.787816 + 0.615911i \(0.211212\pi\)
\(620\) 769.943i 1.24184i
\(621\) 0 0
\(622\) −881.659 −1.41746
\(623\) 155.814 + 428.097i 0.250103 + 0.687154i
\(624\) 0 0
\(625\) −524.766 + 440.331i −0.839626 + 0.704530i
\(626\) −902.671 + 159.165i −1.44197 + 0.254257i
\(627\) 0 0
\(628\) 1385.84 + 1162.85i 2.20675 + 1.85168i
\(629\) 715.577 + 413.139i 1.13764 + 0.656818i
\(630\) 0 0
\(631\) 321.500 + 556.855i 0.509509 + 0.882496i 0.999939 + 0.0110155i \(0.00350642\pi\)
−0.490430 + 0.871481i \(0.663160\pi\)
\(632\) −394.794 69.6128i −0.624673 0.110147i
\(633\) 0 0
\(634\) −109.346 39.7987i −0.172470 0.0627740i
\(635\) 3.03137 8.32861i 0.00477380 0.0131159i
\(636\) 0 0
\(637\) 7.67557 43.5303i 0.0120496 0.0683364i
\(638\) 111.016 64.0948i 0.174006 0.100462i
\(639\) 0 0
\(640\) 791.384 1370.72i 1.23654 2.14175i
\(641\) −75.6202 + 90.1206i −0.117972 + 0.140594i −0.821798 0.569779i \(-0.807029\pi\)
0.703826 + 0.710372i \(0.251473\pi\)
\(642\) 0 0
\(643\) 75.3782 + 427.491i 0.117229 + 0.664839i 0.985622 + 0.168963i \(0.0540418\pi\)
−0.868393 + 0.495876i \(0.834847\pi\)
\(644\) −717.478 855.057i −1.11410 1.32773i
\(645\) 0 0
\(646\) −673.010 + 244.956i −1.04181 + 0.379188i
\(647\) 202.797i 0.313443i 0.987643 + 0.156721i \(0.0500924\pi\)
−0.987643 + 0.156721i \(0.949908\pi\)
\(648\) 0 0
\(649\) 75.0446 0.115631
\(650\) −135.431 372.093i −0.208355 0.572451i
\(651\) 0 0
\(652\) 1432.24 1201.79i 2.19669 1.84324i
\(653\) −881.502 + 155.433i −1.34993 + 0.238028i −0.801412 0.598113i \(-0.795917\pi\)
−0.548514 + 0.836141i \(0.684806\pi\)
\(654\) 0 0
\(655\) −484.211 406.301i −0.739253 0.620307i
\(656\) −5.14569 2.97087i −0.00784404 0.00452876i
\(657\) 0 0
\(658\) 610.961 + 1058.22i 0.928513 + 1.60823i
\(659\) −829.023 146.179i −1.25800 0.221820i −0.495387 0.868673i \(-0.664974\pi\)
−0.762615 + 0.646853i \(0.776085\pi\)
\(660\) 0 0
\(661\) −212.344 77.2868i −0.321246 0.116924i 0.176363 0.984325i \(-0.443567\pi\)
−0.497610 + 0.867401i \(0.665789\pi\)
\(662\) 239.734 658.664i 0.362136 0.994960i
\(663\) 0 0
\(664\) −74.2933 + 421.338i −0.111887 + 0.634545i
\(665\) −516.135 + 297.991i −0.776143 + 0.448106i
\(666\) 0 0
\(667\) −384.430 + 665.853i −0.576357 + 0.998280i
\(668\) 14.6710 17.4842i 0.0219626 0.0261740i
\(669\) 0 0
\(670\) 312.160 + 1770.35i 0.465911 + 2.64231i
\(671\) 80.7804 + 96.2703i 0.120388 + 0.143473i
\(672\) 0 0
\(673\) 103.888 37.8120i 0.154365 0.0561843i −0.263682 0.964610i \(-0.584937\pi\)
0.418047 + 0.908425i \(0.362715\pi\)
\(674\) 512.805i 0.760838i
\(675\) 0 0
\(676\) 990.401 1.46509
\(677\) −0.977873 2.68668i −0.00144442 0.00396851i 0.938968 0.344004i \(-0.111783\pi\)
−0.940413 + 0.340035i \(0.889561\pi\)
\(678\) 0 0
\(679\) 5.53361 4.64325i 0.00814964 0.00683836i
\(680\) −1089.61 + 192.127i −1.60236 + 0.282540i
\(681\) 0 0
\(682\) 50.3189 + 42.2226i 0.0737814 + 0.0619099i
\(683\) 843.279 + 486.868i 1.23467 + 0.712837i 0.968000 0.250951i \(-0.0807434\pi\)
0.266670 + 0.963788i \(0.414077\pi\)
\(684\) 0 0
\(685\) 203.132 + 351.835i 0.296543 + 0.513628i
\(686\) −1196.55 210.983i −1.74424 0.307556i
\(687\) 0 0
\(688\) −249.625 90.8559i −0.362827 0.132058i
\(689\) −25.2780 + 69.4508i −0.0366880 + 0.100799i
\(690\) 0 0
\(691\) 113.572 644.097i 0.164358 0.932123i −0.785365 0.619033i \(-0.787525\pi\)
0.949723 0.313090i \(-0.101364\pi\)
\(692\) 1175.10 678.443i 1.69812 0.980409i
\(693\) 0 0
\(694\) −487.460 + 844.305i −0.702391 + 1.21658i
\(695\) 223.248 266.057i 0.321220 0.382815i
\(696\) 0 0
\(697\) −2.97696 16.8832i −0.00427111 0.0242226i
\(698\) −873.967 1041.55i −1.25210 1.49220i
\(699\) 0 0
\(700\) −943.084 + 343.255i −1.34726 + 0.490364i
\(701\) 41.7083i 0.0594983i −0.999557 0.0297492i \(-0.990529\pi\)
0.999557 0.0297492i \(-0.00947085\pi\)
\(702\) 0 0
\(703\) 707.064 1.00578
\(704\) −40.8710 112.292i −0.0580554 0.159506i
\(705\) 0 0
\(706\) −1273.37 + 1068.48i −1.80363 + 1.51343i
\(707\) 71.3559 12.5820i 0.100928 0.0177963i
\(708\) 0 0
\(709\) −379.570 318.497i −0.535360 0.449220i 0.334587 0.942365i \(-0.391403\pi\)
−0.869948 + 0.493144i \(0.835847\pi\)
\(710\) −908.936 524.774i −1.28019 0.739119i
\(711\) 0 0
\(712\) 361.863 + 626.766i 0.508235 + 0.880289i
\(713\) −387.993 68.4136i −0.544169 0.0959517i
\(714\) 0 0
\(715\) −42.9492 15.6322i −0.0600688 0.0218633i
\(716\) −532.784 + 1463.81i −0.744111 + 2.04443i
\(717\) 0 0
\(718\) 144.165 817.602i 0.200787 1.13872i
\(719\) −124.160 + 71.6839i −0.172684 + 0.0996994i −0.583851 0.811861i \(-0.698455\pi\)
0.411167 + 0.911560i \(0.365121\pi\)
\(720\) 0 0
\(721\) 525.108 909.514i 0.728305 1.26146i
\(722\) 377.402 449.770i 0.522717 0.622950i
\(723\) 0 0
\(724\) −178.205 1010.65i −0.246139 1.39592i
\(725\) 444.364 + 529.572i 0.612916 + 0.730444i
\(726\) 0 0
\(727\) 310.011 112.835i 0.426425 0.155206i −0.119888 0.992787i \(-0.538253\pi\)
0.546312 + 0.837582i \(0.316031\pi\)
\(728\) 345.429i 0.474490i
\(729\) 0 0
\(730\) −1577.26 −2.16063
\(731\) −262.146 720.240i −0.358613 0.985281i
\(732\) 0 0
\(733\) 141.211 118.490i 0.192647 0.161650i −0.541362 0.840790i \(-0.682091\pi\)
0.734010 + 0.679139i \(0.237647\pi\)
\(734\) 1047.98 184.788i 1.42777 0.251755i
\(735\) 0 0
\(736\) 423.268 + 355.164i 0.575092 + 0.482560i
\(737\) 84.7378 + 48.9234i 0.114977 + 0.0663818i
\(738\) 0 0
\(739\) 225.818 + 391.128i 0.305572 + 0.529267i 0.977389 0.211451i \(-0.0678189\pi\)
−0.671816 + 0.740718i \(0.734486\pi\)
\(740\) 2486.60 + 438.455i 3.36027 + 0.592507i
\(741\) 0 0
\(742\) 275.902 + 100.420i 0.371836 + 0.135337i
\(743\) −204.452 + 561.728i −0.275171 + 0.756027i 0.722721 + 0.691140i \(0.242891\pi\)
−0.997893 + 0.0648876i \(0.979331\pi\)
\(744\) 0 0
\(745\) −86.8158 + 492.357i −0.116531 + 0.660882i
\(746\) 569.151 328.600i 0.762937 0.440482i
\(747\) 0 0
\(748\) −69.6051 + 120.560i −0.0930549 + 0.161176i
\(749\) −442.440 + 527.279i −0.590707 + 0.703977i
\(750\) 0 0
\(751\) −108.200 613.635i −0.144075 0.817091i −0.968105 0.250545i \(-0.919390\pi\)
0.824030 0.566546i \(-0.191721\pi\)
\(752\) 203.632 + 242.679i 0.270787 + 0.322711i
\(753\) 0 0
\(754\) 516.849 188.118i 0.685476 0.249493i
\(755\) 23.3397i 0.0309135i
\(756\) 0 0
\(757\) −1029.21 −1.35960 −0.679798 0.733399i \(-0.737933\pi\)
−0.679798 + 0.733399i \(0.737933\pi\)
\(758\) −414.865 1139.83i −0.547316 1.50374i
\(759\) 0 0
\(760\) −725.280 + 608.582i −0.954315 + 0.800766i
\(761\) 613.431 108.164i 0.806086 0.142135i 0.244603 0.969623i \(-0.421342\pi\)
0.561483 + 0.827489i \(0.310231\pi\)
\(762\) 0 0
\(763\) 861.886 + 723.208i 1.12960 + 0.947848i
\(764\) 477.099 + 275.453i 0.624475 + 0.360541i
\(765\) 0 0
\(766\) −1075.77 1863.30i −1.40441 2.43250i
\(767\) 317.100 + 55.9132i 0.413428 + 0.0728986i
\(768\) 0 0
\(769\) 985.221 + 358.591i 1.28117 + 0.466308i 0.890820 0.454357i \(-0.150131\pi\)
0.390352 + 0.920666i \(0.372353\pi\)
\(770\) −62.1011 + 170.621i −0.0806508 + 0.221586i
\(771\) 0 0
\(772\) 274.107 1554.54i 0.355061 2.01365i
\(773\) −719.632 + 415.480i −0.930960 + 0.537490i −0.887115 0.461549i \(-0.847294\pi\)
−0.0438447 + 0.999038i \(0.513961\pi\)
\(774\) 0 0
\(775\) −177.119 + 306.779i −0.228541 + 0.395844i
\(776\) 7.37633 8.79077i 0.00950559 0.0113283i
\(777\) 0 0
\(778\) −32.6596 185.222i −0.0419790 0.238075i
\(779\) −9.42982 11.2380i −0.0121050 0.0144262i
\(780\) 0 0
\(781\) −53.6819 + 19.5386i −0.0687348 + 0.0250174i
\(782\) 1308.72i 1.67355i
\(783\) 0 0
\(784\) −45.5253 −0.0580680
\(785\) 603.685 + 1658.61i 0.769026 + 2.11288i
\(786\) 0 0
\(787\) 142.235 119.349i 0.180730 0.151650i −0.547935 0.836521i \(-0.684586\pi\)
0.728665 + 0.684871i \(0.240141\pi\)
\(788\) 2399.93 423.172i 3.04560 0.537021i
\(789\) 0 0
\(790\) −692.607 581.166i −0.876718 0.735653i
\(791\) −692.099 399.584i −0.874967 0.505162i
\(792\) 0 0
\(793\) 269.608 + 466.975i 0.339985 + 0.588872i
\(794\) 2144.13 + 378.068i 2.70041 + 0.476156i
\(795\) 0 0
\(796\) −1043.76 379.896i −1.31125 0.477257i
\(797\) 505.124 1387.82i 0.633782 1.74130i −0.0366483 0.999328i \(-0.511668\pi\)
0.670430 0.741973i \(-0.266110\pi\)
\(798\) 0 0
\(799\) −158.722 + 900.160i −0.198651 + 1.12661i
\(800\) 430.245 248.402i 0.537806 0.310502i
\(801\) 0 0
\(802\) 210.559 364.699i 0.262542 0.454737i
\(803\) −55.1836 + 65.7653i −0.0687218 + 0.0818995i
\(804\) 0 0
\(805\) −189.109 1072.49i −0.234918 1.33229i
\(806\) 181.163 + 215.902i 0.224768 + 0.267868i
\(807\) 0 0
\(808\) 108.164 39.3685i 0.133866 0.0487234i
\(809\) 1487.78i 1.83903i −0.393055 0.919515i \(-0.628582\pi\)
0.393055 0.919515i \(-0.371418\pi\)
\(810\) 0 0
\(811\) 391.709 0.482995 0.241497 0.970401i \(-0.422361\pi\)
0.241497 + 0.970401i \(0.422361\pi\)
\(812\) −476.791 1309.97i −0.587181 1.61327i
\(813\) 0 0
\(814\) 165.017 138.465i 0.202723 0.170105i
\(815\) 1796.45 316.762i 2.20423 0.388665i
\(816\) 0 0
\(817\) −502.433 421.592i −0.614974 0.516024i
\(818\) −1567.96 905.265i −1.91683 1.10668i
\(819\) 0 0
\(820\) −26.1940 45.3693i −0.0319439 0.0553285i
\(821\) 2.96508 + 0.522823i 0.00361155 + 0.000636813i 0.175454 0.984488i \(-0.443861\pi\)
−0.171842 + 0.985125i \(0.554972\pi\)
\(822\) 0 0
\(823\) 1272.53 + 463.162i 1.54621 + 0.562773i 0.967524 0.252781i \(-0.0813451\pi\)
0.578682 + 0.815553i \(0.303567\pi\)
\(824\) 570.623 1567.77i 0.692504 1.90264i
\(825\) 0 0
\(826\) 222.123 1259.72i 0.268914 1.52508i
\(827\) −1186.03 + 684.755i −1.43414 + 0.827999i −0.997433 0.0716069i \(-0.977187\pi\)
−0.436703 + 0.899606i \(0.643854\pi\)
\(828\) 0 0
\(829\) −39.8034 + 68.9416i −0.0480138 + 0.0831623i −0.889033 0.457842i \(-0.848622\pi\)
0.841020 + 0.541005i \(0.181956\pi\)
\(830\) −620.242 + 739.175i −0.747279 + 0.890572i
\(831\) 0 0
\(832\) −89.0345 504.940i −0.107013 0.606899i
\(833\) −84.4326 100.623i −0.101360 0.120796i
\(834\) 0 0
\(835\) 20.9257 7.61631i 0.0250607 0.00912134i
\(836\) 119.125i 0.142494i
\(837\) 0 0
\(838\) 2220.92 2.65026
\(839\) −343.904 944.868i −0.409898 1.12618i −0.957245 0.289279i \(-0.906585\pi\)
0.547347 0.836905i \(-0.315638\pi\)
\(840\) 0 0
\(841\) −91.3485 + 76.6505i −0.108619 + 0.0911421i
\(842\) −744.516 + 131.278i −0.884224 + 0.155912i
\(843\) 0 0
\(844\) −2010.71 1687.19i −2.38236 1.99904i
\(845\) 836.841 + 483.150i 0.990344 + 0.571775i
\(846\) 0 0
\(847\) −381.132 660.139i −0.449978 0.779385i
\(848\) 74.9644 + 13.2183i 0.0884015 + 0.0155876i
\(849\) 0 0
\(850\) −1105.74 402.458i −1.30088 0.473480i
\(851\) −441.896 + 1214.10i −0.519267 + 1.42667i
\(852\) 0 0
\(853\) 61.2131 347.157i 0.0717621 0.406983i −0.927674 0.373392i \(-0.878195\pi\)
0.999436 0.0335909i \(-0.0106943\pi\)
\(854\) 1855.12 1071.05i 2.17227 1.25416i
\(855\) 0 0
\(856\) −546.733 + 946.969i −0.638707 + 1.10627i
\(857\) −774.755 + 923.318i −0.904032 + 1.07738i 0.0926264 + 0.995701i \(0.470474\pi\)
−0.996658 + 0.0816825i \(0.973971\pi\)
\(858\) 0 0
\(859\) 109.839 + 622.927i 0.127868 + 0.725177i 0.979563 + 0.201139i \(0.0644642\pi\)
−0.851694 + 0.524039i \(0.824425\pi\)
\(860\) −1505.53 1794.22i −1.75061 2.08630i
\(861\) 0 0
\(862\) 1341.94 488.426i 1.55678 0.566620i
\(863\) 1076.50i 1.24739i −0.781668 0.623695i \(-0.785631\pi\)
0.781668 0.623695i \(-0.214369\pi\)
\(864\) 0 0
\(865\) 1323.87 1.53048
\(866\) 13.6414 + 37.4795i 0.0157522 + 0.0432789i
\(867\) 0 0
\(868\) 547.211 459.164i 0.630427 0.528991i
\(869\) −48.4645 + 8.54559i −0.0557704 + 0.00983383i
\(870\) 0 0
\(871\) 321.607 + 269.860i 0.369239 + 0.309828i
\(872\) 1547.91 + 893.685i 1.77512 + 1.02487i
\(873\) 0 0
\(874\) −559.949 969.860i −0.640674 1.10968i
\(875\) 116.320 + 20.5103i 0.132937 + 0.0234404i
\(876\) 0 0
\(877\) −1203.97 438.208i −1.37282 0.499667i −0.452829 0.891597i \(-0.649585\pi\)
−0.919995 + 0.391930i \(0.871807\pi\)
\(878\) −85.6863 + 235.421i −0.0975926 + 0.268133i
\(879\) 0 0
\(880\) −8.17433 + 46.3589i −0.00928901 + 0.0526806i
\(881\) 787.917 454.904i 0.894344 0.516350i 0.0189831 0.999820i \(-0.493957\pi\)
0.875361 + 0.483470i \(0.160624\pi\)
\(882\) 0 0
\(883\) −817.068 + 1415.20i −0.925332 + 1.60272i −0.134305 + 0.990940i \(0.542880\pi\)
−0.791027 + 0.611782i \(0.790453\pi\)
\(884\) −383.940 + 457.562i −0.434321 + 0.517604i
\(885\) 0 0
\(886\) −143.143 811.803i −0.161561 0.916256i
\(887\) −382.256 455.555i −0.430954 0.513591i 0.506243 0.862391i \(-0.331034\pi\)
−0.937197 + 0.348800i \(0.886589\pi\)
\(888\) 0 0
\(889\) −7.72707 + 2.81242i −0.00869187 + 0.00316358i
\(890\) 1632.26i 1.83400i
\(891\) 0 0
\(892\) −658.450 −0.738173
\(893\) 267.518 + 734.999i 0.299572 + 0.823067i
\(894\) 0 0
\(895\) −1164.27 + 976.939i −1.30086 + 1.09155i
\(896\) −1446.14 + 254.994i −1.61400 + 0.284592i
\(897\) 0 0
\(898\) 523.416 + 439.198i 0.582869 + 0.489085i
\(899\) −426.126 246.024i −0.474000 0.273664i
\(900\) 0 0
\(901\) 109.816 + 190.206i 0.121882 + 0.211106i
\(902\) −4.40152 0.776106i −0.00487973 0.000860428i
\(903\) 0 0
\(904\) −1193.00 434.218i −1.31970 0.480330i
\(905\) 342.453 940.883i 0.378401 1.03965i
\(906\) 0 0
\(907\) 51.1786 290.248i 0.0564263 0.320009i −0.943509 0.331346i \(-0.892497\pi\)
0.999936 + 0.0113363i \(0.00360853\pi\)
\(908\) −2229.49 + 1287.20i −2.45538 + 1.41762i
\(909\) 0 0
\(910\) −389.531 + 674.688i −0.428056 + 0.741416i
\(911\) −535.738 + 638.468i −0.588077 + 0.700843i −0.975235 0.221170i \(-0.929012\pi\)
0.387158 + 0.922013i \(0.373457\pi\)
\(912\) 0 0
\(913\) 9.12017 + 51.7230i 0.00998923 + 0.0566517i
\(914\) 1365.48 + 1627.32i 1.49396 + 1.78043i
\(915\) 0 0
\(916\) −705.716 + 256.860i −0.770432 + 0.280414i
\(917\) 586.439i 0.639519i
\(918\) 0 0
\(919\) 1687.49 1.83623 0.918114 0.396315i \(-0.129711\pi\)
0.918114 + 0.396315i \(0.129711\pi\)
\(920\) −591.715 1625.72i −0.643169 1.76709i
\(921\) 0 0
\(922\) −360.688 + 302.653i −0.391201 + 0.328257i
\(923\) −241.389 + 42.5634i −0.261527 + 0.0461142i
\(924\) 0 0
\(925\) 889.909 + 746.723i 0.962064 + 0.807268i
\(926\) 811.093 + 468.285i 0.875910 + 0.505707i
\(927\) 0 0
\(928\) 345.038 + 597.623i 0.371808 + 0.643990i
\(929\) −1019.87 179.830i −1.09781 0.193574i −0.404733 0.914435i \(-0.632636\pi\)
−0.693080 + 0.720861i \(0.743747\pi\)
\(930\) 0 0
\(931\) −105.624 38.4439i −0.113452 0.0412931i
\(932\) −573.631 + 1576.04i −0.615484 + 1.69103i
\(933\) 0 0
\(934\) −308.216 + 1747.98i −0.329995 + 1.87150i
\(935\) −117.626 + 67.9113i −0.125803 + 0.0726324i
\(936\) 0 0
\(937\) 687.817 1191.33i 0.734063 1.27143i −0.221071 0.975258i \(-0.570955\pi\)
0.955133 0.296176i \(-0.0957115\pi\)
\(938\) 1072.06 1277.63i 1.14292 1.36207i
\(939\) 0 0
\(940\) 485.028 + 2750.73i 0.515988 + 2.92631i
\(941\) 1095.50 + 1305.57i 1.16419 + 1.38743i 0.907032 + 0.421061i \(0.138342\pi\)
0.257160 + 0.966369i \(0.417213\pi\)
\(942\) 0 0
\(943\) 25.1902 9.16848i 0.0267128 0.00972267i
\(944\) 331.632i 0.351305i
\(945\) 0 0
\(946\) −199.820 −0.211226
\(947\) 7.72529 + 21.2251i 0.00815765 + 0.0224130i 0.943705 0.330789i \(-0.107315\pi\)
−0.935547 + 0.353202i \(0.885093\pi\)
\(948\) 0 0
\(949\) −282.177 + 236.775i −0.297341 + 0.249499i
\(950\) −991.638 + 174.853i −1.04383 + 0.184055i
\(951\) 0 0
\(952\) 786.348 + 659.825i 0.825996 + 0.693093i
\(953\) −877.360 506.544i −0.920630 0.531526i −0.0367941 0.999323i \(-0.511715\pi\)
−0.883836 + 0.467797i \(0.845048\pi\)
\(954\) 0 0
\(955\) 268.750 + 465.489i 0.281414 + 0.487423i
\(956\) −596.601 105.197i −0.624059 0.110038i
\(957\) 0 0
\(958\) 529.981 + 192.897i 0.553216 + 0.201354i
\(959\) 128.915 354.191i 0.134426 0.369333i
\(960\) 0 0
\(961\) −123.093 + 698.097i −0.128089 + 0.726427i
\(962\) 800.441 462.135i 0.832059 0.480390i
\(963\) 0 0
\(964\) −103.499 + 179.265i −0.107364 + 0.185959i
\(965\) 989.963 1179.79i 1.02587 1.22258i
\(966\) 0 0
\(967\) 17.1645 + 97.3447i 0.0177503 + 0.100667i 0.992396 0.123088i \(-0.0392797\pi\)
−0.974646 + 0.223755i \(0.928169\pi\)
\(968\) −778.379 927.636i −0.804111 0.958302i
\(969\) 0 0
\(970\) 24.3205 8.85195i 0.0250727 0.00912572i
\(971\) 415.261i 0.427664i −0.976871 0.213832i \(-0.931406\pi\)
0.976871 0.213832i \(-0.0685944\pi\)
\(972\) 0 0
\(973\) −322.227 −0.331169
\(974\) −23.6544 64.9898i −0.0242858 0.0667246i
\(975\) 0 0
\(976\) 425.432 356.980i 0.435893 0.365758i
\(977\) −310.619 + 54.7705i −0.317931 + 0.0560599i −0.330337 0.943863i \(-0.607162\pi\)
0.0124054 + 0.999923i \(0.496051\pi\)
\(978\) 0 0
\(979\) 68.0585 + 57.1078i 0.0695183 + 0.0583328i
\(980\) −347.618 200.697i −0.354712 0.204793i
\(981\) 0 0
\(982\) −251.177 435.052i −0.255781 0.443027i
\(983\) 631.264 + 111.309i 0.642181 + 0.113234i 0.485249 0.874376i \(-0.338729\pi\)
0.156931 + 0.987610i \(0.449840\pi\)
\(984\) 0 0
\(985\) 2234.26 + 813.204i 2.26828 + 0.825588i
\(986\) 559.026 1535.91i 0.566964 1.55772i
\(987\) 0 0
\(988\) −88.7563 + 503.362i −0.0898343 + 0.509475i
\(989\) 1037.92 599.245i 1.04947 0.605910i
\(990\) 0 0
\(991\) −464.001 + 803.674i −0.468215 + 0.810973i −0.999340 0.0363209i \(-0.988436\pi\)
0.531125 + 0.847294i \(0.321769\pi\)
\(992\) −227.294 + 270.879i −0.229127 + 0.273063i
\(993\) 0 0
\(994\) 169.089 + 958.951i 0.170110 + 0.964739i
\(995\) −696.598 830.173i −0.700098 0.834344i
\(996\) 0 0
\(997\) −1070.66 + 389.689i −1.07388 + 0.390862i −0.817628 0.575747i \(-0.804711\pi\)
−0.256256 + 0.966609i \(0.582489\pi\)
\(998\) 2717.71i 2.72316i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.a.188.1 30
3.2 odd 2 243.3.f.d.188.5 30
9.2 odd 6 27.3.f.a.11.5 yes 30
9.4 even 3 243.3.f.b.26.5 30
9.5 odd 6 243.3.f.c.26.1 30
9.7 even 3 81.3.f.a.35.1 30
27.2 odd 18 729.3.b.a.728.4 30
27.4 even 9 243.3.f.d.53.5 30
27.5 odd 18 243.3.f.b.215.5 30
27.13 even 9 27.3.f.a.5.5 30
27.14 odd 18 81.3.f.a.44.1 30
27.22 even 9 243.3.f.c.215.1 30
27.23 odd 18 inner 243.3.f.a.53.1 30
27.25 even 9 729.3.b.a.728.27 30
36.11 even 6 432.3.bc.a.65.4 30
108.67 odd 18 432.3.bc.a.113.4 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.5 30 27.13 even 9
27.3.f.a.11.5 yes 30 9.2 odd 6
81.3.f.a.35.1 30 9.7 even 3
81.3.f.a.44.1 30 27.14 odd 18
243.3.f.a.53.1 30 27.23 odd 18 inner
243.3.f.a.188.1 30 1.1 even 1 trivial
243.3.f.b.26.5 30 9.4 even 3
243.3.f.b.215.5 30 27.5 odd 18
243.3.f.c.26.1 30 9.5 odd 6
243.3.f.c.215.1 30 27.22 even 9
243.3.f.d.53.5 30 27.4 even 9
243.3.f.d.188.5 30 3.2 odd 2
432.3.bc.a.65.4 30 36.11 even 6
432.3.bc.a.113.4 30 108.67 odd 18
729.3.b.a.728.4 30 27.2 odd 18
729.3.b.a.728.27 30 27.25 even 9