Properties

Label 243.3.f.b.107.1
Level $243$
Weight $3$
Character 243.107
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-3,0,3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.1
Character \(\chi\) \(=\) 243.107
Dual form 243.3.f.b.134.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68916 + 2.01307i) q^{2} +(-0.504573 - 2.86157i) q^{4} +(2.13801 - 5.87412i) q^{5} +(-1.40961 + 7.99430i) q^{7} +(-2.49037 - 1.43782i) q^{8} +(8.21356 + 14.2263i) q^{10} +(-2.77510 - 7.62453i) q^{11} +(7.43797 - 6.24120i) q^{13} +(-13.7120 - 16.3413i) q^{14} +(18.0230 - 6.55984i) q^{16} +(13.0143 - 7.51380i) q^{17} +(8.93226 - 15.4711i) q^{19} +(-17.8880 - 3.15414i) q^{20} +(20.0363 + 7.29262i) q^{22} +(25.9334 - 4.57276i) q^{23} +(-10.7831 - 9.04812i) q^{25} +25.5156i q^{26} +23.5875 q^{28} +(-9.75225 + 11.6223i) q^{29} +(5.68415 + 32.2364i) q^{31} +(-13.3043 + 36.5533i) q^{32} +(-6.85748 + 38.8907i) q^{34} +(43.9457 + 25.3721i) q^{35} +(-15.8096 - 27.3831i) q^{37} +(16.0564 + 44.1145i) q^{38} +(-13.7704 + 11.5547i) q^{40} +(-10.6189 - 12.6551i) q^{41} +(78.7688 - 28.6695i) q^{43} +(-20.4179 + 11.7883i) q^{44} +(-34.6005 + 59.9298i) q^{46} +(12.9701 + 2.28698i) q^{47} +(-15.8769 - 5.77871i) q^{49} +(36.4290 - 6.42341i) q^{50} +(-21.6126 - 18.1352i) q^{52} -25.7140i q^{53} -50.7206 q^{55} +(15.0048 - 17.8820i) q^{56} +(-6.92328 - 39.2639i) q^{58} +(-7.76763 + 21.3414i) q^{59} +(5.91937 - 33.5704i) q^{61} +(-74.4955 - 43.0100i) q^{62} +(-12.7517 - 22.0867i) q^{64} +(-20.7591 - 57.0353i) q^{65} +(6.20835 - 5.20943i) q^{67} +(-28.0679 - 33.4501i) q^{68} +(-125.307 + 45.6081i) q^{70} +(-35.7557 + 20.6436i) q^{71} +(40.4046 - 69.9827i) q^{73} +(81.8291 + 14.4287i) q^{74} +(-48.7787 - 17.7540i) q^{76} +(64.8646 - 11.4374i) q^{77} +(-21.1671 - 17.7613i) q^{79} -119.894i q^{80} +43.4126 q^{82} +(11.3065 - 13.4746i) q^{83} +(-16.3124 - 92.5121i) q^{85} +(-75.3398 + 206.994i) q^{86} +(-4.05165 + 22.9780i) q^{88} +(-24.4986 - 14.1443i) q^{89} +(39.4094 + 68.2590i) q^{91} +(-26.1706 - 71.9030i) q^{92} +(-26.5124 + 22.2466i) q^{94} +(-71.7821 - 85.5466i) q^{95} +(-158.461 + 57.6752i) q^{97} +(38.4516 - 22.2000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} + 6 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} + 51 q^{11} + 3 q^{13} - 129 q^{14} - 9 q^{16} + 9 q^{17} - 3 q^{19} + 30 q^{20} - 33 q^{22} + 168 q^{23} - 6 q^{25} - 12 q^{28} - 246 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68916 + 2.01307i −0.844582 + 1.00653i 0.155244 + 0.987876i \(0.450384\pi\)
−0.999826 + 0.0186576i \(0.994061\pi\)
\(3\) 0 0
\(4\) −0.504573 2.86157i −0.126143 0.715393i
\(5\) 2.13801 5.87412i 0.427601 1.17482i −0.519663 0.854371i \(-0.673943\pi\)
0.947264 0.320453i \(-0.103835\pi\)
\(6\) 0 0
\(7\) −1.40961 + 7.99430i −0.201373 + 1.14204i 0.701673 + 0.712499i \(0.252437\pi\)
−0.903046 + 0.429544i \(0.858674\pi\)
\(8\) −2.49037 1.43782i −0.311297 0.179727i
\(9\) 0 0
\(10\) 8.21356 + 14.2263i 0.821356 + 1.42263i
\(11\) −2.77510 7.62453i −0.252282 0.693139i −0.999589 0.0286605i \(-0.990876\pi\)
0.747307 0.664479i \(-0.231346\pi\)
\(12\) 0 0
\(13\) 7.43797 6.24120i 0.572152 0.480092i −0.310207 0.950669i \(-0.600399\pi\)
0.882359 + 0.470577i \(0.155954\pi\)
\(14\) −13.7120 16.3413i −0.979429 1.16724i
\(15\) 0 0
\(16\) 18.0230 6.55984i 1.12644 0.409990i
\(17\) 13.0143 7.51380i 0.765546 0.441988i −0.0657372 0.997837i \(-0.520940\pi\)
0.831284 + 0.555849i \(0.187607\pi\)
\(18\) 0 0
\(19\) 8.93226 15.4711i 0.470119 0.814270i −0.529297 0.848437i \(-0.677544\pi\)
0.999416 + 0.0341664i \(0.0108776\pi\)
\(20\) −17.8880 3.15414i −0.894400 0.157707i
\(21\) 0 0
\(22\) 20.0363 + 7.29262i 0.910741 + 0.331483i
\(23\) 25.9334 4.57276i 1.12754 0.198816i 0.421391 0.906879i \(-0.361542\pi\)
0.706149 + 0.708064i \(0.250431\pi\)
\(24\) 0 0
\(25\) −10.7831 9.04812i −0.431325 0.361925i
\(26\) 25.5156i 0.981367i
\(27\) 0 0
\(28\) 23.5875 0.842411
\(29\) −9.75225 + 11.6223i −0.336284 + 0.400768i −0.907514 0.420022i \(-0.862022\pi\)
0.571229 + 0.820791i \(0.306467\pi\)
\(30\) 0 0
\(31\) 5.68415 + 32.2364i 0.183360 + 1.03988i 0.928045 + 0.372468i \(0.121488\pi\)
−0.744685 + 0.667416i \(0.767400\pi\)
\(32\) −13.3043 + 36.5533i −0.415760 + 1.14229i
\(33\) 0 0
\(34\) −6.85748 + 38.8907i −0.201691 + 1.14384i
\(35\) 43.9457 + 25.3721i 1.25559 + 0.724917i
\(36\) 0 0
\(37\) −15.8096 27.3831i −0.427287 0.740083i 0.569344 0.822100i \(-0.307197\pi\)
−0.996631 + 0.0820163i \(0.973864\pi\)
\(38\) 16.0564 + 44.1145i 0.422536 + 1.16091i
\(39\) 0 0
\(40\) −13.7704 + 11.5547i −0.344259 + 0.288867i
\(41\) −10.6189 12.6551i −0.258997 0.308660i 0.620839 0.783938i \(-0.286792\pi\)
−0.879836 + 0.475278i \(0.842348\pi\)
\(42\) 0 0
\(43\) 78.7688 28.6695i 1.83183 0.666733i 0.839466 0.543412i \(-0.182868\pi\)
0.992367 0.123320i \(-0.0393542\pi\)
\(44\) −20.4179 + 11.7883i −0.464044 + 0.267916i
\(45\) 0 0
\(46\) −34.6005 + 59.9298i −0.752185 + 1.30282i
\(47\) 12.9701 + 2.28698i 0.275959 + 0.0486591i 0.309915 0.950764i \(-0.399699\pi\)
−0.0339557 + 0.999423i \(0.510811\pi\)
\(48\) 0 0
\(49\) −15.8769 5.77871i −0.324018 0.117933i
\(50\) 36.4290 6.42341i 0.728579 0.128468i
\(51\) 0 0
\(52\) −21.6126 18.1352i −0.415628 0.348753i
\(53\) 25.7140i 0.485169i −0.970130 0.242585i \(-0.922005\pi\)
0.970130 0.242585i \(-0.0779952\pi\)
\(54\) 0 0
\(55\) −50.7206 −0.922193
\(56\) 15.0048 17.8820i 0.267943 0.319322i
\(57\) 0 0
\(58\) −6.92328 39.2639i −0.119367 0.676963i
\(59\) −7.76763 + 21.3414i −0.131655 + 0.361718i −0.987951 0.154766i \(-0.950538\pi\)
0.856296 + 0.516485i \(0.172760\pi\)
\(60\) 0 0
\(61\) 5.91937 33.5704i 0.0970388 0.550335i −0.897065 0.441899i \(-0.854305\pi\)
0.994104 0.108435i \(-0.0345840\pi\)
\(62\) −74.4955 43.0100i −1.20154 0.693710i
\(63\) 0 0
\(64\) −12.7517 22.0867i −0.199246 0.345104i
\(65\) −20.7591 57.0353i −0.319371 0.877466i
\(66\) 0 0
\(67\) 6.20835 5.20943i 0.0926620 0.0777526i −0.595280 0.803518i \(-0.702959\pi\)
0.687942 + 0.725766i \(0.258514\pi\)
\(68\) −28.0679 33.4501i −0.412764 0.491913i
\(69\) 0 0
\(70\) −125.307 + 45.6081i −1.79010 + 0.651545i
\(71\) −35.7557 + 20.6436i −0.503601 + 0.290754i −0.730199 0.683234i \(-0.760573\pi\)
0.226598 + 0.973988i \(0.427240\pi\)
\(72\) 0 0
\(73\) 40.4046 69.9827i 0.553487 0.958668i −0.444532 0.895763i \(-0.646630\pi\)
0.998020 0.0629050i \(-0.0200365\pi\)
\(74\) 81.8291 + 14.4287i 1.10580 + 0.194982i
\(75\) 0 0
\(76\) −48.7787 17.7540i −0.641826 0.233605i
\(77\) 64.8646 11.4374i 0.842398 0.148537i
\(78\) 0 0
\(79\) −21.1671 17.7613i −0.267937 0.224826i 0.498913 0.866652i \(-0.333733\pi\)
−0.766850 + 0.641826i \(0.778177\pi\)
\(80\) 119.894i 1.49868i
\(81\) 0 0
\(82\) 43.4126 0.529421
\(83\) 11.3065 13.4746i 0.136223 0.162344i −0.693620 0.720341i \(-0.743985\pi\)
0.829843 + 0.557997i \(0.188430\pi\)
\(84\) 0 0
\(85\) −16.3124 92.5121i −0.191910 1.08838i
\(86\) −75.3398 + 206.994i −0.876044 + 2.40691i
\(87\) 0 0
\(88\) −4.05165 + 22.9780i −0.0460414 + 0.261114i
\(89\) −24.4986 14.1443i −0.275265 0.158924i 0.356013 0.934481i \(-0.384136\pi\)
−0.631278 + 0.775557i \(0.717469\pi\)
\(90\) 0 0
\(91\) 39.4094 + 68.2590i 0.433070 + 0.750099i
\(92\) −26.1706 71.9030i −0.284463 0.781555i
\(93\) 0 0
\(94\) −26.5124 + 22.2466i −0.282047 + 0.236666i
\(95\) −71.7821 85.5466i −0.755601 0.900490i
\(96\) 0 0
\(97\) −158.461 + 57.6752i −1.63362 + 0.594590i −0.985907 0.167294i \(-0.946497\pi\)
−0.647714 + 0.761883i \(0.724275\pi\)
\(98\) 38.4516 22.2000i 0.392363 0.226531i
\(99\) 0 0
\(100\) −20.4510 + 35.4221i −0.204510 + 0.354221i
\(101\) −68.7674 12.1255i −0.680865 0.120055i −0.177490 0.984123i \(-0.556798\pi\)
−0.503376 + 0.864068i \(0.667909\pi\)
\(102\) 0 0
\(103\) −65.6495 23.8945i −0.637374 0.231985i 0.00306387 0.999995i \(-0.499025\pi\)
−0.640438 + 0.768010i \(0.721247\pi\)
\(104\) −27.4970 + 4.84847i −0.264395 + 0.0466199i
\(105\) 0 0
\(106\) 51.7639 + 43.4351i 0.488339 + 0.409765i
\(107\) 121.432i 1.13488i 0.823416 + 0.567438i \(0.192065\pi\)
−0.823416 + 0.567438i \(0.807935\pi\)
\(108\) 0 0
\(109\) −119.633 −1.09755 −0.548777 0.835969i \(-0.684907\pi\)
−0.548777 + 0.835969i \(0.684907\pi\)
\(110\) 85.6755 102.104i 0.778868 0.928218i
\(111\) 0 0
\(112\) 27.0359 + 153.328i 0.241392 + 1.36900i
\(113\) 42.5349 116.864i 0.376415 1.03419i −0.596416 0.802675i \(-0.703409\pi\)
0.972831 0.231516i \(-0.0743686\pi\)
\(114\) 0 0
\(115\) 28.5848 162.113i 0.248564 1.40967i
\(116\) 38.1787 + 22.0425i 0.329127 + 0.190021i
\(117\) 0 0
\(118\) −29.8408 51.6859i −0.252889 0.438016i
\(119\) 41.7225 + 114.632i 0.350609 + 0.963291i
\(120\) 0 0
\(121\) 42.2591 35.4596i 0.349249 0.293054i
\(122\) 57.5807 + 68.6220i 0.471973 + 0.562476i
\(123\) 0 0
\(124\) 89.3787 32.5312i 0.720796 0.262348i
\(125\) 59.1363 34.1424i 0.473091 0.273139i
\(126\) 0 0
\(127\) 58.7300 101.723i 0.462441 0.800971i −0.536641 0.843811i \(-0.680307\pi\)
0.999082 + 0.0428396i \(0.0136404\pi\)
\(128\) −87.2312 15.3812i −0.681494 0.120166i
\(129\) 0 0
\(130\) 149.881 + 54.5524i 1.15293 + 0.419634i
\(131\) 4.64121 0.818370i 0.0354291 0.00624710i −0.155906 0.987772i \(-0.549830\pi\)
0.191335 + 0.981525i \(0.438718\pi\)
\(132\) 0 0
\(133\) 111.090 + 93.2155i 0.835262 + 0.700868i
\(134\) 21.2974i 0.158936i
\(135\) 0 0
\(136\) −43.2139 −0.317749
\(137\) −141.921 + 169.135i −1.03592 + 1.23456i −0.0643220 + 0.997929i \(0.520488\pi\)
−0.971599 + 0.236633i \(0.923956\pi\)
\(138\) 0 0
\(139\) −6.21061 35.2221i −0.0446807 0.253397i 0.954283 0.298903i \(-0.0966209\pi\)
−0.998964 + 0.0455067i \(0.985510\pi\)
\(140\) 50.4303 138.556i 0.360216 0.989686i
\(141\) 0 0
\(142\) 18.8404 106.849i 0.132679 0.752457i
\(143\) −68.2274 39.3911i −0.477114 0.275462i
\(144\) 0 0
\(145\) 47.4203 + 82.1344i 0.327037 + 0.566444i
\(146\) 72.6301 + 199.549i 0.497466 + 1.36678i
\(147\) 0 0
\(148\) −70.3816 + 59.0572i −0.475551 + 0.399035i
\(149\) 107.819 + 128.493i 0.723615 + 0.862371i 0.994977 0.100106i \(-0.0319183\pi\)
−0.271361 + 0.962478i \(0.587474\pi\)
\(150\) 0 0
\(151\) 78.6693 28.6333i 0.520989 0.189624i −0.0681215 0.997677i \(-0.521701\pi\)
0.589110 + 0.808053i \(0.299478\pi\)
\(152\) −44.4893 + 25.6859i −0.292693 + 0.168986i
\(153\) 0 0
\(154\) −86.5428 + 149.896i −0.561966 + 0.973354i
\(155\) 201.513 + 35.5322i 1.30009 + 0.229240i
\(156\) 0 0
\(157\) 69.9547 + 25.4614i 0.445571 + 0.162175i 0.555055 0.831814i \(-0.312697\pi\)
−0.109483 + 0.993989i \(0.534920\pi\)
\(158\) 71.5093 12.6090i 0.452590 0.0798039i
\(159\) 0 0
\(160\) 186.274 + 156.302i 1.16421 + 0.976890i
\(161\) 213.765i 1.32773i
\(162\) 0 0
\(163\) 254.830 1.56337 0.781687 0.623670i \(-0.214359\pi\)
0.781687 + 0.623670i \(0.214359\pi\)
\(164\) −30.8554 + 36.7721i −0.188143 + 0.224220i
\(165\) 0 0
\(166\) 8.02667 + 45.5215i 0.0483534 + 0.274226i
\(167\) −54.2442 + 149.035i −0.324816 + 0.892424i 0.664585 + 0.747213i \(0.268608\pi\)
−0.989401 + 0.145211i \(0.953614\pi\)
\(168\) 0 0
\(169\) −12.9757 + 73.5888i −0.0767792 + 0.435437i
\(170\) 213.787 + 123.430i 1.25757 + 0.726060i
\(171\) 0 0
\(172\) −121.784 210.937i −0.708049 1.22638i
\(173\) −101.950 280.105i −0.589305 1.61910i −0.771778 0.635892i \(-0.780633\pi\)
0.182473 0.983211i \(-0.441590\pi\)
\(174\) 0 0
\(175\) 87.5334 73.4492i 0.500191 0.419710i
\(176\) −100.031 119.213i −0.568360 0.677345i
\(177\) 0 0
\(178\) 69.8555 25.4253i 0.392446 0.142839i
\(179\) −25.3997 + 14.6645i −0.141898 + 0.0819248i −0.569268 0.822152i \(-0.692773\pi\)
0.427370 + 0.904077i \(0.359440\pi\)
\(180\) 0 0
\(181\) −41.7019 + 72.2299i −0.230397 + 0.399060i −0.957925 0.287018i \(-0.907336\pi\)
0.727528 + 0.686078i \(0.240669\pi\)
\(182\) −203.979 35.9670i −1.12076 0.197621i
\(183\) 0 0
\(184\) −71.1587 25.8996i −0.386732 0.140759i
\(185\) −194.653 + 34.3225i −1.05218 + 0.185527i
\(186\) 0 0
\(187\) −93.4052 78.3763i −0.499493 0.419124i
\(188\) 38.2688i 0.203557i
\(189\) 0 0
\(190\) 293.463 1.54454
\(191\) −100.885 + 120.230i −0.528193 + 0.629476i −0.962498 0.271290i \(-0.912550\pi\)
0.434305 + 0.900766i \(0.356994\pi\)
\(192\) 0 0
\(193\) −7.20107 40.8393i −0.0373112 0.211602i 0.960452 0.278444i \(-0.0898188\pi\)
−0.997764 + 0.0668419i \(0.978708\pi\)
\(194\) 151.563 416.416i 0.781253 2.14648i
\(195\) 0 0
\(196\) −8.52517 + 48.3486i −0.0434958 + 0.246677i
\(197\) 182.437 + 105.330i 0.926074 + 0.534669i 0.885568 0.464510i \(-0.153770\pi\)
0.0405063 + 0.999179i \(0.487103\pi\)
\(198\) 0 0
\(199\) 87.7654 + 152.014i 0.441032 + 0.763890i 0.997766 0.0668004i \(-0.0212791\pi\)
−0.556734 + 0.830691i \(0.687946\pi\)
\(200\) 13.8445 + 38.0374i 0.0692224 + 0.190187i
\(201\) 0 0
\(202\) 140.569 117.951i 0.695886 0.583918i
\(203\) −79.1651 94.3453i −0.389976 0.464755i
\(204\) 0 0
\(205\) −97.0407 + 35.3199i −0.473369 + 0.172292i
\(206\) 158.994 91.7952i 0.771815 0.445608i
\(207\) 0 0
\(208\) 93.1133 161.277i 0.447660 0.775370i
\(209\) −142.748 25.1703i −0.683005 0.120432i
\(210\) 0 0
\(211\) 245.123 + 89.2173i 1.16172 + 0.422831i 0.849711 0.527249i \(-0.176776\pi\)
0.312008 + 0.950080i \(0.398999\pi\)
\(212\) −73.5824 + 12.9746i −0.347087 + 0.0612007i
\(213\) 0 0
\(214\) −244.450 205.118i −1.14229 0.958495i
\(215\) 523.993i 2.43718i
\(216\) 0 0
\(217\) −265.720 −1.22452
\(218\) 202.081 240.830i 0.926975 1.10473i
\(219\) 0 0
\(220\) 25.5922 + 145.141i 0.116328 + 0.659731i
\(221\) 49.9048 137.112i 0.225813 0.620417i
\(222\) 0 0
\(223\) −67.5868 + 383.304i −0.303080 + 1.71885i 0.329328 + 0.944216i \(0.393178\pi\)
−0.632408 + 0.774636i \(0.717933\pi\)
\(224\) −273.464 157.885i −1.22082 0.704842i
\(225\) 0 0
\(226\) 163.406 + 283.027i 0.723035 + 1.25233i
\(227\) −119.171 327.419i −0.524981 1.44237i −0.864912 0.501924i \(-0.832626\pi\)
0.339930 0.940451i \(-0.389596\pi\)
\(228\) 0 0
\(229\) −279.242 + 234.311i −1.21940 + 1.02319i −0.220539 + 0.975378i \(0.570782\pi\)
−0.998856 + 0.0478162i \(0.984774\pi\)
\(230\) 278.059 + 331.378i 1.20895 + 1.44077i
\(231\) 0 0
\(232\) 40.9975 14.9219i 0.176713 0.0643184i
\(233\) −164.260 + 94.8353i −0.704976 + 0.407018i −0.809198 0.587536i \(-0.800098\pi\)
0.104222 + 0.994554i \(0.466765\pi\)
\(234\) 0 0
\(235\) 41.1641 71.2983i 0.175166 0.303397i
\(236\) 64.9893 + 11.4594i 0.275378 + 0.0485566i
\(237\) 0 0
\(238\) −301.237 109.641i −1.26570 0.460678i
\(239\) −301.448 + 53.1535i −1.26129 + 0.222400i −0.764018 0.645195i \(-0.776776\pi\)
−0.497272 + 0.867594i \(0.665665\pi\)
\(240\) 0 0
\(241\) −225.911 189.561i −0.937388 0.786562i 0.0397406 0.999210i \(-0.487347\pi\)
−0.977129 + 0.212648i \(0.931791\pi\)
\(242\) 144.967i 0.599039i
\(243\) 0 0
\(244\) −99.0509 −0.405946
\(245\) −67.8897 + 80.9078i −0.277101 + 0.330236i
\(246\) 0 0
\(247\) −30.1205 170.822i −0.121945 0.691587i
\(248\) 32.1944 88.4535i 0.129816 0.356667i
\(249\) 0 0
\(250\) −31.1601 + 176.718i −0.124640 + 0.706870i
\(251\) −158.404 91.4547i −0.631092 0.364361i 0.150083 0.988673i \(-0.452046\pi\)
−0.781175 + 0.624312i \(0.785379\pi\)
\(252\) 0 0
\(253\) −106.833 185.040i −0.422265 0.731384i
\(254\) 105.571 + 290.055i 0.415635 + 1.14195i
\(255\) 0 0
\(256\) 256.459 215.194i 1.00179 0.840603i
\(257\) 172.501 + 205.579i 0.671210 + 0.799918i 0.988948 0.148261i \(-0.0473676\pi\)
−0.317738 + 0.948179i \(0.602923\pi\)
\(258\) 0 0
\(259\) 241.194 87.7874i 0.931251 0.338948i
\(260\) −152.736 + 88.1822i −0.587447 + 0.339162i
\(261\) 0 0
\(262\) −6.19233 + 10.7254i −0.0236348 + 0.0409368i
\(263\) 346.629 + 61.1200i 1.31798 + 0.232395i 0.788032 0.615634i \(-0.211100\pi\)
0.529948 + 0.848030i \(0.322211\pi\)
\(264\) 0 0
\(265\) −151.047 54.9766i −0.569988 0.207459i
\(266\) −375.298 + 66.1752i −1.41089 + 0.248779i
\(267\) 0 0
\(268\) −18.0397 15.1371i −0.0673124 0.0564818i
\(269\) 164.243i 0.610570i 0.952261 + 0.305285i \(0.0987518\pi\)
−0.952261 + 0.305285i \(0.901248\pi\)
\(270\) 0 0
\(271\) −128.850 −0.475462 −0.237731 0.971331i \(-0.576404\pi\)
−0.237731 + 0.971331i \(0.576404\pi\)
\(272\) 185.267 220.793i 0.681129 0.811738i
\(273\) 0 0
\(274\) −100.752 571.394i −0.367709 2.08538i
\(275\) −39.0634 + 107.326i −0.142049 + 0.390276i
\(276\) 0 0
\(277\) 26.0851 147.936i 0.0941700 0.534064i −0.900829 0.434175i \(-0.857040\pi\)
0.994999 0.0998895i \(-0.0318489\pi\)
\(278\) 81.3953 + 46.9936i 0.292789 + 0.169042i
\(279\) 0 0
\(280\) −72.9609 126.372i −0.260575 0.451328i
\(281\) 157.671 + 433.197i 0.561106 + 1.54163i 0.818018 + 0.575192i \(0.195073\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(282\) 0 0
\(283\) −52.7479 + 44.2607i −0.186388 + 0.156398i −0.731207 0.682155i \(-0.761043\pi\)
0.544819 + 0.838554i \(0.316598\pi\)
\(284\) 77.1144 + 91.9013i 0.271529 + 0.323596i
\(285\) 0 0
\(286\) 194.544 70.8083i 0.680224 0.247581i
\(287\) 116.137 67.0517i 0.404658 0.233630i
\(288\) 0 0
\(289\) −31.5856 + 54.7078i −0.109293 + 0.189300i
\(290\) −245.443 43.2782i −0.846355 0.149235i
\(291\) 0 0
\(292\) −220.648 80.3092i −0.755643 0.275032i
\(293\) 503.007 88.6936i 1.71675 0.302709i 0.773252 0.634098i \(-0.218629\pi\)
0.943494 + 0.331390i \(0.107518\pi\)
\(294\) 0 0
\(295\) 108.755 + 91.2560i 0.368660 + 0.309342i
\(296\) 90.9255i 0.307181i
\(297\) 0 0
\(298\) −440.789 −1.47916
\(299\) 164.352 195.868i 0.549674 0.655076i
\(300\) 0 0
\(301\) 118.159 + 670.114i 0.392556 + 2.22629i
\(302\) −75.2446 + 206.733i −0.249154 + 0.684546i
\(303\) 0 0
\(304\) 59.4981 337.430i 0.195717 1.10997i
\(305\) −184.541 106.545i −0.605053 0.349327i
\(306\) 0 0
\(307\) −26.3017 45.5559i −0.0856734 0.148391i 0.820005 0.572357i \(-0.193971\pi\)
−0.905678 + 0.423966i \(0.860637\pi\)
\(308\) −65.4578 179.844i −0.212525 0.583909i
\(309\) 0 0
\(310\) −411.918 + 345.640i −1.32877 + 1.11497i
\(311\) 228.077 + 271.812i 0.733368 + 0.873993i 0.995856 0.0909416i \(-0.0289877\pi\)
−0.262489 + 0.964935i \(0.584543\pi\)
\(312\) 0 0
\(313\) −158.102 + 57.5444i −0.505118 + 0.183848i −0.581995 0.813193i \(-0.697728\pi\)
0.0768764 + 0.997041i \(0.475505\pi\)
\(314\) −169.421 + 97.8150i −0.539556 + 0.311513i
\(315\) 0 0
\(316\) −40.1448 + 69.5329i −0.127041 + 0.220041i
\(317\) 502.240 + 88.5585i 1.58435 + 0.279365i 0.895340 0.445383i \(-0.146932\pi\)
0.689015 + 0.724747i \(0.258044\pi\)
\(318\) 0 0
\(319\) 115.678 + 42.1033i 0.362627 + 0.131985i
\(320\) −157.003 + 27.6839i −0.490635 + 0.0865121i
\(321\) 0 0
\(322\) −430.324 361.085i −1.33641 1.12138i
\(323\) 268.461i 0.831149i
\(324\) 0 0
\(325\) −136.676 −0.420541
\(326\) −430.450 + 512.990i −1.32040 + 1.57359i
\(327\) 0 0
\(328\) 8.24926 + 46.7839i 0.0251502 + 0.142634i
\(329\) −36.5655 + 100.463i −0.111141 + 0.305359i
\(330\) 0 0
\(331\) −58.9261 + 334.186i −0.178024 + 1.00963i 0.756570 + 0.653912i \(0.226874\pi\)
−0.934595 + 0.355714i \(0.884238\pi\)
\(332\) −44.2634 25.5555i −0.133324 0.0769744i
\(333\) 0 0
\(334\) −208.390 360.941i −0.623921 1.08066i
\(335\) −17.3273 47.6064i −0.0517233 0.142109i
\(336\) 0 0
\(337\) −52.2733 + 43.8625i −0.155114 + 0.130156i −0.717042 0.697030i \(-0.754504\pi\)
0.561928 + 0.827186i \(0.310060\pi\)
\(338\) −126.221 150.424i −0.373435 0.445043i
\(339\) 0 0
\(340\) −256.499 + 93.3581i −0.754410 + 0.274583i
\(341\) 230.013 132.798i 0.674526 0.389438i
\(342\) 0 0
\(343\) −130.305 + 225.695i −0.379897 + 0.658002i
\(344\) −237.385 41.8574i −0.690074 0.121679i
\(345\) 0 0
\(346\) 736.080 + 267.911i 2.12740 + 0.774310i
\(347\) −170.468 + 30.0581i −0.491262 + 0.0866227i −0.413791 0.910372i \(-0.635796\pi\)
−0.0774708 + 0.996995i \(0.524684\pi\)
\(348\) 0 0
\(349\) 352.060 + 295.414i 1.00877 + 0.846457i 0.988175 0.153331i \(-0.0490000\pi\)
0.0205933 + 0.999788i \(0.493444\pi\)
\(350\) 300.278i 0.857939i
\(351\) 0 0
\(352\) 315.623 0.896655
\(353\) 258.561 308.141i 0.732468 0.872922i −0.263310 0.964711i \(-0.584814\pi\)
0.995778 + 0.0917895i \(0.0292587\pi\)
\(354\) 0 0
\(355\) 44.8169 + 254.169i 0.126245 + 0.715970i
\(356\) −28.1135 + 77.2413i −0.0789706 + 0.216970i
\(357\) 0 0
\(358\) 13.3836 75.9022i 0.0373844 0.212017i
\(359\) 197.249 + 113.882i 0.549439 + 0.317219i 0.748896 0.662688i \(-0.230584\pi\)
−0.199457 + 0.979907i \(0.563918\pi\)
\(360\) 0 0
\(361\) 20.9294 + 36.2507i 0.0579761 + 0.100418i
\(362\) −74.9622 205.957i −0.207078 0.568942i
\(363\) 0 0
\(364\) 175.443 147.214i 0.481987 0.404435i
\(365\) −324.702 386.965i −0.889595 1.06018i
\(366\) 0 0
\(367\) 221.266 80.5344i 0.602906 0.219440i −0.0224904 0.999747i \(-0.507160\pi\)
0.625396 + 0.780307i \(0.284937\pi\)
\(368\) 437.401 252.534i 1.18859 0.686233i
\(369\) 0 0
\(370\) 259.707 449.825i 0.701910 1.21574i
\(371\) 205.565 + 36.2467i 0.554084 + 0.0976999i
\(372\) 0 0
\(373\) −613.386 223.254i −1.64447 0.598537i −0.656655 0.754192i \(-0.728029\pi\)
−0.987812 + 0.155655i \(0.950251\pi\)
\(374\) 315.553 55.6406i 0.843726 0.148772i
\(375\) 0 0
\(376\) −29.0121 24.3441i −0.0771599 0.0647448i
\(377\) 147.312i 0.390748i
\(378\) 0 0
\(379\) 625.053 1.64922 0.824608 0.565705i \(-0.191396\pi\)
0.824608 + 0.565705i \(0.191396\pi\)
\(380\) −208.578 + 248.574i −0.548891 + 0.654142i
\(381\) 0 0
\(382\) −71.6198 406.176i −0.187486 1.06329i
\(383\) 36.4387 100.114i 0.0951401 0.261395i −0.882989 0.469393i \(-0.844473\pi\)
0.978129 + 0.207998i \(0.0666948\pi\)
\(384\) 0 0
\(385\) 71.4963 405.476i 0.185705 1.05318i
\(386\) 94.3760 + 54.4880i 0.244497 + 0.141161i
\(387\) 0 0
\(388\) 244.997 + 424.347i 0.631436 + 1.09368i
\(389\) −203.034 557.832i −0.521939 1.43401i −0.868359 0.495935i \(-0.834825\pi\)
0.346421 0.938079i \(-0.387397\pi\)
\(390\) 0 0
\(391\) 303.146 254.370i 0.775309 0.650562i
\(392\) 31.2306 + 37.2192i 0.0796700 + 0.0949470i
\(393\) 0 0
\(394\) −520.201 + 189.338i −1.32031 + 0.480553i
\(395\) −149.587 + 86.3642i −0.378702 + 0.218643i
\(396\) 0 0
\(397\) −187.410 + 324.603i −0.472064 + 0.817640i −0.999489 0.0319623i \(-0.989824\pi\)
0.527425 + 0.849602i \(0.323158\pi\)
\(398\) −454.265 80.0992i −1.14137 0.201254i
\(399\) 0 0
\(400\) −253.699 92.3387i −0.634246 0.230847i
\(401\) −270.237 + 47.6500i −0.673907 + 0.118828i −0.500121 0.865955i \(-0.666711\pi\)
−0.173786 + 0.984783i \(0.555600\pi\)
\(402\) 0 0
\(403\) 243.472 + 204.298i 0.604150 + 0.506942i
\(404\) 202.901i 0.502231i
\(405\) 0 0
\(406\) 323.646 0.797158
\(407\) −164.910 + 196.532i −0.405184 + 0.482879i
\(408\) 0 0
\(409\) −95.7625 543.096i −0.234138 1.32786i −0.844421 0.535680i \(-0.820055\pi\)
0.610283 0.792183i \(-0.291056\pi\)
\(410\) 92.8163 255.011i 0.226381 0.621977i
\(411\) 0 0
\(412\) −35.2508 + 199.917i −0.0855602 + 0.485236i
\(413\) −159.660 92.1798i −0.386586 0.223196i
\(414\) 0 0
\(415\) −54.9779 95.2245i −0.132477 0.229457i
\(416\) 129.179 + 354.917i 0.310527 + 0.853167i
\(417\) 0 0
\(418\) 291.795 244.845i 0.698073 0.585753i
\(419\) 56.3003 + 67.0960i 0.134368 + 0.160134i 0.829033 0.559200i \(-0.188892\pi\)
−0.694665 + 0.719334i \(0.744447\pi\)
\(420\) 0 0
\(421\) −278.393 + 101.327i −0.661266 + 0.240681i −0.650783 0.759264i \(-0.725559\pi\)
−0.0104830 + 0.999945i \(0.503337\pi\)
\(422\) −593.653 + 342.746i −1.40676 + 0.812194i
\(423\) 0 0
\(424\) −36.9720 + 64.0374i −0.0871981 + 0.151032i
\(425\) −208.321 36.7325i −0.490166 0.0864295i
\(426\) 0 0
\(427\) 260.028 + 94.6424i 0.608965 + 0.221645i
\(428\) 347.485 61.2711i 0.811882 0.143157i
\(429\) 0 0
\(430\) 1054.83 + 885.111i 2.45310 + 2.05840i
\(431\) 586.175i 1.36003i −0.733196 0.680017i \(-0.761972\pi\)
0.733196 0.680017i \(-0.238028\pi\)
\(432\) 0 0
\(433\) 415.367 0.959277 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(434\) 448.844 534.912i 1.03420 1.23252i
\(435\) 0 0
\(436\) 60.3638 + 342.340i 0.138449 + 0.785183i
\(437\) 160.898 442.064i 0.368188 1.01159i
\(438\) 0 0
\(439\) 58.0607 329.279i 0.132257 0.750065i −0.844474 0.535596i \(-0.820087\pi\)
0.976731 0.214469i \(-0.0688021\pi\)
\(440\) 126.313 + 72.9270i 0.287076 + 0.165743i
\(441\) 0 0
\(442\) 191.719 + 332.067i 0.433753 + 0.751282i
\(443\) 154.471 + 424.404i 0.348692 + 0.958024i 0.982783 + 0.184765i \(0.0591523\pi\)
−0.634091 + 0.773259i \(0.718625\pi\)
\(444\) 0 0
\(445\) −135.463 + 113.667i −0.304412 + 0.255432i
\(446\) −657.451 783.520i −1.47411 1.75677i
\(447\) 0 0
\(448\) 194.542 70.8077i 0.434247 0.158053i
\(449\) 165.422 95.5067i 0.368424 0.212710i −0.304346 0.952562i \(-0.598438\pi\)
0.672770 + 0.739852i \(0.265104\pi\)
\(450\) 0 0
\(451\) −67.0206 + 116.083i −0.148604 + 0.257390i
\(452\) −355.876 62.7505i −0.787336 0.138829i
\(453\) 0 0
\(454\) 860.416 + 313.166i 1.89519 + 0.689792i
\(455\) 485.219 85.5573i 1.06642 0.188038i
\(456\) 0 0
\(457\) −295.504 247.957i −0.646616 0.542575i 0.259426 0.965763i \(-0.416467\pi\)
−0.906042 + 0.423188i \(0.860911\pi\)
\(458\) 957.923i 2.09153i
\(459\) 0 0
\(460\) −478.320 −1.03983
\(461\) −278.361 + 331.738i −0.603821 + 0.719606i −0.978199 0.207670i \(-0.933412\pi\)
0.374378 + 0.927276i \(0.377856\pi\)
\(462\) 0 0
\(463\) 96.0025 + 544.457i 0.207349 + 1.17593i 0.893701 + 0.448664i \(0.148100\pi\)
−0.686352 + 0.727270i \(0.740789\pi\)
\(464\) −99.5246 + 273.441i −0.214493 + 0.589314i
\(465\) 0 0
\(466\) 86.5515 490.858i 0.185733 1.05334i
\(467\) 186.467 + 107.657i 0.399286 + 0.230528i 0.686176 0.727436i \(-0.259288\pi\)
−0.286890 + 0.957964i \(0.592621\pi\)
\(468\) 0 0
\(469\) 32.8943 + 56.9747i 0.0701372 + 0.121481i
\(470\) 73.9954 + 203.301i 0.157437 + 0.432555i
\(471\) 0 0
\(472\) 50.0293 41.9796i 0.105994 0.0889398i
\(473\) −437.183 521.015i −0.924277 1.10151i
\(474\) 0 0
\(475\) −236.302 + 86.0070i −0.497479 + 0.181067i
\(476\) 306.975 177.232i 0.644905 0.372336i
\(477\) 0 0
\(478\) 402.194 696.621i 0.841411 1.45737i
\(479\) −223.049 39.3296i −0.465656 0.0821077i −0.0641024 0.997943i \(-0.520418\pi\)
−0.401553 + 0.915836i \(0.631530\pi\)
\(480\) 0 0
\(481\) −288.495 105.004i −0.599781 0.218303i
\(482\) 763.200 134.573i 1.58340 0.279197i
\(483\) 0 0
\(484\) −122.793 103.036i −0.253704 0.212883i
\(485\) 1054.13i 2.17347i
\(486\) 0 0
\(487\) −443.130 −0.909919 −0.454959 0.890512i \(-0.650346\pi\)
−0.454959 + 0.890512i \(0.650346\pi\)
\(488\) −63.0096 + 75.0919i −0.129118 + 0.153877i
\(489\) 0 0
\(490\) −48.1960 273.333i −0.0983592 0.557823i
\(491\) −228.283 + 627.203i −0.464935 + 1.27740i 0.456796 + 0.889571i \(0.348997\pi\)
−0.921732 + 0.387828i \(0.873225\pi\)
\(492\) 0 0
\(493\) −39.5911 + 224.532i −0.0803064 + 0.455440i
\(494\) 394.754 + 227.912i 0.799098 + 0.461360i
\(495\) 0 0
\(496\) 313.911 + 543.710i 0.632885 + 1.09619i
\(497\) −114.629 314.941i −0.230642 0.633684i
\(498\) 0 0
\(499\) −44.0357 + 36.9503i −0.0882478 + 0.0740487i −0.685844 0.727748i \(-0.740567\pi\)
0.597597 + 0.801797i \(0.296122\pi\)
\(500\) −127.540 151.996i −0.255079 0.303991i
\(501\) 0 0
\(502\) 451.675 164.396i 0.899751 0.327483i
\(503\) −423.202 + 244.336i −0.841356 + 0.485757i −0.857725 0.514109i \(-0.828123\pi\)
0.0163686 + 0.999866i \(0.494789\pi\)
\(504\) 0 0
\(505\) −218.252 + 378.024i −0.432182 + 0.748562i
\(506\) 552.957 + 97.5012i 1.09280 + 0.192690i
\(507\) 0 0
\(508\) −320.722 116.733i −0.631343 0.229790i
\(509\) 279.933 49.3598i 0.549967 0.0969741i 0.108242 0.994125i \(-0.465478\pi\)
0.441725 + 0.897150i \(0.354367\pi\)
\(510\) 0 0
\(511\) 502.508 + 421.655i 0.983382 + 0.825156i
\(512\) 525.459i 1.02629i
\(513\) 0 0
\(514\) −705.227 −1.37204
\(515\) −280.718 + 334.547i −0.545083 + 0.649605i
\(516\) 0 0
\(517\) −18.5562 105.237i −0.0358921 0.203554i
\(518\) −230.694 + 633.827i −0.445356 + 1.22360i
\(519\) 0 0
\(520\) −30.3083 + 171.887i −0.0582852 + 0.330552i
\(521\) −35.1966 20.3207i −0.0675558 0.0390033i 0.465842 0.884868i \(-0.345752\pi\)
−0.533397 + 0.845865i \(0.679085\pi\)
\(522\) 0 0
\(523\) −174.951 303.024i −0.334514 0.579395i 0.648877 0.760893i \(-0.275239\pi\)
−0.983391 + 0.181498i \(0.941905\pi\)
\(524\) −4.68365 12.8682i −0.00893827 0.0245577i
\(525\) 0 0
\(526\) −708.552 + 594.545i −1.34706 + 1.13031i
\(527\) 316.193 + 376.824i 0.599987 + 0.715036i
\(528\) 0 0
\(529\) 154.534 56.2458i 0.292125 0.106325i
\(530\) 365.815 211.203i 0.690216 0.398497i
\(531\) 0 0
\(532\) 210.690 364.926i 0.396034 0.685951i
\(533\) −157.966 27.8536i −0.296371 0.0522582i
\(534\) 0 0
\(535\) 713.304 + 259.622i 1.33328 + 0.485274i
\(536\) −22.9513 + 4.04694i −0.0428196 + 0.00755026i
\(537\) 0 0
\(538\) −330.633 277.434i −0.614560 0.515677i
\(539\) 137.090i 0.254342i
\(540\) 0 0
\(541\) 145.531 0.269003 0.134501 0.990913i \(-0.457057\pi\)
0.134501 + 0.990913i \(0.457057\pi\)
\(542\) 217.649 259.384i 0.401567 0.478569i
\(543\) 0 0
\(544\) 101.508 + 575.681i 0.186596 + 1.05824i
\(545\) −255.777 + 702.742i −0.469316 + 1.28943i
\(546\) 0 0
\(547\) 84.3980 478.645i 0.154292 0.875036i −0.805137 0.593088i \(-0.797908\pi\)
0.959430 0.281948i \(-0.0909805\pi\)
\(548\) 555.602 + 320.777i 1.01387 + 0.585359i
\(549\) 0 0
\(550\) −150.070 259.928i −0.272854 0.472597i
\(551\) 92.7002 + 254.692i 0.168240 + 0.462235i
\(552\) 0 0
\(553\) 171.826 144.179i 0.310716 0.260722i
\(554\) 253.743 + 302.399i 0.458020 + 0.545847i
\(555\) 0 0
\(556\) −97.6570 + 35.5443i −0.175642 + 0.0639285i
\(557\) −2.82805 + 1.63278i −0.00507730 + 0.00293138i −0.502537 0.864556i \(-0.667600\pi\)
0.497459 + 0.867487i \(0.334266\pi\)
\(558\) 0 0
\(559\) 406.948 704.855i 0.727993 1.26092i
\(560\) 958.471 + 169.004i 1.71155 + 0.301793i
\(561\) 0 0
\(562\) −1138.39 414.339i −2.02560 0.737258i
\(563\) −654.650 + 115.432i −1.16279 + 0.205031i −0.721552 0.692360i \(-0.756571\pi\)
−0.441236 + 0.897391i \(0.645460\pi\)
\(564\) 0 0
\(565\) −595.531 499.710i −1.05404 0.884443i
\(566\) 180.949i 0.319697i
\(567\) 0 0
\(568\) 118.727 0.209026
\(569\) −48.8101 + 58.1696i −0.0857822 + 0.102231i −0.807228 0.590239i \(-0.799033\pi\)
0.721446 + 0.692471i \(0.243478\pi\)
\(570\) 0 0
\(571\) −51.0684 289.624i −0.0894369 0.507222i −0.996311 0.0858194i \(-0.972649\pi\)
0.906874 0.421402i \(-0.138462\pi\)
\(572\) −78.2948 + 215.113i −0.136879 + 0.376072i
\(573\) 0 0
\(574\) −61.1948 + 347.053i −0.106611 + 0.604622i
\(575\) −321.018 185.340i −0.558292 0.322330i
\(576\) 0 0
\(577\) −529.296 916.768i −0.917325 1.58885i −0.803461 0.595357i \(-0.797011\pi\)
−0.113864 0.993496i \(-0.536323\pi\)
\(578\) −56.7773 155.994i −0.0982306 0.269886i
\(579\) 0 0
\(580\) 211.107 177.139i 0.363977 0.305413i
\(581\) 91.7820 + 109.381i 0.157972 + 0.188264i
\(582\) 0 0
\(583\) −196.057 + 71.3589i −0.336290 + 0.122399i
\(584\) −201.245 + 116.189i −0.344597 + 0.198953i
\(585\) 0 0
\(586\) −671.115 + 1162.40i −1.14525 + 1.98363i
\(587\) 136.792 + 24.1200i 0.233035 + 0.0410904i 0.288946 0.957345i \(-0.406695\pi\)
−0.0559110 + 0.998436i \(0.517806\pi\)
\(588\) 0 0
\(589\) 549.506 + 200.004i 0.932947 + 0.339565i
\(590\) −367.409 + 64.7841i −0.622727 + 0.109804i
\(591\) 0 0
\(592\) −464.565 389.817i −0.784739 0.658474i
\(593\) 145.309i 0.245040i −0.992466 0.122520i \(-0.960902\pi\)
0.992466 0.122520i \(-0.0390975\pi\)
\(594\) 0 0
\(595\) 762.563 1.28162
\(596\) 313.291 373.365i 0.525656 0.626452i
\(597\) 0 0
\(598\) 116.676 + 661.705i 0.195111 + 1.10653i
\(599\) −7.85706 + 21.5871i −0.0131170 + 0.0360386i −0.946078 0.323938i \(-0.894993\pi\)
0.932961 + 0.359977i \(0.117215\pi\)
\(600\) 0 0
\(601\) −161.036 + 913.281i −0.267947 + 1.51960i 0.492564 + 0.870276i \(0.336060\pi\)
−0.760511 + 0.649325i \(0.775051\pi\)
\(602\) −1548.58 894.071i −2.57238 1.48517i
\(603\) 0 0
\(604\) −121.631 210.670i −0.201375 0.348792i
\(605\) −117.944 324.048i −0.194948 0.535616i
\(606\) 0 0
\(607\) 401.386 336.803i 0.661262 0.554865i −0.249203 0.968451i \(-0.580169\pi\)
0.910465 + 0.413587i \(0.135724\pi\)
\(608\) 446.683 + 532.336i 0.734677 + 0.875553i
\(609\) 0 0
\(610\) 526.202 191.522i 0.862626 0.313970i
\(611\) 110.745 63.9384i 0.181251 0.104646i
\(612\) 0 0
\(613\) −35.0848 + 60.7687i −0.0572346 + 0.0991333i −0.893223 0.449614i \(-0.851562\pi\)
0.835988 + 0.548747i \(0.184895\pi\)
\(614\) 136.135 + 24.0043i 0.221718 + 0.0390949i
\(615\) 0 0
\(616\) −177.982 64.7801i −0.288932 0.105163i
\(617\) 654.465 115.400i 1.06072 0.187034i 0.384045 0.923314i \(-0.374531\pi\)
0.676676 + 0.736281i \(0.263420\pi\)
\(618\) 0 0
\(619\) −743.640 623.988i −1.20136 1.00806i −0.999590 0.0286254i \(-0.990887\pi\)
−0.201768 0.979433i \(-0.564669\pi\)
\(620\) 594.574i 0.958990i
\(621\) 0 0
\(622\) −932.436 −1.49909
\(623\) 147.607 175.911i 0.236929 0.282361i
\(624\) 0 0
\(625\) −135.231 766.934i −0.216370 1.22709i
\(626\) 151.219 415.472i 0.241565 0.663693i
\(627\) 0 0
\(628\) 37.5625 213.028i 0.0598129 0.339216i
\(629\) −411.502 237.581i −0.654216 0.377712i
\(630\) 0 0
\(631\) 94.6588 + 163.954i 0.150014 + 0.259832i 0.931232 0.364426i \(-0.118735\pi\)
−0.781218 + 0.624258i \(0.785401\pi\)
\(632\) 27.1764 + 74.6666i 0.0430006 + 0.118143i
\(633\) 0 0
\(634\) −1026.64 + 861.454i −1.61931 + 1.35876i
\(635\) −471.970 562.472i −0.743260 0.885783i
\(636\) 0 0
\(637\) −154.158 + 56.1089i −0.242006 + 0.0880830i
\(638\) −280.156 + 161.748i −0.439116 + 0.253524i
\(639\) 0 0
\(640\) −276.852 + 479.522i −0.432581 + 0.749253i
\(641\) −682.182 120.287i −1.06425 0.187655i −0.386006 0.922496i \(-0.626146\pi\)
−0.678240 + 0.734841i \(0.737257\pi\)
\(642\) 0 0
\(643\) −1000.40 364.116i −1.55583 0.566277i −0.586056 0.810271i \(-0.699320\pi\)
−0.969777 + 0.243994i \(0.921542\pi\)
\(644\) 611.705 107.860i 0.949852 0.167485i
\(645\) 0 0
\(646\) 540.430 + 453.475i 0.836579 + 0.701973i
\(647\) 352.755i 0.545217i −0.962125 0.272608i \(-0.912114\pi\)
0.962125 0.272608i \(-0.0878863\pi\)
\(648\) 0 0
\(649\) 184.274 0.283935
\(650\) 230.868 275.138i 0.355181 0.423288i
\(651\) 0 0
\(652\) −128.580 729.215i −0.197209 1.11843i
\(653\) 160.213 440.183i 0.245350 0.674093i −0.754492 0.656309i \(-0.772117\pi\)
0.999842 0.0177840i \(-0.00566112\pi\)
\(654\) 0 0
\(655\) 5.11572 29.0127i 0.00781026 0.0442942i
\(656\) −274.399 158.424i −0.418291 0.241501i
\(657\) 0 0
\(658\) −140.474 243.307i −0.213486 0.369768i
\(659\) −29.3934 80.7577i −0.0446030 0.122546i 0.915391 0.402565i \(-0.131881\pi\)
−0.959994 + 0.280019i \(0.909659\pi\)
\(660\) 0 0
\(661\) 94.3093 79.1349i 0.142677 0.119720i −0.568656 0.822575i \(-0.692536\pi\)
0.711333 + 0.702856i \(0.248092\pi\)
\(662\) −573.204 683.118i −0.865867 1.03190i
\(663\) 0 0
\(664\) −47.5314 + 17.3000i −0.0715834 + 0.0260542i
\(665\) 785.070 453.260i 1.18056 0.681594i
\(666\) 0 0
\(667\) −199.763 + 346.000i −0.299495 + 0.518741i
\(668\) 453.844 + 80.0249i 0.679407 + 0.119798i
\(669\) 0 0
\(670\) 125.104 + 45.5340i 0.186722 + 0.0679612i
\(671\) −272.386 + 48.0289i −0.405940 + 0.0715781i
\(672\) 0 0
\(673\) −487.674 409.207i −0.724627 0.608035i 0.204034 0.978964i \(-0.434595\pi\)
−0.928661 + 0.370929i \(0.879039\pi\)
\(674\) 179.321i 0.266054i
\(675\) 0 0
\(676\) 217.127 0.321194
\(677\) −106.259 + 126.634i −0.156955 + 0.187052i −0.838791 0.544453i \(-0.816737\pi\)
0.681836 + 0.731505i \(0.261182\pi\)
\(678\) 0 0
\(679\) −237.704 1348.09i −0.350080 1.98540i
\(680\) −92.3916 + 253.844i −0.135870 + 0.373300i
\(681\) 0 0
\(682\) −121.198 + 687.351i −0.177710 + 1.00785i
\(683\) 1129.58 + 652.163i 1.65385 + 0.954851i 0.975468 + 0.220142i \(0.0706522\pi\)
0.678383 + 0.734709i \(0.262681\pi\)
\(684\) 0 0
\(685\) 690.092 + 1195.27i 1.00743 + 1.74493i
\(686\) −234.232 643.548i −0.341446 0.938116i
\(687\) 0 0
\(688\) 1231.58 1033.42i 1.79009 1.50207i
\(689\) −160.486 191.260i −0.232926 0.277590i
\(690\) 0 0
\(691\) 339.997 123.749i 0.492035 0.179086i −0.0840729 0.996460i \(-0.526793\pi\)
0.576108 + 0.817373i \(0.304571\pi\)
\(692\) −750.099 + 433.070i −1.08396 + 0.625824i
\(693\) 0 0
\(694\) 227.439 393.936i 0.327722 0.567632i
\(695\) −220.178 38.8232i −0.316802 0.0558608i
\(696\) 0 0
\(697\) −233.285 84.9087i −0.334698 0.121820i
\(698\) −1189.37 + 209.719i −1.70398 + 0.300457i
\(699\) 0 0
\(700\) −254.347 213.423i −0.363353 0.304890i
\(701\) 893.344i 1.27438i 0.770705 + 0.637192i \(0.219904\pi\)
−0.770705 + 0.637192i \(0.780096\pi\)
\(702\) 0 0
\(703\) −564.863 −0.803504
\(704\) −133.013 + 158.519i −0.188939 + 0.225169i
\(705\) 0 0
\(706\) 183.557 + 1041.00i 0.259996 + 1.47451i
\(707\) 193.871 532.655i 0.274216 0.753402i
\(708\) 0 0
\(709\) −119.924 + 680.121i −0.169145 + 0.959268i 0.775543 + 0.631295i \(0.217476\pi\)
−0.944687 + 0.327972i \(0.893635\pi\)
\(710\) −587.363 339.114i −0.827272 0.477626i
\(711\) 0 0
\(712\) 40.6737 + 70.4490i 0.0571260 + 0.0989452i
\(713\) 294.819 + 810.007i 0.413490 + 1.13606i
\(714\) 0 0
\(715\) −377.259 + 316.557i −0.527634 + 0.442738i
\(716\) 54.7796 + 65.2838i 0.0765079 + 0.0911785i
\(717\) 0 0
\(718\) −562.436 + 204.710i −0.783338 + 0.285112i
\(719\) −417.508 + 241.049i −0.580679 + 0.335255i −0.761403 0.648279i \(-0.775489\pi\)
0.180724 + 0.983534i \(0.442156\pi\)
\(720\) 0 0
\(721\) 283.560 491.140i 0.393287 0.681192i
\(722\) −108.328 19.1012i −0.150039 0.0264560i
\(723\) 0 0
\(724\) 227.733 + 82.8879i 0.314548 + 0.114486i
\(725\) 210.320 37.0850i 0.290096 0.0511517i
\(726\) 0 0
\(727\) 264.311 + 221.783i 0.363563 + 0.305066i 0.806209 0.591631i \(-0.201516\pi\)
−0.442646 + 0.896697i \(0.645960\pi\)
\(728\) 226.654i 0.311338i
\(729\) 0 0
\(730\) 1327.46 1.81844
\(731\) 809.703 964.966i 1.10766 1.32006i
\(732\) 0 0
\(733\) 93.6439 + 531.081i 0.127754 + 0.724531i 0.979634 + 0.200793i \(0.0643518\pi\)
−0.851879 + 0.523738i \(0.824537\pi\)
\(734\) −211.634 + 581.460i −0.288330 + 0.792180i
\(735\) 0 0
\(736\) −177.877 + 1008.79i −0.241680 + 1.37064i
\(737\) −56.9482 32.8791i −0.0772704 0.0446121i
\(738\) 0 0
\(739\) −368.737 638.671i −0.498968 0.864237i 0.501032 0.865429i \(-0.332954\pi\)
−0.999999 + 0.00119161i \(0.999621\pi\)
\(740\) 196.433 + 539.695i 0.265450 + 0.729317i
\(741\) 0 0
\(742\) −420.200 + 352.590i −0.566308 + 0.475188i
\(743\) 669.302 + 797.643i 0.900810 + 1.07354i 0.996940 + 0.0781750i \(0.0249093\pi\)
−0.0961294 + 0.995369i \(0.530646\pi\)
\(744\) 0 0
\(745\) 985.303 358.621i 1.32255 0.481370i
\(746\) 1485.54 857.674i 1.99133 1.14970i
\(747\) 0 0
\(748\) −177.150 + 306.832i −0.236831 + 0.410204i
\(749\) −970.761 171.171i −1.29608 0.228533i
\(750\) 0 0
\(751\) −226.499 82.4391i −0.301597 0.109772i 0.186789 0.982400i \(-0.440192\pi\)
−0.488386 + 0.872628i \(0.662414\pi\)
\(752\) 248.762 43.8635i 0.330801 0.0583291i
\(753\) 0 0
\(754\) −296.549 248.834i −0.393301 0.330019i
\(755\) 523.331i 0.693154i
\(756\) 0 0
\(757\) 32.7615 0.0432781 0.0216391 0.999766i \(-0.493112\pi\)
0.0216391 + 0.999766i \(0.493112\pi\)
\(758\) −1055.82 + 1258.27i −1.39290 + 1.65999i
\(759\) 0 0
\(760\) 55.7639 + 316.253i 0.0733735 + 0.416122i
\(761\) 109.225 300.094i 0.143529 0.394342i −0.847010 0.531577i \(-0.821600\pi\)
0.990538 + 0.137236i \(0.0438218\pi\)
\(762\) 0 0
\(763\) 168.637 956.386i 0.221018 1.25345i
\(764\) 394.950 + 228.025i 0.516951 + 0.298462i
\(765\) 0 0
\(766\) 139.986 + 242.463i 0.182750 + 0.316531i
\(767\) 75.4204 + 207.216i 0.0983317 + 0.270164i
\(768\) 0 0
\(769\) −364.796 + 306.100i −0.474377 + 0.398050i −0.848388 0.529375i \(-0.822427\pi\)
0.374011 + 0.927424i \(0.377982\pi\)
\(770\) 695.481 + 828.842i 0.903222 + 1.07642i
\(771\) 0 0
\(772\) −113.231 + 41.2128i −0.146672 + 0.0533844i
\(773\) −1122.62 + 648.147i −1.45229 + 0.838482i −0.998611 0.0526817i \(-0.983223\pi\)
−0.453682 + 0.891164i \(0.649890\pi\)
\(774\) 0 0
\(775\) 230.386 399.040i 0.297272 0.514890i
\(776\) 477.554 + 84.2057i 0.615405 + 0.108513i
\(777\) 0 0
\(778\) 1465.91 + 533.548i 1.88420 + 0.685794i
\(779\) −290.639 + 51.2475i −0.373092 + 0.0657863i
\(780\) 0 0
\(781\) 256.623 + 215.332i 0.328583 + 0.275714i
\(782\) 1039.93i 1.32983i
\(783\) 0 0
\(784\) −324.056 −0.413337
\(785\) 299.127 356.486i 0.381054 0.454122i
\(786\) 0 0
\(787\) 149.503 + 847.873i 0.189966 + 1.07735i 0.919408 + 0.393306i \(0.128669\pi\)
−0.729442 + 0.684043i \(0.760220\pi\)
\(788\) 209.356 575.202i 0.265681 0.729952i
\(789\) 0 0
\(790\) 78.8203 447.012i 0.0997725 0.565838i
\(791\) 874.285 + 504.769i 1.10529 + 0.638140i
\(792\) 0 0
\(793\) −165.492 286.640i −0.208690 0.361462i
\(794\) −336.882 925.576i −0.424285 1.16571i
\(795\) 0 0
\(796\) 390.716 327.849i 0.490849 0.411871i
\(797\) 372.897 + 444.402i 0.467876 + 0.557593i 0.947448 0.319909i \(-0.103652\pi\)
−0.479572 + 0.877503i \(0.659208\pi\)
\(798\) 0 0
\(799\) 185.980 67.6913i 0.232766 0.0847200i
\(800\) 474.201 273.780i 0.592751 0.342225i
\(801\) 0 0
\(802\) 360.552 624.494i 0.449566 0.778671i
\(803\) −645.713 113.857i −0.804125 0.141789i
\(804\) 0 0
\(805\) 1255.68 + 457.031i 1.55985 + 0.567741i
\(806\) −822.529 + 145.034i −1.02051 + 0.179943i
\(807\) 0 0
\(808\) 153.822 + 129.072i 0.190374 + 0.159743i
\(809\) 661.323i 0.817457i −0.912656 0.408729i \(-0.865972\pi\)
0.912656 0.408729i \(-0.134028\pi\)
\(810\) 0 0
\(811\) −168.725 −0.208045 −0.104023 0.994575i \(-0.533171\pi\)
−0.104023 + 0.994575i \(0.533171\pi\)
\(812\) −230.031 + 274.141i −0.283290 + 0.337612i
\(813\) 0 0
\(814\) −117.072 663.949i −0.143823 0.815663i
\(815\) 544.828 1496.90i 0.668501 1.83669i
\(816\) 0 0
\(817\) 260.034 1474.73i 0.318279 1.80505i
\(818\) 1255.05 + 724.602i 1.53429 + 0.885822i
\(819\) 0 0
\(820\) 150.035 + 259.868i 0.182969 + 0.316912i
\(821\) 51.8428 + 142.437i 0.0631460 + 0.173492i 0.967253 0.253814i \(-0.0816850\pi\)
−0.904107 + 0.427306i \(0.859463\pi\)
\(822\) 0 0
\(823\) 172.223 144.512i 0.209263 0.175592i −0.532132 0.846661i \(-0.678609\pi\)
0.741395 + 0.671069i \(0.234165\pi\)
\(824\) 129.136 + 153.898i 0.156718 + 0.186770i
\(825\) 0 0
\(826\) 455.256 165.700i 0.551158 0.200605i
\(827\) −292.855 + 169.080i −0.354117 + 0.204449i −0.666497 0.745508i \(-0.732207\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(828\) 0 0
\(829\) 401.806 695.949i 0.484688 0.839504i −0.515157 0.857096i \(-0.672267\pi\)
0.999845 + 0.0175917i \(0.00559990\pi\)
\(830\) 284.560 + 50.1756i 0.342843 + 0.0604525i
\(831\) 0 0
\(832\) −232.694 84.6938i −0.279681 0.101795i
\(833\) −250.046 + 44.0899i −0.300176 + 0.0529291i
\(834\) 0 0
\(835\) 759.474 + 637.274i 0.909550 + 0.763203i
\(836\) 421.184i 0.503809i
\(837\) 0 0
\(838\) −230.169 −0.274665
\(839\) −548.904 + 654.158i −0.654236 + 0.779688i −0.986546 0.163482i \(-0.947727\pi\)
0.332311 + 0.943170i \(0.392172\pi\)
\(840\) 0 0
\(841\) 106.067 + 601.537i 0.126120 + 0.715263i
\(842\) 266.274 731.581i 0.316240 0.868861i
\(843\) 0 0
\(844\) 131.620 746.453i 0.155948 0.884423i
\(845\) 404.527 + 233.554i 0.478731 + 0.276395i
\(846\) 0 0
\(847\) 223.906 + 387.816i 0.264351 + 0.457870i
\(848\) −168.679 463.443i −0.198914 0.546513i
\(849\) 0 0
\(850\) 425.833 357.316i 0.500980 0.420372i
\(851\) −535.214 637.843i −0.628923 0.749522i
\(852\) 0 0
\(853\) 750.923 273.313i 0.880331 0.320414i 0.137988 0.990434i \(-0.455937\pi\)
0.742343 + 0.670020i \(0.233714\pi\)
\(854\) −629.751 + 363.587i −0.737414 + 0.425746i
\(855\) 0 0
\(856\) 174.597 302.410i 0.203968 0.353283i
\(857\) 1529.66 + 269.721i 1.78490 + 0.314726i 0.965871 0.259022i \(-0.0834003\pi\)
0.819031 + 0.573749i \(0.194511\pi\)
\(858\) 0 0
\(859\) 26.5482 + 9.66277i 0.0309060 + 0.0112489i 0.357427 0.933941i \(-0.383654\pi\)
−0.326521 + 0.945190i \(0.605876\pi\)
\(860\) −1499.44 + 264.393i −1.74354 + 0.307433i
\(861\) 0 0
\(862\) 1180.01 + 990.146i 1.36892 + 1.14866i
\(863\) 951.550i 1.10261i 0.834305 + 0.551304i \(0.185869\pi\)
−0.834305 + 0.551304i \(0.814131\pi\)
\(864\) 0 0
\(865\) −1863.34 −2.15415
\(866\) −701.623 + 836.162i −0.810189 + 0.965545i
\(867\) 0 0
\(868\) 134.075 + 760.377i 0.154464 + 0.876010i
\(869\) −76.6806 + 210.678i −0.0882400 + 0.242438i
\(870\) 0 0
\(871\) 13.6645 77.4951i 0.0156883 0.0889726i
\(872\) 297.932 + 172.011i 0.341665 + 0.197260i
\(873\) 0 0
\(874\) 618.122 + 1070.62i 0.707233 + 1.22496i
\(875\) 189.585 + 520.881i 0.216669 + 0.595293i
\(876\) 0 0
\(877\) −174.806 + 146.679i −0.199322 + 0.167251i −0.736986 0.675908i \(-0.763752\pi\)
0.537663 + 0.843160i \(0.319307\pi\)
\(878\) 564.786 + 673.086i 0.643264 + 0.766613i
\(879\) 0 0
\(880\) −914.138 + 332.719i −1.03879 + 0.378090i
\(881\) 1343.36 775.592i 1.52482 0.880354i 0.525250 0.850948i \(-0.323972\pi\)
0.999568 0.0294054i \(-0.00936139\pi\)
\(882\) 0 0
\(883\) −781.794 + 1354.11i −0.885384 + 1.53353i −0.0401121 + 0.999195i \(0.512772\pi\)
−0.845272 + 0.534336i \(0.820562\pi\)
\(884\) −417.537 73.6231i −0.472327 0.0832840i
\(885\) 0 0
\(886\) −1115.28 405.929i −1.25878 0.458159i
\(887\) 691.493 121.929i 0.779587 0.137462i 0.230326 0.973113i \(-0.426021\pi\)
0.549260 + 0.835651i \(0.314910\pi\)
\(888\) 0 0
\(889\) 730.420 + 612.895i 0.821620 + 0.689421i
\(890\) 464.699i 0.522134i
\(891\) 0 0
\(892\) 1130.95 1.26789
\(893\) 151.234 180.234i 0.169355 0.201830i
\(894\) 0 0
\(895\) 31.8365 + 180.554i 0.0355715 + 0.201736i
\(896\) 245.924 675.671i 0.274469 0.754097i
\(897\) 0 0
\(898\) −87.1642 + 494.333i −0.0970649 + 0.550482i
\(899\) −430.094 248.315i −0.478413 0.276212i
\(900\) 0 0
\(901\) −193.210 334.649i −0.214439 0.371419i
\(902\) −120.474 331.000i −0.133564 0.366963i
\(903\) 0 0
\(904\) −273.956 + 229.877i −0.303049 + 0.254288i
\(905\) 335.128 + 399.390i 0.370307 + 0.441315i
\(906\) 0 0
\(907\) −1517.15 + 552.196i −1.67271 + 0.608816i −0.992282 0.124000i \(-0.960428\pi\)
−0.680426 + 0.732816i \(0.738205\pi\)
\(908\) −876.803 + 506.222i −0.965642 + 0.557514i
\(909\) 0 0
\(910\) −647.383 + 1121.30i −0.711410 + 1.23220i
\(911\) −603.650 106.440i −0.662623 0.116838i −0.167785 0.985824i \(-0.553662\pi\)
−0.494838 + 0.868985i \(0.664773\pi\)
\(912\) 0 0
\(913\) −134.114 48.8135i −0.146894 0.0534650i
\(914\) 998.308 176.029i 1.09224 0.192592i
\(915\) 0 0
\(916\) 811.397 + 680.843i 0.885805 + 0.743278i
\(917\) 38.2568i 0.0417195i
\(918\) 0 0
\(919\) 628.091 0.683451 0.341725 0.939800i \(-0.388989\pi\)
0.341725 + 0.939800i \(0.388989\pi\)
\(920\) −304.275 + 362.621i −0.330734 + 0.394153i
\(921\) 0 0
\(922\) −197.613 1120.72i −0.214331 1.21553i
\(923\) −137.109 + 376.704i −0.148547 + 0.408131i
\(924\) 0 0
\(925\) −77.2881 + 438.323i −0.0835547 + 0.473862i
\(926\) −1258.19 726.418i −1.35874 0.784469i
\(927\) 0 0
\(928\) −295.086 511.103i −0.317980 0.550758i
\(929\) 428.742 + 1177.96i 0.461509 + 1.26799i 0.924350 + 0.381545i \(0.124608\pi\)
−0.462841 + 0.886441i \(0.653170\pi\)
\(930\) 0 0
\(931\) −231.220 + 194.016i −0.248356 + 0.208396i
\(932\) 354.259 + 422.189i 0.380106 + 0.452993i
\(933\) 0 0
\(934\) −531.693 + 193.520i −0.569265 + 0.207195i
\(935\) −660.093 + 381.105i −0.705981 + 0.407599i
\(936\) 0 0
\(937\) 460.132 796.972i 0.491070 0.850557i −0.508878 0.860839i \(-0.669939\pi\)
0.999947 + 0.0102815i \(0.00327275\pi\)
\(938\) −170.258 30.0211i −0.181512 0.0320054i
\(939\) 0 0
\(940\) −224.796 81.8189i −0.239144 0.0870414i
\(941\) −673.068 + 118.680i −0.715269 + 0.126121i −0.519428 0.854514i \(-0.673855\pi\)
−0.195841 + 0.980636i \(0.562744\pi\)
\(942\) 0 0
\(943\) −333.252 279.632i −0.353396 0.296534i
\(944\) 435.590i 0.461430i
\(945\) 0 0
\(946\) 1787.31 1.88934
\(947\) 541.088 644.844i 0.571371 0.680933i −0.400541 0.916279i \(-0.631178\pi\)
0.971912 + 0.235346i \(0.0756222\pi\)
\(948\) 0 0
\(949\) −136.248 772.703i −0.143570 0.814228i
\(950\) 226.016 620.973i 0.237911 0.653656i
\(951\) 0 0
\(952\) 60.9148 345.465i 0.0639861 0.362883i
\(953\) −1277.52 737.576i −1.34052 0.773952i −0.353640 0.935382i \(-0.615056\pi\)
−0.986884 + 0.161430i \(0.948390\pi\)
\(954\) 0 0
\(955\) 490.553 + 849.662i 0.513668 + 0.889698i
\(956\) 304.205 + 835.797i 0.318206 + 0.874265i
\(957\) 0 0
\(958\) 455.940 382.579i 0.475929 0.399352i
\(959\) −1152.06 1372.98i −1.20132 1.43167i
\(960\) 0 0
\(961\) −103.831 + 37.7915i −0.108045 + 0.0393252i
\(962\) 698.694 403.391i 0.726294 0.419326i
\(963\) 0 0
\(964\) −428.456 + 742.107i −0.444456 + 0.769821i
\(965\) −255.291 45.0147i −0.264550 0.0466473i
\(966\) 0 0
\(967\) −305.163 111.070i −0.315577 0.114861i 0.179375 0.983781i \(-0.442592\pi\)
−0.494953 + 0.868920i \(0.664815\pi\)
\(968\) −156.225 + 27.5467i −0.161390 + 0.0284574i
\(969\) 0 0
\(970\) −2122.04 1780.60i −2.18767 1.83567i
\(971\) 1203.37i 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(972\) 0 0
\(973\) 290.331 0.298387
\(974\) 748.520 892.051i 0.768501 0.915864i
\(975\) 0 0
\(976\) −113.532 643.870i −0.116323 0.659702i
\(977\) 64.7541 177.910i 0.0662785 0.182099i −0.902132 0.431460i \(-0.857999\pi\)
0.968410 + 0.249362i \(0.0802207\pi\)
\(978\) 0 0
\(979\) −39.8573 + 226.042i −0.0407123 + 0.230891i
\(980\) 265.779 + 153.448i 0.271203 + 0.156579i
\(981\) 0 0
\(982\) −876.994 1519.00i −0.893070 1.54684i
\(983\) −432.552 1188.43i −0.440033 1.20898i −0.939470 0.342630i \(-0.888682\pi\)
0.499437 0.866350i \(-0.333540\pi\)
\(984\) 0 0
\(985\) 1008.77 846.459i 1.02413 0.859349i
\(986\) −385.123 458.971i −0.390591 0.465488i
\(987\) 0 0
\(988\) −473.621 + 172.384i −0.479374 + 0.174478i
\(989\) 1911.64 1103.69i 1.93291 1.11596i
\(990\) 0 0
\(991\) 697.271 1207.71i 0.703604 1.21868i −0.263589 0.964635i \(-0.584906\pi\)
0.967193 0.254043i \(-0.0817603\pi\)
\(992\) −1253.97 221.109i −1.26408 0.222892i
\(993\) 0 0
\(994\) 827.625 + 301.231i 0.832621 + 0.303049i
\(995\) 1080.59 190.538i 1.08602 0.191495i
\(996\) 0 0
\(997\) 772.720 + 648.389i 0.775045 + 0.650340i 0.941996 0.335625i \(-0.108947\pi\)
−0.166950 + 0.985965i \(0.553392\pi\)
\(998\) 151.062i 0.151365i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.b.107.1 30
3.2 odd 2 243.3.f.c.107.5 30
9.2 odd 6 243.3.f.d.26.1 30
9.4 even 3 81.3.f.a.62.1 30
9.5 odd 6 27.3.f.a.20.5 30
9.7 even 3 243.3.f.a.26.5 30
27.4 even 9 243.3.f.d.215.1 30
27.5 odd 18 inner 243.3.f.b.134.1 30
27.7 even 9 729.3.b.a.728.26 30
27.13 even 9 27.3.f.a.23.5 yes 30
27.14 odd 18 81.3.f.a.17.1 30
27.20 odd 18 729.3.b.a.728.5 30
27.22 even 9 243.3.f.c.134.5 30
27.23 odd 18 243.3.f.a.215.5 30
36.23 even 6 432.3.bc.a.209.5 30
108.67 odd 18 432.3.bc.a.401.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.5 30 9.5 odd 6
27.3.f.a.23.5 yes 30 27.13 even 9
81.3.f.a.17.1 30 27.14 odd 18
81.3.f.a.62.1 30 9.4 even 3
243.3.f.a.26.5 30 9.7 even 3
243.3.f.a.215.5 30 27.23 odd 18
243.3.f.b.107.1 30 1.1 even 1 trivial
243.3.f.b.134.1 30 27.5 odd 18 inner
243.3.f.c.107.5 30 3.2 odd 2
243.3.f.c.134.5 30 27.22 even 9
243.3.f.d.26.1 30 9.2 odd 6
243.3.f.d.215.1 30 27.4 even 9
432.3.bc.a.209.5 30 36.23 even 6
432.3.bc.a.401.5 30 108.67 odd 18
729.3.b.a.728.5 30 27.20 odd 18
729.3.b.a.728.26 30 27.7 even 9