Properties

Label 243.3
Level 243
Weight 3
Dimension 3360
Nonzero newspaces 5
Newform subspaces 24
Sturm bound 13122
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 243 = 3^{5} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 24 \)
Sturm bound: \(13122\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(243))\).

Total New Old
Modular forms 4563 3552 1011
Cusp forms 4185 3360 825
Eisenstein series 378 192 186

Trace form

\( 3360 q - 36 q^{2} - 54 q^{3} - 60 q^{4} - 36 q^{5} - 54 q^{6} - 60 q^{7} - 36 q^{8} - 54 q^{9} - 84 q^{10} - 36 q^{11} - 54 q^{12} - 60 q^{13} - 36 q^{14} - 54 q^{15} - 36 q^{16} - 36 q^{17} - 54 q^{18}+ \cdots + 972 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(243))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
243.3.b \(\chi_{243}(242, \cdot)\) 243.3.b.a 1 1
243.3.b.b 1
243.3.b.c 2
243.3.b.d 2
243.3.b.e 2
243.3.b.f 2
243.3.b.g 2
243.3.b.h 12
243.3.d \(\chi_{243}(80, \cdot)\) 243.3.d.a 2 2
243.3.d.b 2
243.3.d.c 2
243.3.d.d 2
243.3.d.e 2
243.3.d.f 2
243.3.d.g 4
243.3.d.h 4
243.3.d.i 4
243.3.d.j 24
243.3.f \(\chi_{243}(26, \cdot)\) 243.3.f.a 30 6
243.3.f.b 30
243.3.f.c 30
243.3.f.d 30
243.3.h \(\chi_{243}(8, \cdot)\) 243.3.h.a 306 18
243.3.j \(\chi_{243}(2, \cdot)\) 243.3.j.a 2862 54

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)