Properties

Label 243.j
Modulus $243$
Conductor $243$
Order $162$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2,243))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(243\)
Conductor: \(243\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(162\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{81})$
Fixed field: Number field defined by a degree 162 polynomial (not computed)

First 31 of 54 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{243}(2,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{162}\right)\) \(e\left(\frac{1}{81}\right)\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{121}{162}\right)\) \(e\left(\frac{4}{81}\right)\) \(e\left(\frac{71}{162}\right)\) \(e\left(\frac{2}{81}\right)\)
\(\chi_{243}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{23}{81}\right)\) \(e\left(\frac{43}{162}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{13}{162}\right)\) \(e\left(\frac{46}{81}\right)\)
\(\chi_{243}(11,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{162}\right)\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{23}{81}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{61}{162}\right)\) \(e\left(\frac{79}{81}\right)\) \(e\left(\frac{5}{162}\right)\) \(e\left(\frac{80}{81}\right)\)
\(\chi_{243}(14,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{162}\right)\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{13}{162}\right)\) \(e\left(\frac{55}{81}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{5}{162}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{61}{81}\right)\)
\(\chi_{243}(20,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{109}{162}\right)\) \(e\left(\frac{19}{81}\right)\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{50}{81}\right)\)
\(\chi_{243}(23,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{162}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{37}{162}\right)\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{17}{81}\right)\) \(e\left(\frac{79}{162}\right)\) \(e\left(\frac{49}{81}\right)\)
\(\chi_{243}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{162}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{41}{162}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{103}{162}\right)\) \(e\left(\frac{67}{81}\right)\) \(e\left(\frac{35}{162}\right)\) \(e\left(\frac{74}{81}\right)\)
\(\chi_{243}(32,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{162}\right)\) \(e\left(\frac{5}{81}\right)\) \(e\left(\frac{115}{162}\right)\) \(e\left(\frac{13}{81}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{119}{162}\right)\) \(e\left(\frac{20}{81}\right)\) \(e\left(\frac{31}{162}\right)\) \(e\left(\frac{10}{81}\right)\)
\(\chi_{243}(38,\cdot)\) \(-1\) \(1\) \(e\left(\frac{157}{162}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{47}{162}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{43}{162}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{131}{162}\right)\) \(e\left(\frac{71}{81}\right)\)
\(\chi_{243}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{162}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{85}{162}\right)\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{50}{81}\right)\) \(e\left(\frac{37}{162}\right)\) \(e\left(\frac{25}{81}\right)\)
\(\chi_{243}(47,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{162}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{107}{162}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{1}{81}\right)\) \(e\left(\frac{119}{162}\right)\) \(e\left(\frac{41}{81}\right)\)
\(\chi_{243}(50,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{162}\right)\) \(e\left(\frac{47}{81}\right)\) \(e\left(\frac{109}{162}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{17}{162}\right)\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{97}{162}\right)\) \(e\left(\frac{13}{81}\right)\)
\(\chi_{243}(56,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{162}\right)\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{59}{162}\right)\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{85}{162}\right)\) \(e\left(\frac{49}{81}\right)\) \(e\left(\frac{161}{162}\right)\) \(e\left(\frac{65}{81}\right)\)
\(\chi_{243}(59,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{162}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{47}{162}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{55}{81}\right)\)
\(\chi_{243}(65,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{162}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{65}{162}\right)\) \(e\left(\frac{32}{81}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{43}{81}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{62}{81}\right)\)
\(\chi_{243}(68,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{162}\right)\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{157}{162}\right)\) \(e\left(\frac{10}{81}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{55}{162}\right)\) \(e\left(\frac{70}{81}\right)\)
\(\chi_{243}(74,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{162}\right)\) \(e\left(\frac{16}{81}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{73}{162}\right)\) \(e\left(\frac{64}{81}\right)\) \(e\left(\frac{83}{162}\right)\) \(e\left(\frac{32}{81}\right)\)
\(\chi_{243}(77,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{43}{81}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{107}{162}\right)\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{115}{162}\right)\) \(e\left(\frac{58}{81}\right)\)
\(\chi_{243}(83,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{162}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{77}{162}\right)\) \(e\left(\frac{8}{81}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{67}{162}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{56}{81}\right)\)
\(\chi_{243}(86,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{162}\right)\) \(e\left(\frac{50}{81}\right)\) \(e\left(\frac{97}{162}\right)\) \(e\left(\frac{49}{81}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{137}{162}\right)\) \(e\left(\frac{38}{81}\right)\) \(e\left(\frac{67}{162}\right)\) \(e\left(\frac{19}{81}\right)\)
\(\chi_{243}(92,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{162}\right)\) \(e\left(\frac{67}{81}\right)\) \(e\left(\frac{83}{162}\right)\) \(e\left(\frac{77}{81}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{7}{162}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{59}{162}\right)\) \(e\left(\frac{53}{81}\right)\)
\(\chi_{243}(95,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{162}\right)\) \(e\left(\frac{17}{81}\right)\) \(e\left(\frac{67}{162}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{73}{162}\right)\) \(e\left(\frac{34}{81}\right)\)
\(\chi_{243}(101,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{52}{81}\right)\) \(e\left(\frac{143}{162}\right)\) \(e\left(\frac{38}{81}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{55}{162}\right)\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{47}{162}\right)\) \(e\left(\frac{23}{81}\right)\)
\(\chi_{243}(104,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{162}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{35}{162}\right)\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{22}{81}\right)\)
\(\chi_{243}(110,\cdot)\) \(-1\) \(1\) \(e\left(\frac{145}{162}\right)\) \(e\left(\frac{64}{81}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{13}{81}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{47}{81}\right)\)
\(\chi_{243}(113,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{32}{81}\right)\) \(e\left(\frac{7}{162}\right)\) \(e\left(\frac{67}{81}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{65}{162}\right)\) \(e\left(\frac{47}{81}\right)\) \(e\left(\frac{85}{162}\right)\) \(e\left(\frac{64}{81}\right)\)
\(\chi_{243}(119,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{162}\right)\) \(e\left(\frac{22}{81}\right)\) \(e\left(\frac{101}{162}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{151}{162}\right)\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{44}{81}\right)\)
\(\chi_{243}(122,\cdot)\) \(-1\) \(1\) \(e\left(\frac{161}{162}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{139}{162}\right)\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{41}{162}\right)\) \(e\left(\frac{77}{81}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{79}{81}\right)\)
\(\chi_{243}(128,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{162}\right)\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{161}{162}\right)\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{37}{162}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{11}{162}\right)\) \(e\left(\frac{14}{81}\right)\)
\(\chi_{243}(131,\cdot)\) \(-1\) \(1\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{1}{162}\right)\) \(e\left(\frac{79}{81}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{151}{162}\right)\) \(e\left(\frac{67}{81}\right)\)
\(\chi_{243}(137,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{19}{81}\right)\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{17}{81}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{31}{162}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{53}{162}\right)\) \(e\left(\frac{38}{81}\right)\)