Defining parameters
| Level: | \( N \) | = | \( 243 = 3^{5} \) |
| Weight: | \( k \) | = | \( 3 \) |
| Nonzero newspaces: | \( 5 \) | ||
| Newform subspaces: | \( 24 \) | ||
| Sturm bound: | \(13122\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(243))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 4563 | 3552 | 1011 |
| Cusp forms | 4185 | 3360 | 825 |
| Eisenstein series | 378 | 192 | 186 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(243))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 243.3.b | \(\chi_{243}(242, \cdot)\) | 243.3.b.a | 1 | 1 |
| 243.3.b.b | 1 | |||
| 243.3.b.c | 2 | |||
| 243.3.b.d | 2 | |||
| 243.3.b.e | 2 | |||
| 243.3.b.f | 2 | |||
| 243.3.b.g | 2 | |||
| 243.3.b.h | 12 | |||
| 243.3.d | \(\chi_{243}(80, \cdot)\) | 243.3.d.a | 2 | 2 |
| 243.3.d.b | 2 | |||
| 243.3.d.c | 2 | |||
| 243.3.d.d | 2 | |||
| 243.3.d.e | 2 | |||
| 243.3.d.f | 2 | |||
| 243.3.d.g | 4 | |||
| 243.3.d.h | 4 | |||
| 243.3.d.i | 4 | |||
| 243.3.d.j | 24 | |||
| 243.3.f | \(\chi_{243}(26, \cdot)\) | 243.3.f.a | 30 | 6 |
| 243.3.f.b | 30 | |||
| 243.3.f.c | 30 | |||
| 243.3.f.d | 30 | |||
| 243.3.h | \(\chi_{243}(8, \cdot)\) | 243.3.h.a | 306 | 18 |
| 243.3.j | \(\chi_{243}(2, \cdot)\) | 243.3.j.a | 2862 | 54 |
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)