Properties

Label 243.3.f.b.215.5
Level $243$
Weight $3$
Character 243.215
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-3,0,3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.5
Character \(\chi\) \(=\) 243.215
Dual form 243.3.f.b.26.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.27361 - 0.577226i) q^{2} +(6.62455 - 2.41114i) q^{4} +(4.42119 - 5.26897i) q^{5} +(-5.99653 - 2.18256i) q^{7} +(8.77937 - 5.06877i) q^{8} +(11.4319 - 19.8006i) q^{10} +(-0.799933 - 0.953323i) q^{11} +(-0.927217 + 5.25851i) q^{13} +(-20.8901 - 3.68349i) q^{14} +(4.21287 - 3.53502i) q^{16} +(13.7418 + 7.93385i) q^{17} +(6.78917 + 11.7592i) q^{19} +(16.5842 - 45.5647i) q^{20} +(-3.16895 - 2.65907i) q^{22} +(8.48610 + 23.3154i) q^{23} +(-3.87391 - 21.9701i) q^{25} +17.7495i q^{26} -44.9868 q^{28} +(-30.5171 + 5.38098i) q^{29} +(14.9211 - 5.43084i) q^{31} +(-14.3144 + 17.0592i) q^{32} +(49.5650 + 18.0402i) q^{34} +(-38.0116 + 21.9460i) q^{35} +(26.0365 - 45.0965i) q^{37} +(29.0128 + 34.5761i) q^{38} +(12.1081 - 68.6683i) q^{40} +(-1.06400 - 0.187611i) q^{41} +(37.0026 - 31.0488i) q^{43} +(-7.59780 - 4.38659i) q^{44} +(41.2384 + 71.4270i) q^{46} +(-19.7018 + 54.1303i) q^{47} +(-6.34137 - 5.32104i) q^{49} +(-25.3634 - 69.6853i) q^{50} +(6.53661 + 37.0709i) q^{52} -13.8414i q^{53} -8.55969 q^{55} +(-63.7087 + 11.2336i) q^{56} +(-96.7949 + 35.2305i) q^{58} +(-38.7615 + 46.1941i) q^{59} +(-94.8938 - 34.5385i) q^{61} +(45.7111 - 26.3913i) q^{62} +(-48.0117 + 83.1587i) q^{64} +(23.6075 + 28.1344i) q^{65} +(-13.6531 + 77.4304i) q^{67} +(110.163 + 19.4247i) q^{68} +(-111.767 + 93.7840i) q^{70} +(-39.7545 - 22.9523i) q^{71} +(-34.4926 - 59.7430i) q^{73} +(59.2024 - 162.657i) q^{74} +(73.3283 + 61.5297i) q^{76} +(2.71614 + 7.46253i) q^{77} +(6.86682 + 38.9437i) q^{79} -37.8265i q^{80} -3.59141 q^{82} +(-41.5621 + 7.32852i) q^{83} +(102.558 - 37.3282i) q^{85} +(103.210 - 123.001i) q^{86} +(-11.8551 - 4.31490i) q^{88} +(61.8262 - 35.6954i) q^{89} +(17.0371 - 29.5091i) q^{91} +(112.433 + 133.993i) q^{92} +(-33.2506 + 188.574i) q^{94} +(91.9750 + 16.2177i) q^{95} +(0.867150 - 0.727625i) q^{97} +(-23.8306 - 13.7586i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} + 6 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} + 51 q^{11} + 3 q^{13} - 129 q^{14} - 9 q^{16} + 9 q^{17} - 3 q^{19} + 30 q^{20} - 33 q^{22} + 168 q^{23} - 6 q^{25} - 12 q^{28} - 246 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.27361 0.577226i 1.63680 0.288613i 0.721814 0.692088i \(-0.243309\pi\)
0.914991 + 0.403475i \(0.132198\pi\)
\(3\) 0 0
\(4\) 6.62455 2.41114i 1.65614 0.602785i
\(5\) 4.42119 5.26897i 0.884238 1.05379i −0.113942 0.993487i \(-0.536348\pi\)
0.998180 0.0603067i \(-0.0192079\pi\)
\(6\) 0 0
\(7\) −5.99653 2.18256i −0.856647 0.311794i −0.123900 0.992295i \(-0.539540\pi\)
−0.732747 + 0.680501i \(0.761762\pi\)
\(8\) 8.77937 5.06877i 1.09742 0.633597i
\(9\) 0 0
\(10\) 11.4319 19.8006i 1.14319 1.98006i
\(11\) −0.799933 0.953323i −0.0727212 0.0866658i 0.728457 0.685091i \(-0.240238\pi\)
−0.801178 + 0.598425i \(0.795793\pi\)
\(12\) 0 0
\(13\) −0.927217 + 5.25851i −0.0713244 + 0.404501i 0.928154 + 0.372197i \(0.121395\pi\)
−0.999478 + 0.0323036i \(0.989716\pi\)
\(14\) −20.8901 3.68349i −1.49215 0.263107i
\(15\) 0 0
\(16\) 4.21287 3.53502i 0.263304 0.220938i
\(17\) 13.7418 + 7.93385i 0.808343 + 0.466697i 0.846380 0.532579i \(-0.178777\pi\)
−0.0380373 + 0.999276i \(0.512111\pi\)
\(18\) 0 0
\(19\) 6.78917 + 11.7592i 0.357325 + 0.618905i 0.987513 0.157538i \(-0.0503556\pi\)
−0.630188 + 0.776442i \(0.717022\pi\)
\(20\) 16.5842 45.5647i 0.829210 2.27823i
\(21\) 0 0
\(22\) −3.16895 2.65907i −0.144043 0.120867i
\(23\) 8.48610 + 23.3154i 0.368961 + 1.01371i 0.975758 + 0.218854i \(0.0702319\pi\)
−0.606797 + 0.794857i \(0.707546\pi\)
\(24\) 0 0
\(25\) −3.87391 21.9701i −0.154957 0.878802i
\(26\) 17.7495i 0.682674i
\(27\) 0 0
\(28\) −44.9868 −1.60667
\(29\) −30.5171 + 5.38098i −1.05231 + 0.185551i −0.672943 0.739694i \(-0.734970\pi\)
−0.379370 + 0.925245i \(0.623859\pi\)
\(30\) 0 0
\(31\) 14.9211 5.43084i 0.481327 0.175189i −0.0899498 0.995946i \(-0.528671\pi\)
0.571276 + 0.820758i \(0.306448\pi\)
\(32\) −14.3144 + 17.0592i −0.447325 + 0.533101i
\(33\) 0 0
\(34\) 49.5650 + 18.0402i 1.45779 + 0.530593i
\(35\) −38.0116 + 21.9460i −1.08605 + 0.627029i
\(36\) 0 0
\(37\) 26.0365 45.0965i 0.703688 1.21882i −0.263474 0.964666i \(-0.584868\pi\)
0.967163 0.254158i \(-0.0817982\pi\)
\(38\) 29.0128 + 34.5761i 0.763495 + 0.909897i
\(39\) 0 0
\(40\) 12.1081 68.6683i 0.302702 1.71671i
\(41\) −1.06400 0.187611i −0.0259512 0.00457589i 0.160658 0.987010i \(-0.448639\pi\)
−0.186609 + 0.982434i \(0.559750\pi\)
\(42\) 0 0
\(43\) 37.0026 31.0488i 0.860525 0.722066i −0.101556 0.994830i \(-0.532382\pi\)
0.962081 + 0.272764i \(0.0879377\pi\)
\(44\) −7.59780 4.38659i −0.172677 0.0996953i
\(45\) 0 0
\(46\) 41.2384 + 71.4270i 0.896487 + 1.55276i
\(47\) −19.7018 + 54.1303i −0.419187 + 1.15171i 0.532979 + 0.846128i \(0.321072\pi\)
−0.952167 + 0.305579i \(0.901150\pi\)
\(48\) 0 0
\(49\) −6.34137 5.32104i −0.129416 0.108593i
\(50\) −25.3634 69.6853i −0.507267 1.39371i
\(51\) 0 0
\(52\) 6.53661 + 37.0709i 0.125704 + 0.712903i
\(53\) 13.8414i 0.261159i −0.991438 0.130579i \(-0.958316\pi\)
0.991438 0.130579i \(-0.0416837\pi\)
\(54\) 0 0
\(55\) −8.55969 −0.155631
\(56\) −63.7087 + 11.2336i −1.13766 + 0.200599i
\(57\) 0 0
\(58\) −96.7949 + 35.2305i −1.66888 + 0.607422i
\(59\) −38.7615 + 46.1941i −0.656974 + 0.782952i −0.986948 0.161039i \(-0.948516\pi\)
0.329974 + 0.943990i \(0.392960\pi\)
\(60\) 0 0
\(61\) −94.8938 34.5385i −1.55564 0.566205i −0.585905 0.810380i \(-0.699261\pi\)
−0.969731 + 0.244175i \(0.921483\pi\)
\(62\) 45.7111 26.3913i 0.737276 0.425666i
\(63\) 0 0
\(64\) −48.0117 + 83.1587i −0.750183 + 1.29935i
\(65\) 23.6075 + 28.1344i 0.363193 + 0.432836i
\(66\) 0 0
\(67\) −13.6531 + 77.4304i −0.203777 + 1.15568i 0.695575 + 0.718453i \(0.255150\pi\)
−0.899352 + 0.437225i \(0.855961\pi\)
\(68\) 110.163 + 19.4247i 1.62005 + 0.285658i
\(69\) 0 0
\(70\) −111.767 + 93.7840i −1.59668 + 1.33977i
\(71\) −39.7545 22.9523i −0.559922 0.323271i 0.193192 0.981161i \(-0.438116\pi\)
−0.753114 + 0.657890i \(0.771449\pi\)
\(72\) 0 0
\(73\) −34.4926 59.7430i −0.472502 0.818397i 0.527003 0.849863i \(-0.323316\pi\)
−0.999505 + 0.0314663i \(0.989982\pi\)
\(74\) 59.2024 162.657i 0.800032 2.19807i
\(75\) 0 0
\(76\) 73.3283 + 61.5297i 0.964846 + 0.809602i
\(77\) 2.71614 + 7.46253i 0.0352745 + 0.0969160i
\(78\) 0 0
\(79\) 6.86682 + 38.9437i 0.0869218 + 0.492958i 0.996925 + 0.0783576i \(0.0249676\pi\)
−0.910003 + 0.414601i \(0.863921\pi\)
\(80\) 37.8265i 0.472831i
\(81\) 0 0
\(82\) −3.59141 −0.0437976
\(83\) −41.5621 + 7.32852i −0.500748 + 0.0882955i −0.418317 0.908301i \(-0.637380\pi\)
−0.0824318 + 0.996597i \(0.526269\pi\)
\(84\) 0 0
\(85\) 102.558 37.3282i 1.20657 0.439156i
\(86\) 103.210 123.001i 1.20011 1.43024i
\(87\) 0 0
\(88\) −11.8551 4.31490i −0.134717 0.0490330i
\(89\) 61.8262 35.6954i 0.694676 0.401072i −0.110685 0.993856i \(-0.535305\pi\)
0.805361 + 0.592784i \(0.201971\pi\)
\(90\) 0 0
\(91\) 17.0371 29.5091i 0.187221 0.324276i
\(92\) 112.433 + 133.993i 1.22210 + 1.45644i
\(93\) 0 0
\(94\) −33.2506 + 188.574i −0.353730 + 2.00610i
\(95\) 91.9750 + 16.2177i 0.968158 + 0.170712i
\(96\) 0 0
\(97\) 0.867150 0.727625i 0.00893969 0.00750129i −0.638307 0.769782i \(-0.720365\pi\)
0.647247 + 0.762281i \(0.275920\pi\)
\(98\) −23.8306 13.7586i −0.243169 0.140394i
\(99\) 0 0
\(100\) −78.6359 136.201i −0.786359 1.36201i
\(101\) 3.88344 10.6697i 0.0384499 0.105640i −0.918982 0.394299i \(-0.870987\pi\)
0.957432 + 0.288659i \(0.0932095\pi\)
\(102\) 0 0
\(103\) −126.072 105.787i −1.22400 1.02706i −0.998606 0.0527901i \(-0.983189\pi\)
−0.225394 0.974268i \(-0.572367\pi\)
\(104\) 18.5138 + 50.8663i 0.178017 + 0.489099i
\(105\) 0 0
\(106\) −7.98961 45.3113i −0.0753737 0.427465i
\(107\) 107.863i 1.00807i −0.863685 0.504033i \(-0.831849\pi\)
0.863685 0.504033i \(-0.168151\pi\)
\(108\) 0 0
\(109\) 176.312 1.61754 0.808770 0.588125i \(-0.200134\pi\)
0.808770 + 0.588125i \(0.200134\pi\)
\(110\) −28.0211 + 4.94087i −0.254737 + 0.0449170i
\(111\) 0 0
\(112\) −32.9780 + 12.0030i −0.294446 + 0.107170i
\(113\) 80.4991 95.9351i 0.712381 0.848983i −0.281486 0.959565i \(-0.590827\pi\)
0.993867 + 0.110583i \(0.0352717\pi\)
\(114\) 0 0
\(115\) 160.367 + 58.3687i 1.39449 + 0.507554i
\(116\) −189.188 + 109.228i −1.63093 + 0.941617i
\(117\) 0 0
\(118\) −100.226 + 173.596i −0.849369 + 1.47115i
\(119\) −65.0872 77.5679i −0.546951 0.651831i
\(120\) 0 0
\(121\) 20.7425 117.637i 0.171426 0.972203i
\(122\) −330.582 58.2905i −2.70969 0.477791i
\(123\) 0 0
\(124\) 85.7513 71.9539i 0.691542 0.580273i
\(125\) 16.0295 + 9.25462i 0.128236 + 0.0740369i
\(126\) 0 0
\(127\) −0.644295 1.11595i −0.00507319 0.00878702i 0.863478 0.504387i \(-0.168282\pi\)
−0.868551 + 0.495600i \(0.834948\pi\)
\(128\) −78.7041 + 216.238i −0.614876 + 1.68936i
\(129\) 0 0
\(130\) 93.5217 + 78.4740i 0.719397 + 0.603646i
\(131\) 31.4312 + 86.3564i 0.239933 + 0.659209i 0.999957 + 0.00931439i \(0.00296490\pi\)
−0.760024 + 0.649895i \(0.774813\pi\)
\(132\) 0 0
\(133\) −15.0463 85.3321i −0.113130 0.641595i
\(134\) 261.358i 1.95043i
\(135\) 0 0
\(136\) 160.860 1.18279
\(137\) 58.1686 10.2567i 0.424588 0.0748664i 0.0427287 0.999087i \(-0.486395\pi\)
0.381860 + 0.924220i \(0.375284\pi\)
\(138\) 0 0
\(139\) 47.4498 17.2703i 0.341365 0.124247i −0.165648 0.986185i \(-0.552972\pi\)
0.507013 + 0.861938i \(0.330749\pi\)
\(140\) −198.895 + 237.034i −1.42068 + 1.69310i
\(141\) 0 0
\(142\) −143.389 52.1894i −1.00978 0.367531i
\(143\) 5.75477 3.32252i 0.0402432 0.0232344i
\(144\) 0 0
\(145\) −106.570 + 184.584i −0.734963 + 1.27299i
\(146\) −147.401 175.665i −1.00959 1.20319i
\(147\) 0 0
\(148\) 63.7460 361.522i 0.430717 2.44271i
\(149\) −71.5827 12.6220i −0.480421 0.0847112i −0.0718072 0.997419i \(-0.522877\pi\)
−0.408614 + 0.912707i \(0.633988\pi\)
\(150\) 0 0
\(151\) −2.59942 + 2.18117i −0.0172147 + 0.0144449i −0.651354 0.758774i \(-0.725799\pi\)
0.634140 + 0.773219i \(0.281354\pi\)
\(152\) 119.209 + 68.8255i 0.784272 + 0.452800i
\(153\) 0 0
\(154\) 13.1991 + 22.8616i 0.0857087 + 0.148452i
\(155\) 37.3542 102.630i 0.240995 0.662127i
\(156\) 0 0
\(157\) −196.581 164.951i −1.25211 1.05064i −0.996477 0.0838678i \(-0.973273\pi\)
−0.255630 0.966775i \(-0.582283\pi\)
\(158\) 44.9586 + 123.523i 0.284548 + 0.781789i
\(159\) 0 0
\(160\) 26.5979 + 150.844i 0.166237 + 0.942776i
\(161\) 158.333i 0.983433i
\(162\) 0 0
\(163\) −265.211 −1.62706 −0.813530 0.581523i \(-0.802457\pi\)
−0.813530 + 0.581523i \(0.802457\pi\)
\(164\) −7.50087 + 1.32261i −0.0457370 + 0.00806467i
\(165\) 0 0
\(166\) −131.828 + 47.9814i −0.794144 + 0.289045i
\(167\) 2.08108 2.48014i 0.0124616 0.0148511i −0.759778 0.650183i \(-0.774692\pi\)
0.772239 + 0.635332i \(0.219137\pi\)
\(168\) 0 0
\(169\) 132.016 + 48.0498i 0.781159 + 0.284319i
\(170\) 314.189 181.397i 1.84817 1.06704i
\(171\) 0 0
\(172\) 170.262 294.903i 0.989898 1.71455i
\(173\) 123.720 + 147.444i 0.715145 + 0.852276i 0.994149 0.108013i \(-0.0344490\pi\)
−0.279005 + 0.960290i \(0.590005\pi\)
\(174\) 0 0
\(175\) −24.7209 + 140.199i −0.141262 + 0.801138i
\(176\) −6.74003 1.18845i −0.0382956 0.00675255i
\(177\) 0 0
\(178\) 181.790 152.540i 1.02129 0.856968i
\(179\) 191.363 + 110.484i 1.06907 + 0.617228i 0.927927 0.372762i \(-0.121589\pi\)
0.141142 + 0.989989i \(0.454922\pi\)
\(180\) 0 0
\(181\) −72.7860 126.069i −0.402133 0.696514i 0.591851 0.806048i \(-0.298398\pi\)
−0.993983 + 0.109534i \(0.965064\pi\)
\(182\) 38.7394 106.435i 0.212854 0.584810i
\(183\) 0 0
\(184\) 192.683 + 161.680i 1.04719 + 0.878697i
\(185\) −122.500 336.566i −0.662161 1.81927i
\(186\) 0 0
\(187\) −3.42902 19.4470i −0.0183370 0.103994i
\(188\) 406.093i 2.16007i
\(189\) 0 0
\(190\) 310.452 1.63396
\(191\) 76.9588 13.5699i 0.402926 0.0710466i 0.0314869 0.999504i \(-0.489976\pi\)
0.371439 + 0.928458i \(0.378865\pi\)
\(192\) 0 0
\(193\) 210.410 76.5828i 1.09020 0.396802i 0.266508 0.963833i \(-0.414130\pi\)
0.823697 + 0.567031i \(0.191908\pi\)
\(194\) 2.41871 2.88250i 0.0124676 0.0148583i
\(195\) 0 0
\(196\) −54.8385 19.9596i −0.279788 0.101835i
\(197\) −299.369 + 172.841i −1.51964 + 0.877364i −0.519907 + 0.854223i \(0.674033\pi\)
−0.999732 + 0.0231411i \(0.992633\pi\)
\(198\) 0 0
\(199\) 78.7794 136.450i 0.395876 0.685678i −0.597336 0.801991i \(-0.703774\pi\)
0.993213 + 0.116313i \(0.0371075\pi\)
\(200\) −145.372 173.247i −0.726859 0.866237i
\(201\) 0 0
\(202\) 6.55405 37.1699i 0.0324458 0.184009i
\(203\) 194.741 + 34.3381i 0.959315 + 0.169153i
\(204\) 0 0
\(205\) −5.69266 + 4.77671i −0.0277691 + 0.0233010i
\(206\) −473.773 273.533i −2.29987 1.32783i
\(207\) 0 0
\(208\) 14.6827 + 25.4311i 0.0705897 + 0.122265i
\(209\) 5.77943 15.8788i 0.0276528 0.0759753i
\(210\) 0 0
\(211\) 285.220 + 239.328i 1.35175 + 1.13425i 0.978436 + 0.206549i \(0.0662234\pi\)
0.373315 + 0.927705i \(0.378221\pi\)
\(212\) −33.3736 91.6931i −0.157422 0.432515i
\(213\) 0 0
\(214\) −62.2613 353.101i −0.290940 1.65001i
\(215\) 332.238i 1.54529i
\(216\) 0 0
\(217\) −101.328 −0.466950
\(218\) 577.176 101.772i 2.64760 0.466843i
\(219\) 0 0
\(220\) −56.7041 + 20.6386i −0.257746 + 0.0938119i
\(221\) −54.4619 + 64.9051i −0.246434 + 0.293688i
\(222\) 0 0
\(223\) −87.7683 31.9451i −0.393580 0.143251i 0.137646 0.990481i \(-0.456046\pi\)
−0.531226 + 0.847230i \(0.678269\pi\)
\(224\) 123.069 71.0541i 0.549417 0.317206i
\(225\) 0 0
\(226\) 208.146 360.520i 0.921001 1.59522i
\(227\) −234.731 279.742i −1.03406 1.23234i −0.972174 0.234261i \(-0.924733\pi\)
−0.0618854 0.998083i \(-0.519711\pi\)
\(228\) 0 0
\(229\) −18.4988 + 104.912i −0.0807808 + 0.458131i 0.917407 + 0.397951i \(0.130279\pi\)
−0.998188 + 0.0601798i \(0.980833\pi\)
\(230\) 558.669 + 98.5085i 2.42900 + 0.428298i
\(231\) 0 0
\(232\) −240.646 + 201.926i −1.03727 + 0.870370i
\(233\) 206.035 + 118.954i 0.884270 + 0.510533i 0.872064 0.489392i \(-0.162781\pi\)
0.0122058 + 0.999926i \(0.496115\pi\)
\(234\) 0 0
\(235\) 198.105 + 343.128i 0.843001 + 1.46012i
\(236\) −145.397 + 399.475i −0.616089 + 1.69269i
\(237\) 0 0
\(238\) −257.844 216.357i −1.08338 0.909063i
\(239\) 29.3909 + 80.7509i 0.122975 + 0.337870i 0.985870 0.167513i \(-0.0535736\pi\)
−0.862895 + 0.505383i \(0.831351\pi\)
\(240\) 0 0
\(241\) −5.09875 28.9164i −0.0211566 0.119985i 0.972400 0.233318i \(-0.0749584\pi\)
−0.993557 + 0.113333i \(0.963847\pi\)
\(242\) 397.069i 1.64078i
\(243\) 0 0
\(244\) −711.906 −2.91765
\(245\) −56.0728 + 9.88715i −0.228869 + 0.0403557i
\(246\) 0 0
\(247\) −68.1308 + 24.7976i −0.275833 + 0.100395i
\(248\) 103.470 123.311i 0.417219 0.497223i
\(249\) 0 0
\(250\) 57.8162 + 21.0434i 0.231265 + 0.0841735i
\(251\) 108.333 62.5458i 0.431604 0.249186i −0.268426 0.963300i \(-0.586503\pi\)
0.700030 + 0.714114i \(0.253170\pi\)
\(252\) 0 0
\(253\) 15.4388 26.7407i 0.0610228 0.105695i
\(254\) −2.75333 3.28129i −0.0108399 0.0129184i
\(255\) 0 0
\(256\) −66.1313 + 375.049i −0.258325 + 1.46504i
\(257\) −229.989 40.5533i −0.894899 0.157795i −0.292760 0.956186i \(-0.594574\pi\)
−0.602139 + 0.798391i \(0.705685\pi\)
\(258\) 0 0
\(259\) −254.554 + 213.596i −0.982835 + 0.824696i
\(260\) 224.225 + 129.456i 0.862405 + 0.497910i
\(261\) 0 0
\(262\) 152.740 + 264.554i 0.582979 + 1.00975i
\(263\) −42.2322 + 116.032i −0.160579 + 0.441186i −0.993723 0.111869i \(-0.964316\pi\)
0.833144 + 0.553056i \(0.186538\pi\)
\(264\) 0 0
\(265\) −72.9299 61.1955i −0.275207 0.230926i
\(266\) −98.5117 270.659i −0.370345 1.01751i
\(267\) 0 0
\(268\) 96.2501 + 545.862i 0.359142 + 2.03680i
\(269\) 509.553i 1.89425i 0.320867 + 0.947124i \(0.396026\pi\)
−0.320867 + 0.947124i \(0.603974\pi\)
\(270\) 0 0
\(271\) 49.6722 0.183292 0.0916461 0.995792i \(-0.470787\pi\)
0.0916461 + 0.995792i \(0.470787\pi\)
\(272\) 85.9388 15.1533i 0.315951 0.0557107i
\(273\) 0 0
\(274\) 184.501 67.1528i 0.673361 0.245083i
\(275\) −17.8457 + 21.2677i −0.0648934 + 0.0773370i
\(276\) 0 0
\(277\) −107.224 39.0265i −0.387092 0.140890i 0.141141 0.989989i \(-0.454923\pi\)
−0.528233 + 0.849100i \(0.677145\pi\)
\(278\) 145.363 83.9254i 0.522889 0.301890i
\(279\) 0 0
\(280\) −222.479 + 385.345i −0.794568 + 1.37623i
\(281\) 16.6521 + 19.8451i 0.0592600 + 0.0706233i 0.794860 0.606793i \(-0.207544\pi\)
−0.735600 + 0.677416i \(0.763100\pi\)
\(282\) 0 0
\(283\) −27.3526 + 155.125i −0.0966525 + 0.548143i 0.897576 + 0.440860i \(0.145326\pi\)
−0.994228 + 0.107284i \(0.965785\pi\)
\(284\) −318.697 56.1948i −1.12217 0.197869i
\(285\) 0 0
\(286\) 16.9210 14.1984i 0.0591644 0.0496449i
\(287\) 5.97082 + 3.44725i 0.0208042 + 0.0120113i
\(288\) 0 0
\(289\) −18.6082 32.2303i −0.0643881 0.111523i
\(290\) −242.321 + 665.770i −0.835588 + 2.29576i
\(291\) 0 0
\(292\) −372.547 312.604i −1.27585 1.07056i
\(293\) 143.626 + 394.610i 0.490192 + 1.34679i 0.900505 + 0.434846i \(0.143197\pi\)
−0.410313 + 0.911945i \(0.634581\pi\)
\(294\) 0 0
\(295\) 72.0236 + 408.466i 0.244148 + 1.38463i
\(296\) 527.892i 1.78342i
\(297\) 0 0
\(298\) −241.620 −0.810804
\(299\) −130.472 + 23.0058i −0.436363 + 0.0769425i
\(300\) 0 0
\(301\) −289.653 + 105.425i −0.962302 + 0.350249i
\(302\) −7.25046 + 8.64076i −0.0240082 + 0.0286118i
\(303\) 0 0
\(304\) 70.1708 + 25.5401i 0.230825 + 0.0840134i
\(305\) −601.526 + 347.291i −1.97222 + 1.13866i
\(306\) 0 0
\(307\) −101.037 + 175.001i −0.329110 + 0.570035i −0.982336 0.187128i \(-0.940082\pi\)
0.653225 + 0.757163i \(0.273415\pi\)
\(308\) 35.9864 + 42.8870i 0.116839 + 0.139243i
\(309\) 0 0
\(310\) 63.0424 357.531i 0.203363 1.15333i
\(311\) −261.202 46.0570i −0.839879 0.148093i −0.262870 0.964831i \(-0.584669\pi\)
−0.577009 + 0.816738i \(0.695780\pi\)
\(312\) 0 0
\(313\) 211.230 177.243i 0.674858 0.566273i −0.239641 0.970862i \(-0.577030\pi\)
0.914499 + 0.404589i \(0.132585\pi\)
\(314\) −738.742 426.513i −2.35268 1.35832i
\(315\) 0 0
\(316\) 139.388 + 241.428i 0.441102 + 0.764012i
\(317\) 11.9728 32.8949i 0.0377689 0.103769i −0.919375 0.393383i \(-0.871305\pi\)
0.957144 + 0.289614i \(0.0935269\pi\)
\(318\) 0 0
\(319\) 29.5414 + 24.7882i 0.0926064 + 0.0777060i
\(320\) 225.892 + 620.633i 0.705912 + 1.93948i
\(321\) 0 0
\(322\) −91.3937 518.319i −0.283831 1.60969i
\(323\) 215.457i 0.667049i
\(324\) 0 0
\(325\) 119.122 0.366528
\(326\) −868.197 + 153.086i −2.66318 + 0.469590i
\(327\) 0 0
\(328\) −10.2922 + 3.74605i −0.0313786 + 0.0114209i
\(329\) 236.285 281.593i 0.718191 0.855907i
\(330\) 0 0
\(331\) −198.147 72.1197i −0.598633 0.217884i 0.0248895 0.999690i \(-0.492077\pi\)
−0.623522 + 0.781806i \(0.714299\pi\)
\(332\) −257.660 + 148.760i −0.776086 + 0.448073i
\(333\) 0 0
\(334\) 5.38105 9.32025i 0.0161109 0.0279049i
\(335\) 347.616 + 414.272i 1.03766 + 1.23663i
\(336\) 0 0
\(337\) 26.7884 151.925i 0.0794908 0.450815i −0.918919 0.394446i \(-0.870937\pi\)
0.998410 0.0563691i \(-0.0179523\pi\)
\(338\) 459.904 + 81.0935i 1.36066 + 0.239921i
\(339\) 0 0
\(340\) 589.400 494.566i 1.73353 1.45460i
\(341\) −17.1133 9.88034i −0.0501855 0.0289746i
\(342\) 0 0
\(343\) 182.756 + 316.543i 0.532817 + 0.922867i
\(344\) 167.480 460.147i 0.486860 1.33764i
\(345\) 0 0
\(346\) 490.119 + 411.259i 1.41653 + 1.18861i
\(347\) −100.310 275.600i −0.289078 0.794236i −0.996196 0.0871403i \(-0.972227\pi\)
0.707118 0.707096i \(-0.249995\pi\)
\(348\) 0 0
\(349\) −71.0269 402.813i −0.203515 1.15419i −0.899759 0.436387i \(-0.856258\pi\)
0.696244 0.717806i \(-0.254853\pi\)
\(350\) 473.227i 1.35208i
\(351\) 0 0
\(352\) 27.7135 0.0787316
\(353\) 492.465 86.8349i 1.39508 0.245991i 0.574963 0.818180i \(-0.305017\pi\)
0.820122 + 0.572188i \(0.193905\pi\)
\(354\) 0 0
\(355\) −296.697 + 107.989i −0.835766 + 0.304194i
\(356\) 323.504 385.538i 0.908720 1.08297i
\(357\) 0 0
\(358\) 690.223 + 251.221i 1.92800 + 0.701734i
\(359\) 216.295 124.878i 0.602492 0.347849i −0.167529 0.985867i \(-0.553579\pi\)
0.770021 + 0.638018i \(0.220246\pi\)
\(360\) 0 0
\(361\) 88.3143 152.965i 0.244638 0.423725i
\(362\) −311.043 370.687i −0.859235 1.02400i
\(363\) 0 0
\(364\) 41.7125 236.563i 0.114595 0.649900i
\(365\) −467.283 82.3945i −1.28023 0.225738i
\(366\) 0 0
\(367\) −245.235 + 205.776i −0.668215 + 0.560699i −0.912536 0.408996i \(-0.865879\pi\)
0.244322 + 0.969694i \(0.421435\pi\)
\(368\) 118.171 + 68.2260i 0.321117 + 0.185397i
\(369\) 0 0
\(370\) −595.291 1031.07i −1.60889 2.78669i
\(371\) −30.2097 + 83.0004i −0.0814277 + 0.223721i
\(372\) 0 0
\(373\) 151.452 + 127.083i 0.406038 + 0.340706i 0.822822 0.568299i \(-0.192398\pi\)
−0.416784 + 0.909006i \(0.636843\pi\)
\(374\) −22.4506 61.6824i −0.0600282 0.164926i
\(375\) 0 0
\(376\) 101.405 + 575.094i 0.269693 + 1.52950i
\(377\) 165.464i 0.438896i
\(378\) 0 0
\(379\) 364.905 0.962811 0.481405 0.876498i \(-0.340127\pi\)
0.481405 + 0.876498i \(0.340127\pi\)
\(380\) 648.397 114.330i 1.70631 0.300868i
\(381\) 0 0
\(382\) 244.100 88.8451i 0.639005 0.232579i
\(383\) −416.048 + 495.827i −1.08629 + 1.29459i −0.133466 + 0.991053i \(0.542611\pi\)
−0.952821 + 0.303533i \(0.901834\pi\)
\(384\) 0 0
\(385\) 51.3284 + 18.6820i 0.133321 + 0.0485247i
\(386\) 644.593 372.156i 1.66993 0.964134i
\(387\) 0 0
\(388\) 3.99007 6.91101i 0.0102837 0.0178119i
\(389\) −36.3692 43.3431i −0.0934940 0.111422i 0.717269 0.696796i \(-0.245392\pi\)
−0.810763 + 0.585375i \(0.800947\pi\)
\(390\) 0 0
\(391\) −68.3660 + 387.723i −0.174849 + 0.991619i
\(392\) −82.6444 14.5724i −0.210828 0.0371746i
\(393\) 0 0
\(394\) −880.249 + 738.616i −2.23413 + 1.87466i
\(395\) 235.553 + 135.996i 0.596336 + 0.344295i
\(396\) 0 0
\(397\) −327.487 567.224i −0.824905 1.42878i −0.901992 0.431752i \(-0.857895\pi\)
0.0770876 0.997024i \(-0.475438\pi\)
\(398\) 179.131 492.157i 0.450077 1.23658i
\(399\) 0 0
\(400\) −93.9848 78.8626i −0.234962 0.197156i
\(401\) 43.3291 + 119.046i 0.108053 + 0.296872i 0.981921 0.189290i \(-0.0606186\pi\)
−0.873869 + 0.486162i \(0.838396\pi\)
\(402\) 0 0
\(403\) 14.7230 + 83.4984i 0.0365336 + 0.207192i
\(404\) 80.0452i 0.198132i
\(405\) 0 0
\(406\) 657.326 1.61903
\(407\) −63.8190 + 11.2530i −0.156803 + 0.0276487i
\(408\) 0 0
\(409\) −511.819 + 186.287i −1.25139 + 0.455469i −0.880871 0.473356i \(-0.843042\pi\)
−0.370519 + 0.928825i \(0.620820\pi\)
\(410\) −15.8783 + 18.9230i −0.0387275 + 0.0461537i
\(411\) 0 0
\(412\) −1090.24 396.814i −2.64621 0.963141i
\(413\) 333.256 192.405i 0.806915 0.465873i
\(414\) 0 0
\(415\) −145.140 + 251.390i −0.349736 + 0.605760i
\(416\) −76.4335 91.0899i −0.183734 0.218966i
\(417\) 0 0
\(418\) 9.75391 55.3171i 0.0233347 0.132338i
\(419\) 657.974 + 116.018i 1.57034 + 0.276894i 0.889986 0.455988i \(-0.150714\pi\)
0.680356 + 0.732881i \(0.261825\pi\)
\(420\) 0 0
\(421\) 174.221 146.189i 0.413827 0.347242i −0.411982 0.911192i \(-0.635163\pi\)
0.825809 + 0.563950i \(0.190719\pi\)
\(422\) 1071.84 + 618.829i 2.53991 + 1.46642i
\(423\) 0 0
\(424\) −70.1589 121.519i −0.165469 0.286601i
\(425\) 121.072 332.644i 0.284876 0.782691i
\(426\) 0 0
\(427\) 493.651 + 414.222i 1.15609 + 0.970076i
\(428\) −260.073 714.544i −0.607647 1.66950i
\(429\) 0 0
\(430\) −191.776 1087.62i −0.445992 2.52934i
\(431\) 429.608i 0.996769i −0.866956 0.498385i \(-0.833927\pi\)
0.866956 0.498385i \(-0.166073\pi\)
\(432\) 0 0
\(433\) −11.9987 −0.0277106 −0.0138553 0.999904i \(-0.504410\pi\)
−0.0138553 + 0.999904i \(0.504410\pi\)
\(434\) −331.709 + 58.4892i −0.764305 + 0.134768i
\(435\) 0 0
\(436\) 1167.99 425.113i 2.67887 0.975029i
\(437\) −216.556 + 258.082i −0.495552 + 0.590576i
\(438\) 0 0
\(439\) 70.8223 + 25.7772i 0.161327 + 0.0587180i 0.421421 0.906865i \(-0.361531\pi\)
−0.260094 + 0.965583i \(0.583754\pi\)
\(440\) −75.1487 + 43.3871i −0.170793 + 0.0986071i
\(441\) 0 0
\(442\) −140.822 + 243.911i −0.318602 + 0.551834i
\(443\) −159.401 189.967i −0.359822 0.428819i 0.555516 0.831506i \(-0.312521\pi\)
−0.915338 + 0.402687i \(0.868076\pi\)
\(444\) 0 0
\(445\) 85.2676 483.576i 0.191612 1.08669i
\(446\) −305.759 53.9135i −0.685558 0.120882i
\(447\) 0 0
\(448\) 469.402 393.875i 1.04777 0.879186i
\(449\) −178.012 102.775i −0.396462 0.228898i 0.288494 0.957482i \(-0.406845\pi\)
−0.684956 + 0.728584i \(0.740179\pi\)
\(450\) 0 0
\(451\) 0.672273 + 1.16441i 0.00149063 + 0.00258184i
\(452\) 301.958 829.622i 0.668048 1.83545i
\(453\) 0 0
\(454\) −929.893 780.273i −2.04822 1.71866i
\(455\) −80.1584 220.233i −0.176172 0.484029i
\(456\) 0 0
\(457\) 110.972 + 629.353i 0.242827 + 1.37714i 0.825486 + 0.564423i \(0.190901\pi\)
−0.582659 + 0.812717i \(0.697988\pi\)
\(458\) 354.118i 0.773184i
\(459\) 0 0
\(460\) 1203.09 2.61542
\(461\) 139.493 24.5964i 0.302588 0.0533545i −0.0202925 0.999794i \(-0.506460\pi\)
0.322881 + 0.946440i \(0.395349\pi\)
\(462\) 0 0
\(463\) 264.759 96.3643i 0.571833 0.208130i −0.0398874 0.999204i \(-0.512700\pi\)
0.611721 + 0.791074i \(0.290478\pi\)
\(464\) −109.543 + 130.548i −0.236083 + 0.281353i
\(465\) 0 0
\(466\) 743.141 + 270.481i 1.59472 + 0.580432i
\(467\) −462.423 + 266.980i −0.990199 + 0.571692i −0.905334 0.424700i \(-0.860379\pi\)
−0.0848656 + 0.996392i \(0.527046\pi\)
\(468\) 0 0
\(469\) 250.868 434.515i 0.534899 0.926472i
\(470\) 846.582 + 1008.92i 1.80124 + 2.14663i
\(471\) 0 0
\(472\) −106.154 + 602.029i −0.224902 + 1.27549i
\(473\) −59.1992 10.4384i −0.125157 0.0220685i
\(474\) 0 0
\(475\) 232.049 194.713i 0.488525 0.409921i
\(476\) −618.201 356.918i −1.29874 0.749828i
\(477\) 0 0
\(478\) 142.826 + 247.382i 0.298799 + 0.517535i
\(479\) −58.0298 + 159.436i −0.121148 + 0.332851i −0.985412 0.170188i \(-0.945563\pi\)
0.864264 + 0.503039i \(0.167785\pi\)
\(480\) 0 0
\(481\) 212.999 + 178.727i 0.442825 + 0.371574i
\(482\) −33.3826 91.7180i −0.0692585 0.190286i
\(483\) 0 0
\(484\) −146.228 829.303i −0.302125 1.71344i
\(485\) 7.78596i 0.0160535i
\(486\) 0 0
\(487\) 20.8058 0.0427223 0.0213612 0.999772i \(-0.493200\pi\)
0.0213612 + 0.999772i \(0.493200\pi\)
\(488\) −1008.18 + 177.769i −2.06593 + 0.364280i
\(489\) 0 0
\(490\) −177.853 + 64.7333i −0.362966 + 0.132109i
\(491\) −97.1410 + 115.768i −0.197843 + 0.235780i −0.855840 0.517240i \(-0.826959\pi\)
0.657997 + 0.753020i \(0.271404\pi\)
\(492\) 0 0
\(493\) −462.052 168.173i −0.937226 0.341122i
\(494\) −208.720 + 120.504i −0.422510 + 0.243936i
\(495\) 0 0
\(496\) 43.6626 75.6258i 0.0880294 0.152471i
\(497\) 188.294 + 224.400i 0.378862 + 0.451510i
\(498\) 0 0
\(499\) 141.971 805.156i 0.284510 1.61354i −0.422519 0.906354i \(-0.638854\pi\)
0.707029 0.707184i \(-0.250035\pi\)
\(500\) 128.502 + 22.6584i 0.257005 + 0.0453168i
\(501\) 0 0
\(502\) 318.535 267.283i 0.634532 0.532436i
\(503\) 201.176 + 116.149i 0.399953 + 0.230913i 0.686464 0.727164i \(-0.259162\pi\)
−0.286511 + 0.958077i \(0.592495\pi\)
\(504\) 0 0
\(505\) −39.0487 67.6343i −0.0773241 0.133929i
\(506\) 35.1050 96.4503i 0.0693776 0.190613i
\(507\) 0 0
\(508\) −6.95888 5.83920i −0.0136986 0.0114945i
\(509\) −110.730 304.227i −0.217543 0.597696i 0.782133 0.623111i \(-0.214131\pi\)
−0.999677 + 0.0254151i \(0.991909\pi\)
\(510\) 0 0
\(511\) 76.4435 + 433.533i 0.149596 + 0.848401i
\(512\) 345.476i 0.674758i
\(513\) 0 0
\(514\) −776.303 −1.51032
\(515\) −1114.78 + 196.565i −2.16461 + 0.381680i
\(516\) 0 0
\(517\) 67.3638 24.5184i 0.130297 0.0474244i
\(518\) −710.018 + 846.166i −1.37069 + 1.63353i
\(519\) 0 0
\(520\) 349.866 + 127.341i 0.672819 + 0.244886i
\(521\) −480.156 + 277.218i −0.921604 + 0.532088i −0.884146 0.467210i \(-0.845259\pi\)
−0.0374577 + 0.999298i \(0.511926\pi\)
\(522\) 0 0
\(523\) −472.881 + 819.053i −0.904170 + 1.56607i −0.0821414 + 0.996621i \(0.526176\pi\)
−0.822028 + 0.569447i \(0.807157\pi\)
\(524\) 416.435 + 496.288i 0.794723 + 0.947114i
\(525\) 0 0
\(526\) −71.2750 + 404.221i −0.135504 + 0.768481i
\(527\) 248.131 + 43.7522i 0.470837 + 0.0830212i
\(528\) 0 0
\(529\) −66.3546 + 55.6782i −0.125434 + 0.105252i
\(530\) −274.068 158.233i −0.517109 0.298553i
\(531\) 0 0
\(532\) −305.423 529.008i −0.574103 0.994376i
\(533\) 1.97311 5.42108i 0.00370190 0.0101709i
\(534\) 0 0
\(535\) −568.327 476.883i −1.06229 0.891370i
\(536\) 272.612 + 748.995i 0.508604 + 1.39738i
\(537\) 0 0
\(538\) 294.127 + 1668.08i 0.546704 + 3.10051i
\(539\) 10.3019i 0.0191129i
\(540\) 0 0
\(541\) −390.158 −0.721179 −0.360590 0.932725i \(-0.617425\pi\)
−0.360590 + 0.932725i \(0.617425\pi\)
\(542\) 162.607 28.6721i 0.300013 0.0529005i
\(543\) 0 0
\(544\) −332.051 + 120.857i −0.610388 + 0.222163i
\(545\) 779.509 928.982i 1.43029 1.70455i
\(546\) 0 0
\(547\) 436.230 + 158.775i 0.797495 + 0.290265i 0.708448 0.705763i \(-0.249396\pi\)
0.0890472 + 0.996027i \(0.471618\pi\)
\(548\) 360.611 208.199i 0.658049 0.379925i
\(549\) 0 0
\(550\) −46.1436 + 79.9230i −0.0838974 + 0.145315i
\(551\) −270.462 322.324i −0.490856 0.584979i
\(552\) 0 0
\(553\) 43.8198 248.514i 0.0792401 0.449393i
\(554\) −373.538 65.8648i −0.674256 0.118889i
\(555\) 0 0
\(556\) 272.692 228.816i 0.490454 0.411540i
\(557\) 203.531 + 117.509i 0.365406 + 0.210967i 0.671450 0.741050i \(-0.265672\pi\)
−0.306043 + 0.952018i \(0.599005\pi\)
\(558\) 0 0
\(559\) 128.961 + 223.367i 0.230700 + 0.399584i
\(560\) −82.5584 + 226.827i −0.147426 + 0.405049i
\(561\) 0 0
\(562\) 65.9674 + 55.3532i 0.117380 + 0.0984933i
\(563\) −28.5919 78.5555i −0.0507849 0.139530i 0.911707 0.410841i \(-0.134765\pi\)
−0.962492 + 0.271311i \(0.912543\pi\)
\(564\) 0 0
\(565\) −149.577 848.294i −0.264738 1.50141i
\(566\) 523.606i 0.925099i
\(567\) 0 0
\(568\) −465.359 −0.819295
\(569\) 907.958 160.097i 1.59571 0.281366i 0.696060 0.717983i \(-0.254935\pi\)
0.899647 + 0.436617i \(0.143824\pi\)
\(570\) 0 0
\(571\) −374.563 + 136.330i −0.655977 + 0.238756i −0.648499 0.761216i \(-0.724603\pi\)
−0.00747873 + 0.999972i \(0.502381\pi\)
\(572\) 30.1117 35.8858i 0.0526429 0.0627374i
\(573\) 0 0
\(574\) 21.5360 + 7.83845i 0.0375191 + 0.0136558i
\(575\) 479.365 276.762i 0.833679 0.481325i
\(576\) 0 0
\(577\) 8.33213 14.4317i 0.0144404 0.0250116i −0.858715 0.512454i \(-0.828737\pi\)
0.873155 + 0.487442i \(0.162070\pi\)
\(578\) −79.5200 94.7682i −0.137578 0.163959i
\(579\) 0 0
\(580\) −260.918 + 1479.74i −0.449859 + 2.55128i
\(581\) 265.223 + 46.7660i 0.456495 + 0.0804923i
\(582\) 0 0
\(583\) −13.1953 + 11.0722i −0.0226335 + 0.0189918i
\(584\) −605.648 349.671i −1.03707 0.598751i
\(585\) 0 0
\(586\) 697.955 + 1208.89i 1.19105 + 2.06296i
\(587\) 63.7700 175.207i 0.108637 0.298478i −0.873448 0.486918i \(-0.838121\pi\)
0.982085 + 0.188440i \(0.0603432\pi\)
\(588\) 0 0
\(589\) 165.164 + 138.589i 0.280415 + 0.235296i
\(590\) 471.554 + 1295.58i 0.799245 + 2.19591i
\(591\) 0 0
\(592\) −49.7286 282.025i −0.0840010 0.476393i
\(593\) 373.725i 0.630228i −0.949054 0.315114i \(-0.897957\pi\)
0.949054 0.315114i \(-0.102043\pi\)
\(594\) 0 0
\(595\) −696.466 −1.17053
\(596\) −504.637 + 88.9811i −0.846706 + 0.149297i
\(597\) 0 0
\(598\) −413.836 + 150.624i −0.692034 + 0.251880i
\(599\) −9.51395 + 11.3383i −0.0158831 + 0.0189287i −0.773928 0.633274i \(-0.781711\pi\)
0.758044 + 0.652203i \(0.226155\pi\)
\(600\) 0 0
\(601\) 182.608 + 66.4637i 0.303839 + 0.110589i 0.489441 0.872037i \(-0.337201\pi\)
−0.185601 + 0.982625i \(0.559423\pi\)
\(602\) −887.356 + 512.315i −1.47401 + 0.851022i
\(603\) 0 0
\(604\) −11.9609 + 20.7169i −0.0198028 + 0.0342995i
\(605\) −528.117 629.385i −0.872921 1.04031i
\(606\) 0 0
\(607\) 100.749 571.378i 0.165979 0.941315i −0.782070 0.623191i \(-0.785836\pi\)
0.948049 0.318124i \(-0.103053\pi\)
\(608\) −297.785 52.5076i −0.489779 0.0863612i
\(609\) 0 0
\(610\) −1768.70 + 1484.11i −2.89950 + 2.43297i
\(611\) −266.377 153.793i −0.435968 0.251706i
\(612\) 0 0
\(613\) 80.1803 + 138.876i 0.130800 + 0.226552i 0.923985 0.382428i \(-0.124912\pi\)
−0.793185 + 0.608980i \(0.791579\pi\)
\(614\) −229.740 + 631.205i −0.374169 + 1.02802i
\(615\) 0 0
\(616\) 61.6719 + 51.7489i 0.100117 + 0.0840079i
\(617\) 142.229 + 390.772i 0.230518 + 0.633343i 0.999986 0.00534297i \(-0.00170073\pi\)
−0.769468 + 0.638685i \(0.779479\pi\)
\(618\) 0 0
\(619\) −113.862 645.746i −0.183946 1.04321i −0.927302 0.374313i \(-0.877878\pi\)
0.743356 0.668895i \(-0.233233\pi\)
\(620\) 769.943i 1.24184i
\(621\) 0 0
\(622\) −881.659 −1.41746
\(623\) −448.650 + 79.1091i −0.720144 + 0.126981i
\(624\) 0 0
\(625\) 643.721 234.295i 1.02995 0.374873i
\(626\) 589.176 702.153i 0.941176 1.12165i
\(627\) 0 0
\(628\) −1699.98 618.742i −2.70697 0.985258i
\(629\) 715.577 413.139i 1.13764 0.656818i
\(630\) 0 0
\(631\) 321.500 556.855i 0.509509 0.882496i −0.490430 0.871481i \(-0.663160\pi\)
0.999939 0.0110155i \(-0.00350642\pi\)
\(632\) 257.683 + 307.095i 0.407727 + 0.485910i
\(633\) 0 0
\(634\) 20.2063 114.596i 0.0318712 0.180751i
\(635\) −8.72847 1.53906i −0.0137456 0.00242372i
\(636\) 0 0
\(637\) 33.8606 28.4124i 0.0531563 0.0446034i
\(638\) 111.016 + 64.0948i 0.174006 + 0.100462i
\(639\) 0 0
\(640\) 791.384 + 1370.72i 1.23654 + 2.14175i
\(641\) −40.2366 + 110.549i −0.0627717 + 0.172464i −0.967114 0.254345i \(-0.918140\pi\)
0.904342 + 0.426809i \(0.140362\pi\)
\(642\) 0 0
\(643\) 332.529 + 279.025i 0.517153 + 0.433943i 0.863638 0.504113i \(-0.168180\pi\)
−0.346485 + 0.938055i \(0.612625\pi\)
\(644\) −381.762 1048.88i −0.592799 1.62870i
\(645\) 0 0
\(646\) 124.367 + 705.322i 0.192519 + 1.09183i
\(647\) 202.797i 0.313443i −0.987643 0.156721i \(-0.949908\pi\)
0.987643 0.156721i \(-0.0500924\pi\)
\(648\) 0 0
\(649\) 75.0446 0.115631
\(650\) 389.958 68.7601i 0.599935 0.105785i
\(651\) 0 0
\(652\) −1756.90 + 639.461i −2.69464 + 0.980768i
\(653\) 575.359 685.687i 0.881102 1.05006i −0.117275 0.993099i \(-0.537416\pi\)
0.998377 0.0569567i \(-0.0181397\pi\)
\(654\) 0 0
\(655\) 593.973 + 216.188i 0.906828 + 0.330059i
\(656\) −5.14569 + 2.97087i −0.00784404 + 0.00452876i
\(657\) 0 0
\(658\) 610.961 1058.22i 0.928513 1.60823i
\(659\) 541.106 + 644.865i 0.821102 + 0.978551i 0.999986 0.00531879i \(-0.00169303\pi\)
−0.178884 + 0.983870i \(0.557249\pi\)
\(660\) 0 0
\(661\) 39.2395 222.538i 0.0593639 0.336669i −0.940632 0.339427i \(-0.889767\pi\)
0.999996 + 0.00275788i \(0.000877862\pi\)
\(662\) −690.286 121.716i −1.04273 0.183861i
\(663\) 0 0
\(664\) −327.743 + 275.009i −0.493589 + 0.414170i
\(665\) −516.135 297.991i −0.776143 0.448106i
\(666\) 0 0
\(667\) −384.430 665.853i −0.576357 0.998280i
\(668\) 7.80628 21.4476i 0.0116860 0.0321071i
\(669\) 0 0
\(670\) 1377.09 + 1155.51i 2.05535 + 1.72465i
\(671\) 42.9823 + 118.093i 0.0640571 + 0.175996i
\(672\) 0 0
\(673\) −19.1977 108.875i −0.0285255 0.161776i 0.967217 0.253950i \(-0.0817297\pi\)
−0.995743 + 0.0921733i \(0.970619\pi\)
\(674\) 512.805i 0.760838i
\(675\) 0 0
\(676\) 990.401 1.46509
\(677\) 2.81567 0.496479i 0.00415904 0.000733352i −0.171568 0.985172i \(-0.554883\pi\)
0.175727 + 0.984439i \(0.443772\pi\)
\(678\) 0 0
\(679\) −6.78797 + 2.47062i −0.00999702 + 0.00363862i
\(680\) 711.191 847.564i 1.04587 1.24642i
\(681\) 0 0
\(682\) −61.7253 22.4662i −0.0905063 0.0329416i
\(683\) 843.279 486.868i 1.23467 0.712837i 0.266670 0.963788i \(-0.414077\pi\)
0.968000 + 0.250951i \(0.0807434\pi\)
\(684\) 0 0
\(685\) 203.132 351.835i 0.296543 0.513628i
\(686\) 780.990 + 930.747i 1.13847 + 1.35677i
\(687\) 0 0
\(688\) 46.1288 261.609i 0.0670476 0.380246i
\(689\) 72.7851 + 12.8340i 0.105639 + 0.0186270i
\(690\) 0 0
\(691\) 501.018 420.404i 0.725063 0.608400i −0.203718 0.979030i \(-0.565303\pi\)
0.928781 + 0.370630i \(0.120858\pi\)
\(692\) 1175.10 + 678.443i 1.69812 + 0.980409i
\(693\) 0 0
\(694\) −487.460 844.305i −0.702391 1.21658i
\(695\) 118.788 326.367i 0.170918 0.469592i
\(696\) 0 0
\(697\) −13.1328 11.0197i −0.0188419 0.0158102i
\(698\) −465.028 1277.65i −0.666230 1.83045i
\(699\) 0 0
\(700\) 174.275 + 988.362i 0.248964 + 1.41195i
\(701\) 41.7083i 0.0594983i 0.999557 + 0.0297492i \(0.00947085\pi\)
−0.999557 + 0.0297492i \(0.990529\pi\)
\(702\) 0 0
\(703\) 707.064 1.00578
\(704\) 117.683 20.7507i 0.167164 0.0294755i
\(705\) 0 0
\(706\) 1562.01 568.527i 2.21249 0.805279i
\(707\) −46.5743 + 55.5051i −0.0658759 + 0.0785079i
\(708\) 0 0
\(709\) 465.612 + 169.469i 0.656716 + 0.239025i 0.648818 0.760944i \(-0.275264\pi\)
0.00789831 + 0.999969i \(0.497486\pi\)
\(710\) −908.936 + 524.774i −1.28019 + 0.739119i
\(711\) 0 0
\(712\) 361.863 626.766i 0.508235 0.880289i
\(713\) 253.244 + 301.805i 0.355181 + 0.423288i
\(714\) 0 0
\(715\) 7.93669 45.0112i 0.0111003 0.0629527i
\(716\) 1534.09 + 270.501i 2.14258 + 0.377795i
\(717\) 0 0
\(718\) 635.981 533.652i 0.885768 0.743248i
\(719\) −124.160 71.6839i −0.172684 0.0996994i 0.411167 0.911560i \(-0.365121\pi\)
−0.583851 + 0.811861i \(0.698455\pi\)
\(720\) 0 0
\(721\) 525.108 + 909.514i 0.728305 + 1.26146i
\(722\) 200.811 551.725i 0.278132 0.764161i
\(723\) 0 0
\(724\) −786.145 659.654i −1.08584 0.911124i
\(725\) 236.441 + 649.616i 0.326126 + 0.896023i
\(726\) 0 0
\(727\) −57.2876 324.894i −0.0788001 0.446897i −0.998523 0.0543294i \(-0.982698\pi\)
0.919723 0.392568i \(-0.128413\pi\)
\(728\) 345.429i 0.474490i
\(729\) 0 0
\(730\) −1577.26 −2.16063
\(731\) 754.820 133.095i 1.03258 0.182073i
\(732\) 0 0
\(733\) −173.220 + 63.0471i −0.236317 + 0.0860124i −0.457464 0.889228i \(-0.651242\pi\)
0.221147 + 0.975240i \(0.429020\pi\)
\(734\) −684.023 + 815.187i −0.931912 + 1.11061i
\(735\) 0 0
\(736\) −519.215 188.979i −0.705455 0.256765i
\(737\) 84.7378 48.9234i 0.114977 0.0663818i
\(738\) 0 0
\(739\) 225.818 391.128i 0.305572 0.529267i −0.671816 0.740718i \(-0.734486\pi\)
0.977389 + 0.211451i \(0.0678189\pi\)
\(740\) −1623.01 1934.23i −2.19326 2.61383i
\(741\) 0 0
\(742\) −50.9847 + 289.149i −0.0687125 + 0.389688i
\(743\) 588.697 + 103.803i 0.792325 + 0.139708i 0.555141 0.831757i \(-0.312664\pi\)
0.237184 + 0.971465i \(0.423776\pi\)
\(744\) 0 0
\(745\) −382.986 + 321.363i −0.514075 + 0.431360i
\(746\) 569.151 + 328.600i 0.762937 + 0.440482i
\(747\) 0 0
\(748\) −69.6051 120.560i −0.0930549 0.161176i
\(749\) −235.417 + 646.804i −0.314309 + 0.863556i
\(750\) 0 0
\(751\) −477.323 400.522i −0.635584 0.533318i 0.267075 0.963676i \(-0.413943\pi\)
−0.902658 + 0.430358i \(0.858387\pi\)
\(752\) 108.350 + 297.690i 0.144083 + 0.395864i
\(753\) 0 0
\(754\) −95.5099 541.663i −0.126671 0.718386i
\(755\) 23.3397i 0.0309135i
\(756\) 0 0
\(757\) −1029.21 −1.35960 −0.679798 0.733399i \(-0.737933\pi\)
−0.679798 + 0.733399i \(0.737933\pi\)
\(758\) 1194.56 210.633i 1.57593 0.277879i
\(759\) 0 0
\(760\) 889.687 323.820i 1.17064 0.426078i
\(761\) −400.389 + 477.165i −0.526135 + 0.627023i −0.962020 0.272979i \(-0.911991\pi\)
0.435885 + 0.900002i \(0.356435\pi\)
\(762\) 0 0
\(763\) −1057.26 384.811i −1.38566 0.504340i
\(764\) 477.099 275.453i 0.624475 0.360541i
\(765\) 0 0
\(766\) −1075.77 + 1863.30i −1.40441 + 2.43250i
\(767\) −206.972 246.660i −0.269846 0.321590i
\(768\) 0 0
\(769\) −182.061 + 1032.52i −0.236751 + 1.34268i 0.602144 + 0.798388i \(0.294313\pi\)
−0.838895 + 0.544294i \(0.816798\pi\)
\(770\) 178.813 + 31.5296i 0.232225 + 0.0409475i
\(771\) 0 0
\(772\) 1209.22 1014.65i 1.56634 1.31432i
\(773\) −719.632 415.480i −0.930960 0.537490i −0.0438447 0.999038i \(-0.513961\pi\)
−0.887115 + 0.461549i \(0.847294\pi\)
\(774\) 0 0
\(775\) −177.119 306.779i −0.228541 0.395844i
\(776\) 3.92487 10.7835i 0.00505782 0.0138962i
\(777\) 0 0
\(778\) −144.077 120.895i −0.185189 0.155392i
\(779\) −5.01750 13.7855i −0.00644095 0.0176964i
\(780\) 0 0
\(781\) 9.92001 + 56.2592i 0.0127017 + 0.0720348i
\(782\) 1308.72i 1.67355i
\(783\) 0 0
\(784\) −45.5253 −0.0580680
\(785\) −1738.24 + 306.499i −2.21432 + 0.390445i
\(786\) 0 0
\(787\) −174.476 + 63.5042i −0.221698 + 0.0806915i −0.450481 0.892786i \(-0.648748\pi\)
0.228783 + 0.973477i \(0.426525\pi\)
\(788\) −1566.44 + 1866.81i −1.98787 + 2.36905i
\(789\) 0 0
\(790\) 849.608 + 309.232i 1.07545 + 0.391433i
\(791\) −692.099 + 399.584i −0.874967 + 0.505162i
\(792\) 0 0
\(793\) 269.608 466.975i 0.339985 0.588872i
\(794\) −1399.48 1667.84i −1.76257 2.10055i
\(795\) 0 0
\(796\) 192.878 1093.87i 0.242310 1.37421i
\(797\) −1454.45 256.458i −1.82490 0.321779i −0.847119 0.531402i \(-0.821665\pi\)
−0.977782 + 0.209623i \(0.932776\pi\)
\(798\) 0 0
\(799\) −700.200 + 587.537i −0.876345 + 0.735341i
\(800\) 430.245 + 248.402i 0.537806 + 0.310502i
\(801\) 0 0
\(802\) 210.559 + 364.699i 0.262542 + 0.454737i
\(803\) −29.3626 + 80.6730i −0.0365661 + 0.100465i
\(804\) 0 0
\(805\) −834.250 700.019i −1.03634 0.869589i
\(806\) 96.3949 + 264.843i 0.119597 + 0.328589i
\(807\) 0 0
\(808\) −19.9879 113.357i −0.0247375 0.140293i
\(809\) 1487.78i 1.83903i 0.393055 + 0.919515i \(0.371418\pi\)
−0.393055 + 0.919515i \(0.628582\pi\)
\(810\) 0 0
\(811\) 391.709 0.482995 0.241497 0.970401i \(-0.422361\pi\)
0.241497 + 0.970401i \(0.422361\pi\)
\(812\) 1372.87 242.073i 1.69072 0.298120i
\(813\) 0 0
\(814\) −202.423 + 73.6759i −0.248677 + 0.0905109i
\(815\) −1172.55 + 1397.39i −1.43871 + 1.71459i
\(816\) 0 0
\(817\) 616.326 + 224.324i 0.754377 + 0.274571i
\(818\) −1567.96 + 905.265i −1.91683 + 1.10668i
\(819\) 0 0
\(820\) −26.1940 + 45.3693i −0.0319439 + 0.0553285i
\(821\) −1.93532 2.30642i −0.00235727 0.00280928i 0.764865 0.644191i \(-0.222806\pi\)
−0.767222 + 0.641382i \(0.778361\pi\)
\(822\) 0 0
\(823\) −235.153 + 1333.62i −0.285727 + 1.62044i 0.416949 + 0.908930i \(0.363099\pi\)
−0.702676 + 0.711510i \(0.748012\pi\)
\(824\) −1643.04 289.713i −1.99398 0.351593i
\(825\) 0 0
\(826\) 979.888 822.224i 1.18631 0.995428i
\(827\) −1186.03 684.755i −1.43414 0.827999i −0.436703 0.899606i \(-0.643854\pi\)
−0.997433 + 0.0716069i \(0.977187\pi\)
\(828\) 0 0
\(829\) −39.8034 68.9416i −0.0480138 0.0831623i 0.841020 0.541005i \(-0.181956\pi\)
−0.889033 + 0.457842i \(0.848622\pi\)
\(830\) −330.024 + 906.732i −0.397619 + 1.09245i
\(831\) 0 0
\(832\) −392.773 329.576i −0.472084 0.396125i
\(833\) −44.9257 123.432i −0.0539324 0.148178i
\(834\) 0 0
\(835\) −3.86690 21.9303i −0.00463102 0.0262638i
\(836\) 119.125i 0.142494i
\(837\) 0 0
\(838\) 2220.92 2.65026
\(839\) 990.232 174.605i 1.18025 0.208110i 0.451108 0.892470i \(-0.351029\pi\)
0.729145 + 0.684359i \(0.239918\pi\)
\(840\) 0 0
\(841\) 112.055 40.7849i 0.133241 0.0484957i
\(842\) 485.949 579.131i 0.577136 0.687804i
\(843\) 0 0
\(844\) 2466.50 + 897.734i 2.92240 + 1.06367i
\(845\) 836.841 483.150i 0.990344 0.571775i
\(846\) 0 0
\(847\) −381.132 + 660.139i −0.449978 + 0.779385i
\(848\) −48.9296 58.3120i −0.0577000 0.0687641i
\(849\) 0 0
\(850\) 204.333 1158.83i 0.240392 1.36333i
\(851\) 1272.39 + 224.357i 1.49517 + 0.263639i
\(852\) 0 0
\(853\) 270.040 226.590i 0.316577 0.265639i −0.470627 0.882332i \(-0.655972\pi\)
0.787204 + 0.616693i \(0.211528\pi\)
\(854\) 1855.12 + 1071.05i 2.17227 + 1.25416i
\(855\) 0 0
\(856\) −546.733 946.969i −0.638707 1.10627i
\(857\) −412.239 + 1132.62i −0.481025 + 1.32161i 0.427590 + 0.903973i \(0.359363\pi\)
−0.908615 + 0.417634i \(0.862860\pi\)
\(858\) 0 0
\(859\) 484.551 + 406.587i 0.564088 + 0.473326i 0.879678 0.475570i \(-0.157758\pi\)
−0.315590 + 0.948896i \(0.602202\pi\)
\(860\) −801.073 2200.93i −0.931480 2.55922i
\(861\) 0 0
\(862\) −247.980 1406.37i −0.287680 1.63152i
\(863\) 1076.50i 1.24739i 0.781668 + 0.623695i \(0.214369\pi\)
−0.781668 + 0.623695i \(0.785631\pi\)
\(864\) 0 0
\(865\) 1323.87 1.53048
\(866\) −39.2789 + 6.92594i −0.0453568 + 0.00799762i
\(867\) 0 0
\(868\) −671.253 + 244.316i −0.773334 + 0.281470i
\(869\) 31.6329 37.6987i 0.0364015 0.0433817i
\(870\) 0 0
\(871\) −394.509 143.590i −0.452938 0.164856i
\(872\) 1547.91 893.685i 1.77512 1.02487i
\(873\) 0 0
\(874\) −559.949 + 969.860i −0.640674 + 1.10968i
\(875\) −75.9224 90.4809i −0.0867685 0.103407i
\(876\) 0 0
\(877\) 222.484 1261.77i 0.253688 1.43873i −0.545732 0.837960i \(-0.683748\pi\)
0.799419 0.600774i \(-0.205141\pi\)
\(878\) 246.724 + 43.5041i 0.281007 + 0.0495491i
\(879\) 0 0
\(880\) −36.0608 + 30.2586i −0.0409782 + 0.0343848i
\(881\) 787.917 + 454.904i 0.894344 + 0.516350i 0.875361 0.483470i \(-0.160624\pi\)
0.0189831 + 0.999820i \(0.493957\pi\)
\(882\) 0 0
\(883\) −817.068 1415.20i −0.925332 1.60272i −0.791027 0.611782i \(-0.790453\pi\)
−0.134305 0.990940i \(-0.542880\pi\)
\(884\) −204.290 + 561.283i −0.231098 + 0.634935i
\(885\) 0 0
\(886\) −631.471 529.867i −0.712721 0.598044i
\(887\) −203.394 558.821i −0.229306 0.630013i 0.770668 0.637237i \(-0.219923\pi\)
−0.999974 + 0.00722414i \(0.997700\pi\)
\(888\) 0 0
\(889\) 1.42790 + 8.09805i 0.00160619 + 0.00910917i
\(890\) 1632.26i 1.83400i
\(891\) 0 0
\(892\) −658.450 −0.738173
\(893\) −770.287 + 135.822i −0.862583 + 0.152097i
\(894\) 0 0
\(895\) 1428.19 519.819i 1.59574 0.580803i
\(896\) 943.903 1124.90i 1.05346 1.25547i
\(897\) 0 0
\(898\) −642.065 233.692i −0.714994 0.260237i
\(899\) −426.126 + 246.024i −0.474000 + 0.273664i
\(900\) 0 0
\(901\) 109.816 190.206i 0.121882 0.211106i
\(902\) 2.87289 + 3.42377i 0.00318502 + 0.00379576i
\(903\) 0 0
\(904\) 220.458 1250.28i 0.243870 1.38305i
\(905\) −986.055 173.868i −1.08956 0.192119i
\(906\) 0 0
\(907\) 225.773 189.446i 0.248923 0.208871i −0.509785 0.860302i \(-0.670275\pi\)
0.758708 + 0.651430i \(0.225831\pi\)
\(908\) −2229.49 1287.20i −2.45538 1.41762i
\(909\) 0 0
\(910\) −389.531 674.688i −0.428056 0.741416i
\(911\) −285.060 + 783.197i −0.312909 + 0.859711i 0.679157 + 0.733993i \(0.262346\pi\)
−0.992066 + 0.125718i \(0.959877\pi\)
\(912\) 0 0
\(913\) 40.2334 + 33.7598i 0.0440672 + 0.0369768i
\(914\) 726.557 + 1996.20i 0.794920 + 2.18403i
\(915\) 0 0
\(916\) 130.411 + 739.598i 0.142370 + 0.807421i
\(917\) 586.439i 0.639519i
\(918\) 0 0
\(919\) 1687.49 1.83623 0.918114 0.396315i \(-0.129711\pi\)
0.918114 + 0.396315i \(0.129711\pi\)
\(920\) 1703.78 300.422i 1.85193 0.326545i
\(921\) 0 0
\(922\) 442.449 161.038i 0.479879 0.174662i
\(923\) 157.556 187.768i 0.170700 0.203432i
\(924\) 0 0
\(925\) −1091.64 397.323i −1.18015 0.429538i
\(926\) 811.093 468.285i 0.875910 0.505707i
\(927\) 0 0
\(928\) 345.038 597.623i 0.371808 0.643990i
\(929\) 665.672 + 793.316i 0.716546 + 0.853947i 0.994290 0.106708i \(-0.0340311\pi\)
−0.277744 + 0.960655i \(0.589587\pi\)
\(930\) 0 0
\(931\) 19.5185 110.695i 0.0209651 0.118899i
\(932\) 1651.70 + 291.240i 1.77222 + 0.312489i
\(933\) 0 0
\(934\) −1359.68 + 1140.91i −1.45577 + 1.22153i
\(935\) −117.626 67.9113i −0.125803 0.0726324i
\(936\) 0 0
\(937\) 687.817 + 1191.33i 0.734063 + 1.27143i 0.955133 + 0.296176i \(0.0957115\pi\)
−0.221071 + 0.975258i \(0.570955\pi\)
\(938\) 570.429 1567.24i 0.608133 1.67083i
\(939\) 0 0
\(940\) 2139.69 + 1795.41i 2.27627 + 1.91001i
\(941\) 582.906 + 1601.52i 0.619454 + 1.70193i 0.708320 + 0.705891i \(0.249453\pi\)
−0.0888666 + 0.996044i \(0.528324\pi\)
\(942\) 0 0
\(943\) −4.65496 26.3996i −0.00493633 0.0279953i
\(944\) 331.632i 0.351305i
\(945\) 0 0
\(946\) −199.820 −0.211226
\(947\) −22.2441 + 3.92223i −0.0234890 + 0.00414175i −0.185380 0.982667i \(-0.559352\pi\)
0.161891 + 0.986809i \(0.448241\pi\)
\(948\) 0 0
\(949\) 346.141 125.985i 0.364743 0.132756i
\(950\) 647.246 771.358i 0.681311 0.811955i
\(951\) 0 0
\(952\) −964.599 351.085i −1.01323 0.368787i
\(953\) −877.360 + 506.544i −0.920630 + 0.531526i −0.883836 0.467797i \(-0.845048\pi\)
−0.0367941 + 0.999323i \(0.511715\pi\)
\(954\) 0 0
\(955\) 268.750 465.489i 0.281414 0.487423i
\(956\) 389.403 + 464.073i 0.407326 + 0.485432i
\(957\) 0 0
\(958\) −97.9366 + 555.426i −0.102230 + 0.579777i
\(959\) −371.196 65.4518i −0.387065 0.0682500i
\(960\) 0 0
\(961\) −543.023 + 455.650i −0.565060 + 0.474142i
\(962\) 800.441 + 462.135i 0.832059 + 0.480390i
\(963\) 0 0
\(964\) −103.499 179.265i −0.107364 0.185959i
\(965\) 526.748 1447.23i 0.545853 1.49972i
\(966\) 0 0
\(967\) 75.7208 + 63.5373i 0.0783048 + 0.0657055i 0.681100 0.732190i \(-0.261502\pi\)
−0.602795 + 0.797896i \(0.705946\pi\)
\(968\) −414.167 1137.91i −0.427858 1.17553i
\(969\) 0 0
\(970\) −4.49425 25.4882i −0.00463325 0.0262765i
\(971\) 415.261i 0.427664i 0.976871 + 0.213832i \(0.0685944\pi\)
−0.976871 + 0.213832i \(0.931406\pi\)
\(972\) 0 0
\(973\) −322.227 −0.331169
\(974\) 68.1100 12.0096i 0.0699281 0.0123302i
\(975\) 0 0
\(976\) −521.869 + 189.945i −0.534702 + 0.194616i
\(977\) 202.742 241.619i 0.207515 0.247307i −0.652241 0.758011i \(-0.726171\pi\)
0.859756 + 0.510705i \(0.170616\pi\)
\(978\) 0 0
\(979\) −83.4861 30.3864i −0.0852769 0.0310382i
\(980\) −347.618 + 200.697i −0.354712 + 0.204793i
\(981\) 0 0
\(982\) −251.177 + 435.052i −0.255781 + 0.443027i
\(983\) −412.028 491.036i −0.419154 0.499528i 0.514607 0.857426i \(-0.327938\pi\)
−0.933761 + 0.357898i \(0.883493\pi\)
\(984\) 0 0
\(985\) −412.875 + 2341.53i −0.419162 + 2.37719i
\(986\) −1609.65 283.825i −1.63251 0.287855i
\(987\) 0 0
\(988\) −391.546 + 328.546i −0.396302 + 0.332536i
\(989\) 1037.92 + 599.245i 1.04947 + 0.605910i
\(990\) 0 0
\(991\) −464.001 803.674i −0.468215 0.810973i 0.531125 0.847294i \(-0.321769\pi\)
−0.999340 + 0.0363209i \(0.988436\pi\)
\(992\) −120.941 + 332.282i −0.121916 + 0.334962i
\(993\) 0 0
\(994\) 745.931 + 625.911i 0.750434 + 0.629689i
\(995\) −370.652 1018.36i −0.372514 1.02348i
\(996\) 0 0
\(997\) 197.850 + 1122.06i 0.198446 + 1.12544i 0.907426 + 0.420212i \(0.138044\pi\)
−0.708980 + 0.705228i \(0.750844\pi\)
\(998\) 2717.71i 2.72316i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.b.215.5 30
3.2 odd 2 243.3.f.c.215.1 30
9.2 odd 6 27.3.f.a.5.5 30
9.4 even 3 243.3.f.a.53.1 30
9.5 odd 6 243.3.f.d.53.5 30
9.7 even 3 81.3.f.a.44.1 30
27.2 odd 18 inner 243.3.f.b.26.5 30
27.5 odd 18 729.3.b.a.728.27 30
27.7 even 9 27.3.f.a.11.5 yes 30
27.11 odd 18 243.3.f.a.188.1 30
27.16 even 9 243.3.f.d.188.5 30
27.20 odd 18 81.3.f.a.35.1 30
27.22 even 9 729.3.b.a.728.4 30
27.25 even 9 243.3.f.c.26.1 30
36.11 even 6 432.3.bc.a.113.4 30
108.7 odd 18 432.3.bc.a.65.4 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.5 30 9.2 odd 6
27.3.f.a.11.5 yes 30 27.7 even 9
81.3.f.a.35.1 30 27.20 odd 18
81.3.f.a.44.1 30 9.7 even 3
243.3.f.a.53.1 30 9.4 even 3
243.3.f.a.188.1 30 27.11 odd 18
243.3.f.b.26.5 30 27.2 odd 18 inner
243.3.f.b.215.5 30 1.1 even 1 trivial
243.3.f.c.26.1 30 27.25 even 9
243.3.f.c.215.1 30 3.2 odd 2
243.3.f.d.53.5 30 9.5 odd 6
243.3.f.d.188.5 30 27.16 even 9
432.3.bc.a.65.4 30 108.7 odd 18
432.3.bc.a.113.4 30 36.11 even 6
729.3.b.a.728.4 30 27.22 even 9
729.3.b.a.728.27 30 27.5 odd 18