Properties

Label 432.3.bc.a.113.4
Level $432$
Weight $3$
Character 432.113
Analytic conductor $11.771$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,3,Mod(65,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,6,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 113.4
Character \(\chi\) \(=\) 432.113
Dual form 432.3.bc.a.65.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.03568 + 2.20363i) q^{3} +(-2.35247 - 6.46335i) q^{5} +(-1.10811 - 6.28443i) q^{7} +(-0.712002 + 8.97179i) q^{9} +(-0.425636 + 1.16942i) q^{11} +(-4.09039 - 3.43225i) q^{13} +(9.45398 - 18.3413i) q^{15} +(-13.7418 - 7.93385i) q^{17} +(-6.78917 - 11.7592i) q^{19} +(11.5928 - 15.2350i) q^{21} +(-24.4347 - 4.30850i) q^{23} +(-17.0897 + 14.3399i) q^{25} +(-21.2200 + 16.6947i) q^{27} +(-19.9186 - 23.7381i) q^{29} +(2.75731 - 15.6375i) q^{31} +(-3.44344 + 1.44263i) q^{33} +(-38.0116 + 21.9460i) q^{35} +(26.0365 - 45.0965i) q^{37} +(-0.763322 - 16.0007i) q^{39} +(-0.694475 + 0.827643i) q^{41} +(45.3904 + 16.5207i) q^{43} +(59.6628 - 16.5039i) q^{45} +(56.7291 - 10.0029i) q^{47} +(7.77884 - 2.83127i) q^{49} +(-10.4907 - 46.4327i) q^{51} +13.8414i q^{53} +8.55969 q^{55} +(12.0924 - 38.8988i) q^{57} +(-20.6246 - 56.6655i) q^{59} +(17.5357 + 99.4497i) q^{61} +(57.1715 - 5.46725i) q^{63} +(-12.5613 + 34.5119i) q^{65} +(60.2302 + 50.5391i) q^{67} +(-40.2470 - 62.6160i) q^{69} +(-39.7545 - 22.9523i) q^{71} +(-34.4926 - 59.7430i) q^{73} +(-66.3891 - 8.46783i) q^{75} +(7.82081 + 1.37902i) q^{77} +(-30.2928 + 25.4187i) q^{79} +(-79.9861 - 12.7759i) q^{81} +(27.1277 + 32.3296i) q^{83} +(-18.9520 + 107.482i) q^{85} +(11.7621 - 92.2165i) q^{87} +(-61.8262 + 35.6954i) q^{89} +(-17.0371 + 29.5091i) q^{91} +(40.0723 - 25.7569i) q^{93} +(-60.0324 + 71.5439i) q^{95} +(-1.06372 - 0.387161i) q^{97} +(-10.1888 - 4.65135i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 6 q^{3} - 15 q^{5} + 6 q^{7} + 6 q^{11} - 6 q^{13} + 9 q^{15} - 9 q^{17} + 3 q^{19} + 132 q^{21} - 120 q^{23} - 15 q^{25} + 90 q^{27} - 168 q^{29} - 39 q^{31} - 207 q^{33} + 252 q^{35} - 3 q^{37}+ \cdots - 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.03568 + 2.20363i 0.678560 + 0.734545i
\(4\) 0 0
\(5\) −2.35247 6.46335i −0.470493 1.29267i −0.917356 0.398067i \(-0.869681\pi\)
0.446863 0.894602i \(-0.352541\pi\)
\(6\) 0 0
\(7\) −1.10811 6.28443i −0.158302 0.897775i −0.955705 0.294328i \(-0.904904\pi\)
0.797403 0.603448i \(-0.206207\pi\)
\(8\) 0 0
\(9\) −0.712002 + 8.97179i −0.0791113 + 0.996866i
\(10\) 0 0
\(11\) −0.425636 + 1.16942i −0.0386941 + 0.106311i −0.957535 0.288317i \(-0.906904\pi\)
0.918841 + 0.394628i \(0.129127\pi\)
\(12\) 0 0
\(13\) −4.09039 3.43225i −0.314646 0.264019i 0.471763 0.881725i \(-0.343618\pi\)
−0.786409 + 0.617706i \(0.788062\pi\)
\(14\) 0 0
\(15\) 9.45398 18.3413i 0.630265 1.22275i
\(16\) 0 0
\(17\) −13.7418 7.93385i −0.808343 0.466697i 0.0380373 0.999276i \(-0.487889\pi\)
−0.846380 + 0.532579i \(0.821223\pi\)
\(18\) 0 0
\(19\) −6.78917 11.7592i −0.357325 0.618905i 0.630188 0.776442i \(-0.282978\pi\)
−0.987513 + 0.157538i \(0.949644\pi\)
\(20\) 0 0
\(21\) 11.5928 15.2350i 0.552038 0.725475i
\(22\) 0 0
\(23\) −24.4347 4.30850i −1.06238 0.187326i −0.384968 0.922930i \(-0.625787\pi\)
−0.677412 + 0.735604i \(0.736899\pi\)
\(24\) 0 0
\(25\) −17.0897 + 14.3399i −0.683587 + 0.573597i
\(26\) 0 0
\(27\) −21.2200 + 16.6947i −0.785924 + 0.618323i
\(28\) 0 0
\(29\) −19.9186 23.7381i −0.686849 0.818554i 0.304122 0.952633i \(-0.401637\pi\)
−0.990971 + 0.134079i \(0.957192\pi\)
\(30\) 0 0
\(31\) 2.75731 15.6375i 0.0889455 0.504435i −0.907490 0.420074i \(-0.862004\pi\)
0.996435 0.0843610i \(-0.0268849\pi\)
\(32\) 0 0
\(33\) −3.44344 + 1.44263i −0.104347 + 0.0437161i
\(34\) 0 0
\(35\) −38.0116 + 21.9460i −1.08605 + 0.627029i
\(36\) 0 0
\(37\) 26.0365 45.0965i 0.703688 1.21882i −0.263474 0.964666i \(-0.584868\pi\)
0.967163 0.254158i \(-0.0817982\pi\)
\(38\) 0 0
\(39\) −0.763322 16.0007i −0.0195724 0.410274i
\(40\) 0 0
\(41\) −0.694475 + 0.827643i −0.0169384 + 0.0201864i −0.774447 0.632639i \(-0.781972\pi\)
0.757509 + 0.652825i \(0.226416\pi\)
\(42\) 0 0
\(43\) 45.3904 + 16.5207i 1.05559 + 0.384203i 0.810770 0.585365i \(-0.199049\pi\)
0.244820 + 0.969569i \(0.421271\pi\)
\(44\) 0 0
\(45\) 59.6628 16.5039i 1.32584 0.366754i
\(46\) 0 0
\(47\) 56.7291 10.0029i 1.20700 0.212827i 0.466279 0.884638i \(-0.345594\pi\)
0.740723 + 0.671811i \(0.234483\pi\)
\(48\) 0 0
\(49\) 7.77884 2.83127i 0.158752 0.0577809i
\(50\) 0 0
\(51\) −10.4907 46.4327i −0.205700 0.910446i
\(52\) 0 0
\(53\) 13.8414i 0.261159i 0.991438 + 0.130579i \(0.0416837\pi\)
−0.991438 + 0.130579i \(0.958316\pi\)
\(54\) 0 0
\(55\) 8.55969 0.155631
\(56\) 0 0
\(57\) 12.0924 38.8988i 0.212147 0.682435i
\(58\) 0 0
\(59\) −20.6246 56.6655i −0.349569 0.960432i −0.982506 0.186229i \(-0.940373\pi\)
0.632938 0.774203i \(-0.281849\pi\)
\(60\) 0 0
\(61\) 17.5357 + 99.4497i 0.287470 + 1.63032i 0.696327 + 0.717725i \(0.254816\pi\)
−0.408857 + 0.912598i \(0.634073\pi\)
\(62\) 0 0
\(63\) 57.1715 5.46725i 0.907485 0.0867817i
\(64\) 0 0
\(65\) −12.5613 + 34.5119i −0.193251 + 0.530952i
\(66\) 0 0
\(67\) 60.2302 + 50.5391i 0.898958 + 0.754315i 0.969986 0.243159i \(-0.0781837\pi\)
−0.0710284 + 0.997474i \(0.522628\pi\)
\(68\) 0 0
\(69\) −40.2470 62.6160i −0.583290 0.907478i
\(70\) 0 0
\(71\) −39.7545 22.9523i −0.559922 0.323271i 0.193192 0.981161i \(-0.438116\pi\)
−0.753114 + 0.657890i \(0.771449\pi\)
\(72\) 0 0
\(73\) −34.4926 59.7430i −0.472502 0.818397i 0.527003 0.849863i \(-0.323316\pi\)
−0.999505 + 0.0314663i \(0.989982\pi\)
\(74\) 0 0
\(75\) −66.3891 8.46783i −0.885188 0.112904i
\(76\) 0 0
\(77\) 7.82081 + 1.37902i 0.101569 + 0.0179094i
\(78\) 0 0
\(79\) −30.2928 + 25.4187i −0.383453 + 0.321756i −0.814056 0.580786i \(-0.802745\pi\)
0.430603 + 0.902541i \(0.358301\pi\)
\(80\) 0 0
\(81\) −79.9861 12.7759i −0.987483 0.157727i
\(82\) 0 0
\(83\) 27.1277 + 32.3296i 0.326840 + 0.389513i 0.904294 0.426910i \(-0.140398\pi\)
−0.577454 + 0.816423i \(0.695954\pi\)
\(84\) 0 0
\(85\) −18.9520 + 107.482i −0.222965 + 1.26450i
\(86\) 0 0
\(87\) 11.7621 92.2165i 0.135196 1.05996i
\(88\) 0 0
\(89\) −61.8262 + 35.6954i −0.694676 + 0.401072i −0.805361 0.592784i \(-0.798029\pi\)
0.110685 + 0.993856i \(0.464695\pi\)
\(90\) 0 0
\(91\) −17.0371 + 29.5091i −0.187221 + 0.324276i
\(92\) 0 0
\(93\) 40.0723 25.7569i 0.430885 0.276955i
\(94\) 0 0
\(95\) −60.0324 + 71.5439i −0.631920 + 0.753093i
\(96\) 0 0
\(97\) −1.06372 0.387161i −0.0109662 0.00399135i 0.336531 0.941672i \(-0.390746\pi\)
−0.347497 + 0.937681i \(0.612968\pi\)
\(98\) 0 0
\(99\) −10.1888 4.65135i −0.102917 0.0469833i
\(100\) 0 0
\(101\) 11.1819 1.97167i 0.110712 0.0195215i −0.118018 0.993011i \(-0.537654\pi\)
0.228730 + 0.973490i \(0.426543\pi\)
\(102\) 0 0
\(103\) −154.650 + 56.2881i −1.50146 + 0.546486i −0.956438 0.291937i \(-0.905700\pi\)
−0.545020 + 0.838423i \(0.683478\pi\)
\(104\) 0 0
\(105\) −125.741 39.0886i −1.19753 0.372272i
\(106\) 0 0
\(107\) 107.863i 1.00807i −0.863685 0.504033i \(-0.831849\pi\)
0.863685 0.504033i \(-0.168151\pi\)
\(108\) 0 0
\(109\) 176.312 1.61754 0.808770 0.588125i \(-0.200134\pi\)
0.808770 + 0.588125i \(0.200134\pi\)
\(110\) 0 0
\(111\) 152.378 34.4273i 1.37278 0.310155i
\(112\) 0 0
\(113\) −42.8327 117.682i −0.379050 1.04143i −0.971751 0.236009i \(-0.924161\pi\)
0.592701 0.805423i \(-0.298062\pi\)
\(114\) 0 0
\(115\) 29.6345 + 168.066i 0.257692 + 1.46144i
\(116\) 0 0
\(117\) 33.7058 34.2544i 0.288084 0.292773i
\(118\) 0 0
\(119\) −34.6322 + 95.1511i −0.291027 + 0.799589i
\(120\) 0 0
\(121\) 91.5050 + 76.7818i 0.756240 + 0.634560i
\(122\) 0 0
\(123\) −3.23755 + 0.154449i −0.0263216 + 0.00125569i
\(124\) 0 0
\(125\) −16.0295 9.25462i −0.128236 0.0740369i
\(126\) 0 0
\(127\) 0.644295 + 1.11595i 0.00507319 + 0.00878702i 0.868551 0.495600i \(-0.165052\pi\)
−0.863478 + 0.504387i \(0.831718\pi\)
\(128\) 0 0
\(129\) 55.9947 + 133.655i 0.434067 + 1.03608i
\(130\) 0 0
\(131\) −90.5024 15.9580i −0.690858 0.121817i −0.182814 0.983148i \(-0.558520\pi\)
−0.508045 + 0.861331i \(0.669632\pi\)
\(132\) 0 0
\(133\) −66.3766 + 55.6966i −0.499072 + 0.418771i
\(134\) 0 0
\(135\) 157.823 + 97.8782i 1.16906 + 0.725024i
\(136\) 0 0
\(137\) 37.9669 + 45.2471i 0.277130 + 0.330271i 0.886599 0.462539i \(-0.153062\pi\)
−0.609469 + 0.792810i \(0.708617\pi\)
\(138\) 0 0
\(139\) 8.76836 49.7279i 0.0630817 0.357754i −0.936885 0.349637i \(-0.886305\pi\)
0.999967 0.00811749i \(-0.00258391\pi\)
\(140\) 0 0
\(141\) 137.525 + 104.647i 0.975355 + 0.742180i
\(142\) 0 0
\(143\) 5.75477 3.32252i 0.0402432 0.0232344i
\(144\) 0 0
\(145\) −106.570 + 184.584i −0.734963 + 1.27299i
\(146\) 0 0
\(147\) 22.0743 + 11.3782i 0.150165 + 0.0774024i
\(148\) 0 0
\(149\) −46.7223 + 55.6815i −0.313573 + 0.373701i −0.899693 0.436522i \(-0.856210\pi\)
0.586121 + 0.810224i \(0.300654\pi\)
\(150\) 0 0
\(151\) −3.18866 1.16058i −0.0211170 0.00768595i 0.331440 0.943476i \(-0.392466\pi\)
−0.352557 + 0.935790i \(0.614688\pi\)
\(152\) 0 0
\(153\) 80.9650 117.640i 0.529183 0.768888i
\(154\) 0 0
\(155\) −107.557 + 18.9652i −0.693917 + 0.122356i
\(156\) 0 0
\(157\) 241.142 87.7685i 1.53594 0.559035i 0.570870 0.821040i \(-0.306606\pi\)
0.965066 + 0.262005i \(0.0843838\pi\)
\(158\) 0 0
\(159\) −30.5014 + 28.1767i −0.191833 + 0.177212i
\(160\) 0 0
\(161\) 158.333i 0.983433i
\(162\) 0 0
\(163\) 265.211 1.62706 0.813530 0.581523i \(-0.197543\pi\)
0.813530 + 0.581523i \(0.197543\pi\)
\(164\) 0 0
\(165\) 17.4248 + 18.8624i 0.105605 + 0.114318i
\(166\) 0 0
\(167\) 1.10732 + 3.04234i 0.00663066 + 0.0182176i 0.942964 0.332895i \(-0.108026\pi\)
−0.936333 + 0.351113i \(0.885803\pi\)
\(168\) 0 0
\(169\) −24.3955 138.354i −0.144352 0.818663i
\(170\) 0 0
\(171\) 110.335 52.5385i 0.645233 0.307242i
\(172\) 0 0
\(173\) −65.8301 + 180.867i −0.380521 + 1.04547i 0.590617 + 0.806952i \(0.298884\pi\)
−0.971138 + 0.238520i \(0.923338\pi\)
\(174\) 0 0
\(175\) 109.056 + 91.5085i 0.623175 + 0.522906i
\(176\) 0 0
\(177\) 82.8850 160.802i 0.468277 0.908485i
\(178\) 0 0
\(179\) 191.363 + 110.484i 1.06907 + 0.617228i 0.927927 0.372762i \(-0.121589\pi\)
0.141142 + 0.989989i \(0.454922\pi\)
\(180\) 0 0
\(181\) −72.7860 126.069i −0.402133 0.696514i 0.591851 0.806048i \(-0.298398\pi\)
−0.993983 + 0.109534i \(0.965064\pi\)
\(182\) 0 0
\(183\) −183.454 + 241.090i −1.00248 + 1.31743i
\(184\) 0 0
\(185\) −352.724 62.1948i −1.90662 0.336188i
\(186\) 0 0
\(187\) 15.1270 12.6931i 0.0808933 0.0678775i
\(188\) 0 0
\(189\) 128.431 + 114.856i 0.679528 + 0.607701i
\(190\) 0 0
\(191\) −50.2313 59.8633i −0.262991 0.313420i 0.618349 0.785904i \(-0.287802\pi\)
−0.881339 + 0.472484i \(0.843358\pi\)
\(192\) 0 0
\(193\) −38.8821 + 220.511i −0.201462 + 1.14255i 0.701450 + 0.712719i \(0.252537\pi\)
−0.902911 + 0.429827i \(0.858575\pi\)
\(194\) 0 0
\(195\) −101.622 + 42.5747i −0.521140 + 0.218332i
\(196\) 0 0
\(197\) 299.369 172.841i 1.51964 0.877364i 0.519907 0.854223i \(-0.325967\pi\)
0.999732 0.0231411i \(-0.00736671\pi\)
\(198\) 0 0
\(199\) −78.7794 + 136.450i −0.395876 + 0.685678i −0.993213 0.116313i \(-0.962892\pi\)
0.597336 + 0.801991i \(0.296226\pi\)
\(200\) 0 0
\(201\) 11.2398 + 235.607i 0.0559192 + 1.17217i
\(202\) 0 0
\(203\) −127.108 + 151.482i −0.626148 + 0.746214i
\(204\) 0 0
\(205\) 6.98308 + 2.54163i 0.0340638 + 0.0123982i
\(206\) 0 0
\(207\) 56.0526 216.156i 0.270785 1.04423i
\(208\) 0 0
\(209\) 16.6412 2.93429i 0.0796229 0.0140397i
\(210\) 0 0
\(211\) 349.874 127.344i 1.65817 0.603524i 0.668095 0.744076i \(-0.267110\pi\)
0.990073 + 0.140552i \(0.0448877\pi\)
\(212\) 0 0
\(213\) −30.3491 134.328i −0.142484 0.630647i
\(214\) 0 0
\(215\) 332.238i 1.54529i
\(216\) 0 0
\(217\) −101.328 −0.466950
\(218\) 0 0
\(219\) 61.4356 197.627i 0.280528 0.902406i
\(220\) 0 0
\(221\) 28.9786 + 79.6179i 0.131125 + 0.360262i
\(222\) 0 0
\(223\) −16.2189 91.9821i −0.0727306 0.412476i −0.999336 0.0364403i \(-0.988398\pi\)
0.926605 0.376036i \(-0.122713\pi\)
\(224\) 0 0
\(225\) −116.487 163.535i −0.517720 0.726822i
\(226\) 0 0
\(227\) −124.898 + 343.154i −0.550211 + 1.51169i 0.283211 + 0.959058i \(0.408600\pi\)
−0.833423 + 0.552636i \(0.813622\pi\)
\(228\) 0 0
\(229\) −81.6070 68.4764i −0.356362 0.299023i 0.446977 0.894546i \(-0.352501\pi\)
−0.803339 + 0.595522i \(0.796945\pi\)
\(230\) 0 0
\(231\) 12.8818 + 20.0415i 0.0557655 + 0.0867595i
\(232\) 0 0
\(233\) −206.035 118.954i −0.884270 0.510533i −0.0122058 0.999926i \(-0.503885\pi\)
−0.872064 + 0.489392i \(0.837219\pi\)
\(234\) 0 0
\(235\) −198.105 343.128i −0.843001 1.46012i
\(236\) 0 0
\(237\) −117.680 15.0099i −0.496540 0.0633329i
\(238\) 0 0
\(239\) −84.6278 14.9222i −0.354091 0.0624358i −0.00622654 0.999981i \(-0.501982\pi\)
−0.347865 + 0.937545i \(0.613093\pi\)
\(240\) 0 0
\(241\) −22.4930 + 18.8739i −0.0933319 + 0.0783148i −0.688260 0.725464i \(-0.741625\pi\)
0.594928 + 0.803779i \(0.297181\pi\)
\(242\) 0 0
\(243\) −134.673 202.268i −0.554210 0.832377i
\(244\) 0 0
\(245\) −36.5989 43.6169i −0.149383 0.178028i
\(246\) 0 0
\(247\) −12.5901 + 71.4018i −0.0509719 + 0.289076i
\(248\) 0 0
\(249\) −16.0191 + 125.592i −0.0643338 + 0.504387i
\(250\) 0 0
\(251\) 108.333 62.5458i 0.431604 0.249186i −0.268426 0.963300i \(-0.586503\pi\)
0.700030 + 0.714114i \(0.253170\pi\)
\(252\) 0 0
\(253\) 15.4388 26.7407i 0.0610228 0.105695i
\(254\) 0 0
\(255\) −275.432 + 177.036i −1.08013 + 0.694261i
\(256\) 0 0
\(257\) −150.115 + 178.900i −0.584104 + 0.696108i −0.974461 0.224555i \(-0.927907\pi\)
0.390357 + 0.920663i \(0.372352\pi\)
\(258\) 0 0
\(259\) −312.257 113.652i −1.20563 0.438812i
\(260\) 0 0
\(261\) 227.155 161.804i 0.870326 0.619939i
\(262\) 0 0
\(263\) 121.603 21.4418i 0.462368 0.0815279i 0.0623882 0.998052i \(-0.480128\pi\)
0.399980 + 0.916524i \(0.369017\pi\)
\(264\) 0 0
\(265\) 89.4618 32.5614i 0.337592 0.122873i
\(266\) 0 0
\(267\) −204.518 63.5779i −0.765985 0.238119i
\(268\) 0 0
\(269\) 509.553i 1.89425i −0.320867 0.947124i \(-0.603974\pi\)
0.320867 0.947124i \(-0.396026\pi\)
\(270\) 0 0
\(271\) −49.6722 −0.183292 −0.0916461 0.995792i \(-0.529213\pi\)
−0.0916461 + 0.995792i \(0.529213\pi\)
\(272\) 0 0
\(273\) −99.7093 + 22.5276i −0.365236 + 0.0825188i
\(274\) 0 0
\(275\) −9.49550 26.0887i −0.0345291 0.0948679i
\(276\) 0 0
\(277\) 19.8143 + 112.372i 0.0715316 + 0.405676i 0.999458 + 0.0329130i \(0.0104784\pi\)
−0.927927 + 0.372763i \(0.878410\pi\)
\(278\) 0 0
\(279\) 138.333 + 35.8720i 0.495818 + 0.128573i
\(280\) 0 0
\(281\) −8.86037 + 24.3437i −0.0315316 + 0.0866323i −0.954460 0.298340i \(-0.903567\pi\)
0.922928 + 0.384973i \(0.125789\pi\)
\(282\) 0 0
\(283\) 120.665 + 101.250i 0.426380 + 0.357775i 0.830584 0.556894i \(-0.188007\pi\)
−0.404204 + 0.914669i \(0.632451\pi\)
\(284\) 0 0
\(285\) −279.863 + 13.3510i −0.981977 + 0.0468458i
\(286\) 0 0
\(287\) 5.97082 + 3.44725i 0.0208042 + 0.0120113i
\(288\) 0 0
\(289\) −18.6082 32.2303i −0.0643881 0.111523i
\(290\) 0 0
\(291\) −1.31223 3.13218i −0.00450937 0.0107635i
\(292\) 0 0
\(293\) 413.555 + 72.9209i 1.41145 + 0.248877i 0.826840 0.562437i \(-0.190136\pi\)
0.584611 + 0.811314i \(0.301247\pi\)
\(294\) 0 0
\(295\) −317.730 + 266.607i −1.07705 + 0.903754i
\(296\) 0 0
\(297\) −10.4912 31.9210i −0.0353241 0.107478i
\(298\) 0 0
\(299\) 85.1599 + 101.490i 0.284816 + 0.339430i
\(300\) 0 0
\(301\) 53.5257 303.559i 0.177826 1.00850i
\(302\) 0 0
\(303\) 27.1076 + 20.6271i 0.0894642 + 0.0680763i
\(304\) 0 0
\(305\) 601.526 347.291i 1.97222 1.13866i
\(306\) 0 0
\(307\) 101.037 175.001i 0.329110 0.570035i −0.653225 0.757163i \(-0.726585\pi\)
0.982336 + 0.187128i \(0.0599180\pi\)
\(308\) 0 0
\(309\) −438.857 226.208i −1.42025 0.732064i
\(310\) 0 0
\(311\) 170.488 203.179i 0.548192 0.653310i −0.418811 0.908073i \(-0.637553\pi\)
0.967003 + 0.254763i \(0.0819976\pi\)
\(312\) 0 0
\(313\) −259.112 94.3092i −0.827835 0.301307i −0.106865 0.994274i \(-0.534081\pi\)
−0.720970 + 0.692966i \(0.756304\pi\)
\(314\) 0 0
\(315\) −169.831 356.658i −0.539146 1.13225i
\(316\) 0 0
\(317\) 34.4742 6.07873i 0.108751 0.0191758i −0.119008 0.992893i \(-0.537971\pi\)
0.227759 + 0.973718i \(0.426860\pi\)
\(318\) 0 0
\(319\) 36.2379 13.1895i 0.113599 0.0413465i
\(320\) 0 0
\(321\) 237.690 219.575i 0.740469 0.684033i
\(322\) 0 0
\(323\) 215.457i 0.667049i
\(324\) 0 0
\(325\) 119.122 0.366528
\(326\) 0 0
\(327\) 358.915 + 388.527i 1.09760 + 1.18816i
\(328\) 0 0
\(329\) −125.725 345.425i −0.382142 1.04993i
\(330\) 0 0
\(331\) −36.6162 207.661i −0.110623 0.627373i −0.988825 0.149083i \(-0.952368\pi\)
0.878202 0.478290i \(-0.158743\pi\)
\(332\) 0 0
\(333\) 386.058 + 265.703i 1.15933 + 0.797906i
\(334\) 0 0
\(335\) 184.963 508.180i 0.552127 1.51696i
\(336\) 0 0
\(337\) 118.176 + 99.1618i 0.350672 + 0.294249i 0.801060 0.598584i \(-0.204270\pi\)
−0.450388 + 0.892833i \(0.648714\pi\)
\(338\) 0 0
\(339\) 172.134 333.950i 0.507769 0.985104i
\(340\) 0 0
\(341\) 17.1133 + 9.88034i 0.0501855 + 0.0289746i
\(342\) 0 0
\(343\) −182.756 316.543i −0.532817 0.922867i
\(344\) 0 0
\(345\) −310.029 + 407.432i −0.898635 + 1.18096i
\(346\) 0 0
\(347\) 288.832 + 50.9288i 0.832368 + 0.146769i 0.573564 0.819161i \(-0.305560\pi\)
0.258804 + 0.965930i \(0.416672\pi\)
\(348\) 0 0
\(349\) −313.333 + 262.918i −0.897803 + 0.753346i −0.969760 0.244062i \(-0.921520\pi\)
0.0719569 + 0.997408i \(0.477076\pi\)
\(350\) 0 0
\(351\) 144.098 + 4.54415i 0.410537 + 0.0129463i
\(352\) 0 0
\(353\) 321.434 + 383.070i 0.910577 + 1.08518i 0.996046 + 0.0888426i \(0.0283168\pi\)
−0.0854686 + 0.996341i \(0.527239\pi\)
\(354\) 0 0
\(355\) −54.8274 + 310.941i −0.154443 + 0.875892i
\(356\) 0 0
\(357\) −280.178 + 117.381i −0.784813 + 0.328798i
\(358\) 0 0
\(359\) 216.295 124.878i 0.602492 0.347849i −0.167529 0.985867i \(-0.553579\pi\)
0.770021 + 0.638018i \(0.220246\pi\)
\(360\) 0 0
\(361\) 88.3143 152.965i 0.244638 0.423725i
\(362\) 0 0
\(363\) 17.0761 + 357.947i 0.0470415 + 0.986079i
\(364\) 0 0
\(365\) −304.997 + 363.481i −0.835608 + 0.995839i
\(366\) 0 0
\(367\) −300.825 109.491i −0.819686 0.298341i −0.102068 0.994777i \(-0.532546\pi\)
−0.717619 + 0.696436i \(0.754768\pi\)
\(368\) 0 0
\(369\) −6.93097 6.81997i −0.0187831 0.0184823i
\(370\) 0 0
\(371\) 86.9853 15.3379i 0.234462 0.0413419i
\(372\) 0 0
\(373\) −185.784 + 67.6197i −0.498079 + 0.181286i −0.578830 0.815448i \(-0.696491\pi\)
0.0807505 + 0.996734i \(0.474268\pi\)
\(374\) 0 0
\(375\) −12.2371 54.1625i −0.0326323 0.144433i
\(376\) 0 0
\(377\) 165.464i 0.438896i
\(378\) 0 0
\(379\) −364.905 −0.962811 −0.481405 0.876498i \(-0.659873\pi\)
−0.481405 + 0.876498i \(0.659873\pi\)
\(380\) 0 0
\(381\) −1.14757 + 3.69151i −0.00301199 + 0.00968901i
\(382\) 0 0
\(383\) −221.375 608.221i −0.578001 1.58805i −0.791544 0.611112i \(-0.790723\pi\)
0.213543 0.976934i \(-0.431500\pi\)
\(384\) 0 0
\(385\) −9.48511 53.7927i −0.0246367 0.139721i
\(386\) 0 0
\(387\) −180.539 + 395.470i −0.466508 + 1.02189i
\(388\) 0 0
\(389\) 19.3516 53.1682i 0.0497471 0.136679i −0.912331 0.409454i \(-0.865719\pi\)
0.962078 + 0.272775i \(0.0879414\pi\)
\(390\) 0 0
\(391\) 301.595 + 253.068i 0.771343 + 0.647233i
\(392\) 0 0
\(393\) −149.069 231.920i −0.379309 0.590126i
\(394\) 0 0
\(395\) 235.553 + 135.996i 0.596336 + 0.344295i
\(396\) 0 0
\(397\) −327.487 567.224i −0.824905 1.42878i −0.901992 0.431752i \(-0.857895\pi\)
0.0770876 0.997024i \(-0.475438\pi\)
\(398\) 0 0
\(399\) −257.856 32.8892i −0.646257 0.0824291i
\(400\) 0 0
\(401\) 124.761 + 21.9988i 0.311125 + 0.0548598i 0.327031 0.945014i \(-0.393952\pi\)
−0.0159053 + 0.999874i \(0.505063\pi\)
\(402\) 0 0
\(403\) −64.9502 + 54.4997i −0.161167 + 0.135235i
\(404\) 0 0
\(405\) 105.590 + 547.033i 0.260716 + 1.35070i
\(406\) 0 0
\(407\) 41.6549 + 49.6424i 0.102346 + 0.121971i
\(408\) 0 0
\(409\) 94.5803 536.391i 0.231248 1.31147i −0.619126 0.785291i \(-0.712513\pi\)
0.850374 0.526179i \(-0.176376\pi\)
\(410\) 0 0
\(411\) −22.4197 + 175.774i −0.0545491 + 0.427673i
\(412\) 0 0
\(413\) −333.256 + 192.405i −0.806915 + 0.465873i
\(414\) 0 0
\(415\) 145.140 251.390i 0.349736 0.605760i
\(416\) 0 0
\(417\) 127.432 81.9078i 0.305591 0.196422i
\(418\) 0 0
\(419\) −429.462 + 511.813i −1.02497 + 1.22151i −0.0500962 + 0.998744i \(0.515953\pi\)
−0.974872 + 0.222765i \(0.928492\pi\)
\(420\) 0 0
\(421\) −213.714 77.7856i −0.507635 0.184764i 0.0754901 0.997147i \(-0.475948\pi\)
−0.583125 + 0.812383i \(0.698170\pi\)
\(422\) 0 0
\(423\) 49.3524 + 516.084i 0.116672 + 1.22006i
\(424\) 0 0
\(425\) 348.614 61.4701i 0.820269 0.144635i
\(426\) 0 0
\(427\) 605.553 220.403i 1.41816 0.516167i
\(428\) 0 0
\(429\) 19.0365 + 5.91782i 0.0443741 + 0.0137944i
\(430\) 0 0
\(431\) 429.608i 0.996769i −0.866956 0.498385i \(-0.833927\pi\)
0.866956 0.498385i \(-0.166073\pi\)
\(432\) 0 0
\(433\) −11.9987 −0.0277106 −0.0138553 0.999904i \(-0.504410\pi\)
−0.0138553 + 0.999904i \(0.504410\pi\)
\(434\) 0 0
\(435\) −623.697 + 140.914i −1.43379 + 0.323940i
\(436\) 0 0
\(437\) 115.227 + 316.584i 0.263678 + 0.724448i
\(438\) 0 0
\(439\) 13.0874 + 74.2226i 0.0298119 + 0.169072i 0.996079 0.0884713i \(-0.0281982\pi\)
−0.966267 + 0.257543i \(0.917087\pi\)
\(440\) 0 0
\(441\) 19.8630 + 71.8060i 0.0450408 + 0.162825i
\(442\) 0 0
\(443\) −84.8156 + 233.029i −0.191457 + 0.526024i −0.997863 0.0653379i \(-0.979187\pi\)
0.806406 + 0.591362i \(0.201410\pi\)
\(444\) 0 0
\(445\) 376.156 + 315.632i 0.845294 + 0.709286i
\(446\) 0 0
\(447\) −217.813 + 10.3909i −0.487278 + 0.0232459i
\(448\) 0 0
\(449\) 178.012 + 102.775i 0.396462 + 0.228898i 0.684956 0.728584i \(-0.259821\pi\)
−0.288494 + 0.957482i \(0.593155\pi\)
\(450\) 0 0
\(451\) −0.672273 1.16441i −0.00149063 0.00258184i
\(452\) 0 0
\(453\) −3.93361 9.38921i −0.00868347 0.0207267i
\(454\) 0 0
\(455\) 230.807 + 40.6975i 0.507268 + 0.0894450i
\(456\) 0 0
\(457\) 489.550 410.781i 1.07122 0.898864i 0.0760617 0.997103i \(-0.475765\pi\)
0.995163 + 0.0982390i \(0.0313210\pi\)
\(458\) 0 0
\(459\) 424.054 61.0601i 0.923865 0.133029i
\(460\) 0 0
\(461\) 91.0478 + 108.507i 0.197501 + 0.235372i 0.855701 0.517471i \(-0.173126\pi\)
−0.658200 + 0.752843i \(0.728682\pi\)
\(462\) 0 0
\(463\) 48.9254 277.470i 0.105670 0.599287i −0.885280 0.465059i \(-0.846033\pi\)
0.990950 0.134229i \(-0.0428556\pi\)
\(464\) 0 0
\(465\) −260.744 198.409i −0.560740 0.426687i
\(466\) 0 0
\(467\) −462.423 + 266.980i −0.990199 + 0.571692i −0.905334 0.424700i \(-0.860379\pi\)
−0.0848656 + 0.996392i \(0.527046\pi\)
\(468\) 0 0
\(469\) 250.868 434.515i 0.534899 0.926472i
\(470\) 0 0
\(471\) 684.298 + 352.720i 1.45286 + 0.748875i
\(472\) 0 0
\(473\) −38.6395 + 46.0488i −0.0816903 + 0.0973547i
\(474\) 0 0
\(475\) 284.651 + 103.604i 0.599265 + 0.218114i
\(476\) 0 0
\(477\) −124.182 9.85510i −0.260340 0.0206606i
\(478\) 0 0
\(479\) 167.090 29.4625i 0.348831 0.0615084i 0.00351250 0.999994i \(-0.498882\pi\)
0.345319 + 0.938485i \(0.387771\pi\)
\(480\) 0 0
\(481\) −261.282 + 95.0988i −0.543205 + 0.197711i
\(482\) 0 0
\(483\) −348.907 + 322.315i −0.722375 + 0.667319i
\(484\) 0 0
\(485\) 7.78596i 0.0160535i
\(486\) 0 0
\(487\) −20.8058 −0.0427223 −0.0213612 0.999772i \(-0.506800\pi\)
−0.0213612 + 0.999772i \(0.506800\pi\)
\(488\) 0 0
\(489\) 539.885 + 584.428i 1.10406 + 1.19515i
\(490\) 0 0
\(491\) −51.6877 142.011i −0.105270 0.289228i 0.875863 0.482560i \(-0.160293\pi\)
−0.981133 + 0.193332i \(0.938071\pi\)
\(492\) 0 0
\(493\) 85.3838 + 484.236i 0.173192 + 0.982222i
\(494\) 0 0
\(495\) −6.09451 + 76.7958i −0.0123122 + 0.155143i
\(496\) 0 0
\(497\) −100.189 + 275.268i −0.201588 + 0.553859i
\(498\) 0 0
\(499\) −626.300 525.528i −1.25511 1.05316i −0.996185 0.0872648i \(-0.972187\pi\)
−0.258925 0.965897i \(-0.583368\pi\)
\(500\) 0 0
\(501\) −4.45004 + 8.63335i −0.00888232 + 0.0172322i
\(502\) 0 0
\(503\) 201.176 + 116.149i 0.399953 + 0.230913i 0.686464 0.727164i \(-0.259162\pi\)
−0.286511 + 0.958077i \(0.592495\pi\)
\(504\) 0 0
\(505\) −39.0487 67.6343i −0.0773241 0.133929i
\(506\) 0 0
\(507\) 255.220 335.404i 0.503392 0.661545i
\(508\) 0 0
\(509\) −318.833 56.2189i −0.626392 0.110450i −0.148563 0.988903i \(-0.547465\pi\)
−0.477828 + 0.878453i \(0.658576\pi\)
\(510\) 0 0
\(511\) −337.229 + 282.968i −0.659939 + 0.553754i
\(512\) 0 0
\(513\) 340.382 + 136.186i 0.663513 + 0.265470i
\(514\) 0 0
\(515\) 727.619 + 867.142i 1.41285 + 1.68377i
\(516\) 0 0
\(517\) −12.4483 + 70.5979i −0.0240780 + 0.136553i
\(518\) 0 0
\(519\) −532.573 + 223.121i −1.02615 + 0.429906i
\(520\) 0 0
\(521\) 480.156 277.218i 0.921604 0.532088i 0.0374577 0.999298i \(-0.488074\pi\)
0.884146 + 0.467210i \(0.154741\pi\)
\(522\) 0 0
\(523\) 472.881 819.053i 0.904170 1.56607i 0.0821414 0.996621i \(-0.473824\pi\)
0.822028 0.569447i \(-0.192843\pi\)
\(524\) 0 0
\(525\) 20.3512 + 426.601i 0.0387643 + 0.812573i
\(526\) 0 0
\(527\) −161.956 + 193.012i −0.307317 + 0.366246i
\(528\) 0 0
\(529\) 81.3960 + 29.6257i 0.153868 + 0.0560033i
\(530\) 0 0
\(531\) 523.076 144.693i 0.985077 0.272492i
\(532\) 0 0
\(533\) 5.68135 1.00178i 0.0106592 0.00187950i
\(534\) 0 0
\(535\) −697.156 + 253.744i −1.30310 + 0.474288i
\(536\) 0 0
\(537\) 146.089 + 646.605i 0.272047 + 1.20411i
\(538\) 0 0
\(539\) 10.3019i 0.0191129i
\(540\) 0 0
\(541\) −390.158 −0.721179 −0.360590 0.932725i \(-0.617425\pi\)
−0.360590 + 0.932725i \(0.617425\pi\)
\(542\) 0 0
\(543\) 129.641 417.030i 0.238749 0.768011i
\(544\) 0 0
\(545\) −414.768 1139.57i −0.761042 2.09095i
\(546\) 0 0
\(547\) 80.6120 + 457.174i 0.147371 + 0.835784i 0.965433 + 0.260653i \(0.0839378\pi\)
−0.818061 + 0.575131i \(0.804951\pi\)
\(548\) 0 0
\(549\) −904.727 + 86.5180i −1.64796 + 0.157592i
\(550\) 0 0
\(551\) −143.910 + 395.388i −0.261179 + 0.717583i
\(552\) 0 0
\(553\) 193.310 + 162.206i 0.349566 + 0.293320i
\(554\) 0 0
\(555\) −580.980 903.884i −1.04681 1.62862i
\(556\) 0 0
\(557\) −203.531 117.509i −0.365406 0.210967i 0.306043 0.952018i \(-0.400995\pi\)
−0.671450 + 0.741050i \(0.734328\pi\)
\(558\) 0 0
\(559\) −128.961 223.367i −0.230700 0.399584i
\(560\) 0 0
\(561\) 58.7648 + 7.49536i 0.104750 + 0.0133607i
\(562\) 0 0
\(563\) 82.3270 + 14.5165i 0.146229 + 0.0257842i 0.246284 0.969198i \(-0.420791\pi\)
−0.100054 + 0.994982i \(0.531902\pi\)
\(564\) 0 0
\(565\) −659.856 + 553.685i −1.16789 + 0.979973i
\(566\) 0 0
\(567\) 8.34476 + 516.824i 0.0147174 + 0.911506i
\(568\) 0 0
\(569\) 592.627 + 706.266i 1.04152 + 1.24124i 0.969822 + 0.243814i \(0.0783987\pi\)
0.0717022 + 0.997426i \(0.477157\pi\)
\(570\) 0 0
\(571\) −69.2165 + 392.546i −0.121220 + 0.687471i 0.862262 + 0.506463i \(0.169047\pi\)
−0.983482 + 0.181008i \(0.942064\pi\)
\(572\) 0 0
\(573\) 29.6619 232.554i 0.0517660 0.405853i
\(574\) 0 0
\(575\) 479.365 276.762i 0.833679 0.481325i
\(576\) 0 0
\(577\) 8.33213 14.4317i 0.0144404 0.0250116i −0.858715 0.512454i \(-0.828737\pi\)
0.873155 + 0.487442i \(0.162070\pi\)
\(578\) 0 0
\(579\) −565.078 + 363.209i −0.975955 + 0.627304i
\(580\) 0 0
\(581\) 173.112 206.307i 0.297956 0.355090i
\(582\) 0 0
\(583\) −16.1865 5.89139i −0.0277641 0.0101053i
\(584\) 0 0
\(585\) −300.690 137.270i −0.514000 0.234649i
\(586\) 0 0
\(587\) −183.618 + 32.3769i −0.312808 + 0.0551565i −0.327848 0.944730i \(-0.606323\pi\)
0.0150403 + 0.999887i \(0.495212\pi\)
\(588\) 0 0
\(589\) −202.604 + 73.7419i −0.343980 + 0.125198i
\(590\) 0 0
\(591\) 990.297 + 307.851i 1.67563 + 0.520898i
\(592\) 0 0
\(593\) 373.725i 0.630228i 0.949054 + 0.315114i \(0.102043\pi\)
−0.949054 + 0.315114i \(0.897957\pi\)
\(594\) 0 0
\(595\) 696.466 1.17053
\(596\) 0 0
\(597\) −461.055 + 104.168i −0.772287 + 0.174485i
\(598\) 0 0
\(599\) −5.06227 13.9085i −0.00845120 0.0232195i 0.935395 0.353604i \(-0.115044\pi\)
−0.943846 + 0.330384i \(0.892822\pi\)
\(600\) 0 0
\(601\) −33.7445 191.375i −0.0561473 0.318427i 0.943779 0.330577i \(-0.107243\pi\)
−0.999926 + 0.0121504i \(0.996132\pi\)
\(602\) 0 0
\(603\) −496.311 + 504.389i −0.823069 + 0.836466i
\(604\) 0 0
\(605\) 281.005 772.055i 0.464471 1.27612i
\(606\) 0 0
\(607\) −444.453 372.941i −0.732213 0.614400i 0.198521 0.980097i \(-0.436386\pi\)
−0.930734 + 0.365697i \(0.880831\pi\)
\(608\) 0 0
\(609\) −592.561 + 28.2685i −0.973007 + 0.0464179i
\(610\) 0 0
\(611\) −266.377 153.793i −0.435968 0.251706i
\(612\) 0 0
\(613\) 80.1803 + 138.876i 0.130800 + 0.226552i 0.923985 0.382428i \(-0.124912\pi\)
−0.793185 + 0.608980i \(0.791579\pi\)
\(614\) 0 0
\(615\) 8.61449 + 20.5621i 0.0140073 + 0.0334343i
\(616\) 0 0
\(617\) 409.534 + 72.2118i 0.663750 + 0.117037i 0.495366 0.868685i \(-0.335034\pi\)
0.168384 + 0.985721i \(0.446145\pi\)
\(618\) 0 0
\(619\) 502.301 421.481i 0.811472 0.680906i −0.139486 0.990224i \(-0.544545\pi\)
0.950959 + 0.309318i \(0.100101\pi\)
\(620\) 0 0
\(621\) 590.433 316.505i 0.950778 0.509670i
\(622\) 0 0
\(623\) 292.835 + 348.988i 0.470041 + 0.560173i
\(624\) 0 0
\(625\) −118.955 + 674.627i −0.190328 + 1.07940i
\(626\) 0 0
\(627\) 40.3423 + 30.6978i 0.0643417 + 0.0489598i
\(628\) 0 0
\(629\) −715.577 + 413.139i −1.13764 + 0.656818i
\(630\) 0 0
\(631\) −321.500 + 556.855i −0.509509 + 0.882496i 0.490430 + 0.871481i \(0.336840\pi\)
−0.999939 + 0.0110155i \(0.996494\pi\)
\(632\) 0 0
\(633\) 992.850 + 511.762i 1.56848 + 0.808471i
\(634\) 0 0
\(635\) 5.69710 6.78954i 0.00897182 0.0106922i
\(636\) 0 0
\(637\) −41.5361 15.1179i −0.0652058 0.0237330i
\(638\) 0 0
\(639\) 234.228 340.327i 0.366554 0.532593i
\(640\) 0 0
\(641\) −115.857 + 20.4287i −0.180744 + 0.0318700i −0.263287 0.964717i \(-0.584807\pi\)
0.0825436 + 0.996587i \(0.473696\pi\)
\(642\) 0 0
\(643\) 407.907 148.466i 0.634382 0.230896i −0.00475561 0.999989i \(-0.501514\pi\)
0.639137 + 0.769093i \(0.279292\pi\)
\(644\) 0 0
\(645\) 732.131 676.331i 1.13509 1.04858i
\(646\) 0 0
\(647\) 202.797i 0.313443i −0.987643 0.156721i \(-0.949908\pi\)
0.987643 0.156721i \(-0.0500924\pi\)
\(648\) 0 0
\(649\) 75.0446 0.115631
\(650\) 0 0
\(651\) −206.272 223.290i −0.316854 0.342995i
\(652\) 0 0
\(653\) −306.142 841.119i −0.468824 1.28808i −0.918687 0.394987i \(-0.870749\pi\)
0.449862 0.893098i \(-0.351473\pi\)
\(654\) 0 0
\(655\) 109.762 + 622.490i 0.167575 + 0.950366i
\(656\) 0 0
\(657\) 560.561 266.924i 0.853212 0.406276i
\(658\) 0 0
\(659\) 287.917 791.045i 0.436899 1.20037i −0.504599 0.863354i \(-0.668360\pi\)
0.941498 0.337017i \(-0.109418\pi\)
\(660\) 0 0
\(661\) 173.104 + 145.252i 0.261882 + 0.219745i 0.764269 0.644898i \(-0.223100\pi\)
−0.502386 + 0.864643i \(0.667545\pi\)
\(662\) 0 0
\(663\) −116.458 + 225.935i −0.175652 + 0.340776i
\(664\) 0 0
\(665\) 516.135 + 297.991i 0.776143 + 0.448106i
\(666\) 0 0
\(667\) 384.430 + 665.853i 0.576357 + 0.998280i
\(668\) 0 0
\(669\) 169.678 222.987i 0.253630 0.333314i
\(670\) 0 0
\(671\) −123.763 21.8227i −0.184445 0.0325227i
\(672\) 0 0
\(673\) −84.6901 + 71.0634i −0.125840 + 0.105592i −0.703536 0.710660i \(-0.748396\pi\)
0.577696 + 0.816252i \(0.303952\pi\)
\(674\) 0 0
\(675\) 123.241 589.600i 0.182579 0.873482i
\(676\) 0 0
\(677\) 1.83780 + 2.19020i 0.00271462 + 0.00323516i 0.767400 0.641169i \(-0.221550\pi\)
−0.764685 + 0.644404i \(0.777106\pi\)
\(678\) 0 0
\(679\) −1.25437 + 7.11387i −0.00184737 + 0.0104770i
\(680\) 0 0
\(681\) −1010.44 + 423.324i −1.48376 + 0.621621i
\(682\) 0 0
\(683\) 843.279 486.868i 1.23467 0.712837i 0.266670 0.963788i \(-0.414077\pi\)
0.968000 + 0.250951i \(0.0807434\pi\)
\(684\) 0 0
\(685\) 203.132 351.835i 0.296543 0.513628i
\(686\) 0 0
\(687\) −15.2290 319.228i −0.0221673 0.464669i
\(688\) 0 0
\(689\) 47.5071 56.6168i 0.0689508 0.0821724i
\(690\) 0 0
\(691\) 614.590 + 223.693i 0.889421 + 0.323723i 0.746006 0.665940i \(-0.231969\pi\)
0.143416 + 0.989663i \(0.454191\pi\)
\(692\) 0 0
\(693\) −17.9407 + 69.1848i −0.0258885 + 0.0998338i
\(694\) 0 0
\(695\) −342.036 + 60.3101i −0.492138 + 0.0867772i
\(696\) 0 0
\(697\) 16.1097 5.86347i 0.0231130 0.00841244i
\(698\) 0 0
\(699\) −157.290 696.178i −0.225021 0.995963i
\(700\) 0 0
\(701\) 41.7083i 0.0594983i −0.999557 0.0297492i \(-0.990529\pi\)
0.999557 0.0297492i \(-0.00947085\pi\)
\(702\) 0 0
\(703\) −707.064 −1.00578
\(704\) 0 0
\(705\) 352.850 1135.05i 0.500497 1.61000i
\(706\) 0 0
\(707\) −24.7817 68.0870i −0.0350518 0.0963042i
\(708\) 0 0
\(709\) −86.0416 487.966i −0.121356 0.688246i −0.983406 0.181421i \(-0.941930\pi\)
0.862049 0.506825i \(-0.169181\pi\)
\(710\) 0 0
\(711\) −206.483 289.879i −0.290412 0.407706i
\(712\) 0 0
\(713\) −134.748 + 370.218i −0.188988 + 0.519240i
\(714\) 0 0
\(715\) −35.0125 29.3790i −0.0489685 0.0410895i
\(716\) 0 0
\(717\) −139.392 216.865i −0.194410 0.302462i
\(718\) 0 0
\(719\) −124.160 71.6839i −0.172684 0.0996994i 0.411167 0.911560i \(-0.365121\pi\)
−0.583851 + 0.811861i \(0.698455\pi\)
\(720\) 0 0
\(721\) 525.108 + 909.514i 0.728305 + 1.26146i
\(722\) 0 0
\(723\) −87.3796 11.1451i −0.120857 0.0154151i
\(724\) 0 0
\(725\) 680.805 + 120.044i 0.939041 + 0.165578i
\(726\) 0 0
\(727\) 252.723 212.060i 0.347624 0.291692i −0.452211 0.891911i \(-0.649365\pi\)
0.799835 + 0.600220i \(0.204920\pi\)
\(728\) 0 0
\(729\) 171.573 708.522i 0.235353 0.971910i
\(730\) 0 0
\(731\) −492.673 587.145i −0.673972 0.803208i
\(732\) 0 0
\(733\) 32.0098 181.537i 0.0436696 0.247663i −0.955157 0.296101i \(-0.904313\pi\)
0.998826 + 0.0484385i \(0.0154245\pi\)
\(734\) 0 0
\(735\) 21.6119 169.441i 0.0294040 0.230532i
\(736\) 0 0
\(737\) −84.7378 + 48.9234i −0.114977 + 0.0663818i
\(738\) 0 0
\(739\) −225.818 + 391.128i −0.305572 + 0.529267i −0.977389 0.211451i \(-0.932181\pi\)
0.671816 + 0.740718i \(0.265514\pi\)
\(740\) 0 0
\(741\) −182.973 + 117.607i −0.246927 + 0.158715i
\(742\) 0 0
\(743\) −384.245 + 457.925i −0.517153 + 0.616319i −0.959905 0.280325i \(-0.909558\pi\)
0.442752 + 0.896644i \(0.354002\pi\)
\(744\) 0 0
\(745\) 469.802 + 170.994i 0.630606 + 0.229522i
\(746\) 0 0
\(747\) −309.369 + 220.366i −0.414149 + 0.295001i
\(748\) 0 0
\(749\) −677.857 + 119.524i −0.905016 + 0.159579i
\(750\) 0 0
\(751\) −585.524 + 213.113i −0.779659 + 0.283773i −0.701030 0.713131i \(-0.747276\pi\)
−0.0786285 + 0.996904i \(0.525054\pi\)
\(752\) 0 0
\(753\) 358.358 + 111.402i 0.475908 + 0.147944i
\(754\) 0 0
\(755\) 23.3397i 0.0309135i
\(756\) 0 0
\(757\) −1029.21 −1.35960 −0.679798 0.733399i \(-0.737933\pi\)
−0.679798 + 0.733399i \(0.737933\pi\)
\(758\) 0 0
\(759\) 90.3552 20.4142i 0.119045 0.0268962i
\(760\) 0 0
\(761\) 213.042 + 585.329i 0.279951 + 0.769158i 0.997367 + 0.0725138i \(0.0231021\pi\)
−0.717417 + 0.696644i \(0.754676\pi\)
\(762\) 0 0
\(763\) −195.374 1108.02i −0.256060 1.45219i
\(764\) 0 0
\(765\) −950.815 246.561i −1.24290 0.322302i
\(766\) 0 0
\(767\) −110.128 + 302.573i −0.143582 + 0.394489i
\(768\) 0 0
\(769\) −803.159 673.931i −1.04442 0.876373i −0.0519247 0.998651i \(-0.516536\pi\)
−0.992496 + 0.122278i \(0.960980\pi\)
\(770\) 0 0
\(771\) −699.815 + 33.3851i −0.907672 + 0.0433010i
\(772\) 0 0
\(773\) 719.632 + 415.480i 0.930960 + 0.537490i 0.887115 0.461549i \(-0.152706\pi\)
0.0438447 + 0.999038i \(0.486039\pi\)
\(774\) 0 0
\(775\) 177.119 + 306.779i 0.228541 + 0.395844i
\(776\) 0 0
\(777\) −385.208 919.460i −0.495763 1.18335i
\(778\) 0 0
\(779\) 14.4473 + 2.54745i 0.0185460 + 0.00327016i
\(780\) 0 0
\(781\) 43.7619 36.7206i 0.0560331 0.0470174i
\(782\) 0 0
\(783\) 818.972 + 171.185i 1.04594 + 0.218627i
\(784\) 0 0
\(785\) −1134.56 1352.11i −1.44530 1.72244i
\(786\) 0 0
\(787\) −32.2419 + 182.853i −0.0409682 + 0.232342i −0.998416 0.0562647i \(-0.982081\pi\)
0.957448 + 0.288607i \(0.0931920\pi\)
\(788\) 0 0
\(789\) 294.794 + 224.319i 0.373630 + 0.284308i
\(790\) 0 0
\(791\) −692.099 + 399.584i −0.874967 + 0.505162i
\(792\) 0 0
\(793\) 269.608 466.975i 0.339985 0.588872i
\(794\) 0 0
\(795\) 253.869 + 130.856i 0.319332 + 0.164599i
\(796\) 0 0
\(797\) −949.323 + 1131.36i −1.19112 + 1.41952i −0.307352 + 0.951596i \(0.599443\pi\)
−0.883768 + 0.467926i \(0.845001\pi\)
\(798\) 0 0
\(799\) −858.922 312.622i −1.07500 0.391267i
\(800\) 0 0
\(801\) −276.231 580.107i −0.344858 0.724228i
\(802\) 0 0
\(803\) 84.5462 14.9078i 0.105288 0.0185651i
\(804\) 0 0
\(805\) 1023.36 372.472i 1.27125 0.462698i
\(806\) 0 0
\(807\) 1122.87 1037.29i 1.39141 1.28536i
\(808\) 0 0
\(809\) 1487.78i 1.83903i −0.393055 0.919515i \(-0.628582\pi\)
0.393055 0.919515i \(-0.371418\pi\)
\(810\) 0 0
\(811\) −391.709 −0.482995 −0.241497 0.970401i \(-0.577639\pi\)
−0.241497 + 0.970401i \(0.577639\pi\)
\(812\) 0 0
\(813\) −101.117 109.459i −0.124375 0.134636i
\(814\) 0 0
\(815\) −623.900 1714.15i −0.765521 2.10325i
\(816\) 0 0
\(817\) −113.892 645.916i −0.139403 0.790595i
\(818\) 0 0
\(819\) −252.619 173.864i −0.308448 0.212288i
\(820\) 0 0
\(821\) 1.02976 2.82925i 0.00125428 0.00344610i −0.939064 0.343743i \(-0.888305\pi\)
0.940318 + 0.340297i \(0.110527\pi\)
\(822\) 0 0
\(823\) 1037.37 + 870.460i 1.26048 + 1.05767i 0.995631 + 0.0933764i \(0.0297660\pi\)
0.264847 + 0.964290i \(0.414678\pi\)
\(824\) 0 0
\(825\) 38.1600 74.0328i 0.0462546 0.0897367i
\(826\) 0 0
\(827\) −1186.03 684.755i −1.43414 0.827999i −0.436703 0.899606i \(-0.643854\pi\)
−0.997433 + 0.0716069i \(0.977187\pi\)
\(828\) 0 0
\(829\) −39.8034 68.9416i −0.0480138 0.0831623i 0.841020 0.541005i \(-0.181956\pi\)
−0.889033 + 0.457842i \(0.848622\pi\)
\(830\) 0 0
\(831\) −207.292 + 272.417i −0.249449 + 0.327819i
\(832\) 0 0
\(833\) −129.358 22.8094i −0.155292 0.0273822i
\(834\) 0 0
\(835\) 17.0587 14.3140i 0.0204296 0.0171425i
\(836\) 0 0
\(837\) 202.554 + 377.859i 0.241999 + 0.451445i
\(838\) 0 0
\(839\) −646.328 770.264i −0.770355 0.918074i 0.228100 0.973638i \(-0.426749\pi\)
−0.998455 + 0.0555640i \(0.982304\pi\)
\(840\) 0 0
\(841\) −20.7070 + 117.435i −0.0246219 + 0.139638i
\(842\) 0 0
\(843\) −71.6814 + 30.0309i −0.0850313 + 0.0356239i
\(844\) 0 0
\(845\) −836.841 + 483.150i −0.990344 + 0.571775i
\(846\) 0 0
\(847\) 381.132 660.139i 0.449978 0.779385i
\(848\) 0 0
\(849\) 22.5178 + 472.016i 0.0265227 + 0.555967i
\(850\) 0 0
\(851\) −830.493 + 989.743i −0.975902 + 1.16304i
\(852\) 0 0
\(853\) −331.253 120.566i −0.388339 0.141344i 0.140470 0.990085i \(-0.455139\pi\)
−0.528808 + 0.848741i \(0.677361\pi\)
\(854\) 0 0
\(855\) −599.134 589.538i −0.700741 0.689518i
\(856\) 0 0
\(857\) −1186.99 + 209.299i −1.38506 + 0.244223i −0.815989 0.578067i \(-0.803807\pi\)
−0.569068 + 0.822290i \(0.692696\pi\)
\(858\) 0 0
\(859\) 594.390 216.340i 0.691956 0.251851i 0.0279836 0.999608i \(-0.491091\pi\)
0.663973 + 0.747757i \(0.268869\pi\)
\(860\) 0 0
\(861\) 4.55820 + 20.1750i 0.00529408 + 0.0234321i
\(862\) 0 0
\(863\) 1076.50i 1.24739i 0.781668 + 0.623695i \(0.214369\pi\)
−0.781668 + 0.623695i \(0.785631\pi\)
\(864\) 0 0
\(865\) 1323.87 1.53048
\(866\) 0 0
\(867\) 33.1434 106.616i 0.0382277 0.122971i
\(868\) 0 0
\(869\) −16.8315 46.2443i −0.0193689 0.0532155i
\(870\) 0 0
\(871\) −72.9024 413.450i −0.0836996 0.474684i
\(872\) 0 0
\(873\) 4.23090 9.26779i 0.00484639 0.0106160i
\(874\) 0 0
\(875\) −40.3975 + 110.991i −0.0461686 + 0.126847i
\(876\) 0 0
\(877\) 981.482 + 823.562i 1.11914 + 0.939067i 0.998560 0.0536374i \(-0.0170815\pi\)
0.120576 + 0.992704i \(0.461526\pi\)
\(878\) 0 0
\(879\) 681.175 + 1059.77i 0.774943 + 1.20565i
\(880\) 0 0
\(881\) −787.917 454.904i −0.894344 0.516350i −0.0189831 0.999820i \(-0.506043\pi\)
−0.875361 + 0.483470i \(0.839376\pi\)
\(882\) 0 0
\(883\) 817.068 + 1415.20i 0.925332 + 1.60272i 0.791027 + 0.611782i \(0.209547\pi\)
0.134305 + 0.990940i \(0.457120\pi\)
\(884\) 0 0
\(885\) −1234.30 157.433i −1.39469 0.177891i
\(886\) 0 0
\(887\) 585.651 + 103.266i 0.660260 + 0.116422i 0.493731 0.869615i \(-0.335633\pi\)
0.166529 + 0.986037i \(0.446744\pi\)
\(888\) 0 0
\(889\) 6.29916 5.28563i 0.00708567 0.00594559i
\(890\) 0 0
\(891\) 48.9853 88.0998i 0.0549779 0.0988775i
\(892\) 0 0
\(893\) −502.769 599.177i −0.563011 0.670971i
\(894\) 0 0
\(895\) 263.919 1496.76i 0.294881 1.67236i
\(896\) 0 0
\(897\) −50.2875 + 394.262i −0.0560618 + 0.439534i
\(898\) 0 0
\(899\) −426.126 + 246.024i −0.474000 + 0.273664i
\(900\) 0 0
\(901\) 109.816 190.206i 0.121882 0.211106i
\(902\) 0 0
\(903\) 777.895 499.999i 0.861456 0.553709i
\(904\) 0 0
\(905\) −643.602 + 767.014i −0.711162 + 0.847530i
\(906\) 0 0
\(907\) 276.952 + 100.802i 0.305349 + 0.111138i 0.490150 0.871638i \(-0.336942\pi\)
−0.184801 + 0.982776i \(0.559164\pi\)
\(908\) 0 0
\(909\) 9.72789 + 101.726i 0.0107018 + 0.111909i
\(910\) 0 0
\(911\) 820.799 144.729i 0.900986 0.158868i 0.296078 0.955164i \(-0.404321\pi\)
0.604908 + 0.796295i \(0.293210\pi\)
\(912\) 0 0
\(913\) −49.3535 + 17.9632i −0.0540565 + 0.0196749i
\(914\) 0 0
\(915\) 1989.82 + 618.569i 2.17466 + 0.676031i
\(916\) 0 0
\(917\) 586.439i 0.639519i
\(918\) 0 0
\(919\) −1687.49 −1.83623 −0.918114 0.396315i \(-0.870289\pi\)
−0.918114 + 0.396315i \(0.870289\pi\)
\(920\) 0 0
\(921\) 591.316 133.598i 0.642037 0.145057i
\(922\) 0 0
\(923\) 83.8336 + 230.331i 0.0908273 + 0.249546i
\(924\) 0 0
\(925\) 201.726 + 1144.05i 0.218082 + 1.23681i
\(926\) 0 0
\(927\) −394.894 1427.57i −0.425991 1.53999i
\(928\) 0 0
\(929\) −354.196 + 973.147i −0.381266 + 1.04752i 0.589557 + 0.807726i \(0.299302\pi\)
−0.970824 + 0.239794i \(0.922920\pi\)
\(930\) 0 0
\(931\) −86.1053 72.2509i −0.0924869 0.0776057i
\(932\) 0 0
\(933\) 794.791 37.9160i 0.851867 0.0406388i
\(934\) 0 0
\(935\) −117.626 67.9113i −0.125803 0.0726324i
\(936\) 0 0
\(937\) 687.817 + 1191.33i 0.734063 + 1.27143i 0.955133 + 0.296176i \(0.0957115\pi\)
−0.221071 + 0.975258i \(0.570955\pi\)
\(938\) 0 0
\(939\) −319.647 762.972i −0.340413 0.812537i
\(940\) 0 0
\(941\) 1678.41 + 295.949i 1.78365 + 0.314505i 0.965480 0.260478i \(-0.0838800\pi\)
0.818166 + 0.574983i \(0.194991\pi\)
\(942\) 0 0
\(943\) 20.5352 17.2311i 0.0217765 0.0182726i
\(944\) 0 0
\(945\) 440.222 1100.29i 0.465844 1.16433i
\(946\) 0 0
\(947\) 14.5188 + 17.3028i 0.0153314 + 0.0182712i 0.773656 0.633606i \(-0.218426\pi\)
−0.758324 + 0.651878i \(0.773982\pi\)
\(948\) 0 0
\(949\) −63.9643 + 362.760i −0.0674018 + 0.382255i
\(950\) 0 0
\(951\) 83.5737 + 63.5941i 0.0878798 + 0.0668707i
\(952\) 0 0
\(953\) 877.360 506.544i 0.920630 0.531526i 0.0367941 0.999323i \(-0.488285\pi\)
0.883836 + 0.467797i \(0.154952\pi\)
\(954\) 0 0
\(955\) −268.750 + 465.489i −0.281414 + 0.487423i
\(956\) 0 0
\(957\) 102.834 + 53.0055i 0.107454 + 0.0553871i
\(958\) 0 0
\(959\) 242.281 288.739i 0.252639 0.301083i
\(960\) 0 0
\(961\) 666.116 + 242.446i 0.693149 + 0.252286i
\(962\) 0 0
\(963\) 967.724 + 76.7986i 1.00491 + 0.0797493i
\(964\) 0 0
\(965\) 1516.71 267.437i 1.57172 0.277137i
\(966\) 0 0
\(967\) 92.8853 33.8075i 0.0960551 0.0349612i −0.293546 0.955945i \(-0.594835\pi\)
0.389601 + 0.920984i \(0.372613\pi\)
\(968\) 0 0
\(969\) −474.788 + 438.602i −0.489977 + 0.452633i
\(970\) 0 0
\(971\) 415.261i 0.427664i 0.976871 + 0.213832i \(0.0685944\pi\)
−0.976871 + 0.213832i \(0.931406\pi\)
\(972\) 0 0
\(973\) −322.227 −0.331169
\(974\) 0 0
\(975\) 242.494 + 262.501i 0.248712 + 0.269231i
\(976\) 0 0
\(977\) −107.877 296.389i −0.110416 0.303366i 0.872161 0.489218i \(-0.162718\pi\)
−0.982578 + 0.185852i \(0.940496\pi\)
\(978\) 0 0
\(979\) −15.4276 87.4943i −0.0157585 0.0893711i
\(980\) 0 0
\(981\) −125.534 + 1581.83i −0.127966 + 1.61247i
\(982\) 0 0
\(983\) −219.236 + 602.345i −0.223027 + 0.612762i −0.999856 0.0169496i \(-0.994605\pi\)
0.776829 + 0.629711i \(0.216827\pi\)
\(984\) 0 0
\(985\) −1821.39 1528.32i −1.84912 1.55160i
\(986\) 0 0
\(987\) 505.256 980.227i 0.511911 0.993138i
\(988\) 0 0
\(989\) −1037.92 599.245i −1.04947 0.605910i
\(990\) 0 0
\(991\) 464.001 + 803.674i 0.468215 + 0.810973i 0.999340 0.0363209i \(-0.0115638\pi\)
−0.531125 + 0.847294i \(0.678231\pi\)
\(992\) 0 0
\(993\) 383.069 503.419i 0.385769 0.506968i
\(994\) 0 0
\(995\) 1067.25 + 188.185i 1.07261 + 0.189131i
\(996\) 0 0
\(997\) 872.811 732.376i 0.875438 0.734579i −0.0897982 0.995960i \(-0.528622\pi\)
0.965236 + 0.261381i \(0.0841778\pi\)
\(998\) 0 0
\(999\) 200.381 + 1391.62i 0.200581 + 1.39301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.a.113.4 30
4.3 odd 2 27.3.f.a.5.5 30
12.11 even 2 81.3.f.a.44.1 30
27.11 odd 18 inner 432.3.bc.a.65.4 30
36.7 odd 6 243.3.f.d.53.5 30
36.11 even 6 243.3.f.a.53.1 30
36.23 even 6 243.3.f.b.215.5 30
36.31 odd 6 243.3.f.c.215.1 30
108.7 odd 18 243.3.f.b.26.5 30
108.11 even 18 27.3.f.a.11.5 yes 30
108.23 even 18 729.3.b.a.728.4 30
108.31 odd 18 729.3.b.a.728.27 30
108.43 odd 18 81.3.f.a.35.1 30
108.47 even 18 243.3.f.c.26.1 30
108.79 odd 18 243.3.f.a.188.1 30
108.83 even 18 243.3.f.d.188.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.5 30 4.3 odd 2
27.3.f.a.11.5 yes 30 108.11 even 18
81.3.f.a.35.1 30 108.43 odd 18
81.3.f.a.44.1 30 12.11 even 2
243.3.f.a.53.1 30 36.11 even 6
243.3.f.a.188.1 30 108.79 odd 18
243.3.f.b.26.5 30 108.7 odd 18
243.3.f.b.215.5 30 36.23 even 6
243.3.f.c.26.1 30 108.47 even 18
243.3.f.c.215.1 30 36.31 odd 6
243.3.f.d.53.5 30 36.7 odd 6
243.3.f.d.188.5 30 108.83 even 18
432.3.bc.a.65.4 30 27.11 odd 18 inner
432.3.bc.a.113.4 30 1.1 even 1 trivial
729.3.b.a.728.4 30 108.23 even 18
729.3.b.a.728.27 30 108.31 odd 18