Properties

Label 432.3.bc.a.209.5
Level $432$
Weight $3$
Character 432.209
Analytic conductor $11.771$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,3,Mod(65,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,6,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 209.5
Character \(\chi\) \(=\) 432.209
Dual form 432.3.bc.a.401.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.94744 - 0.559079i) q^{3} +(6.15614 - 1.08549i) q^{5} +(6.21846 + 5.21791i) q^{7} +(8.37486 - 3.29571i) q^{9} +(7.99059 + 1.40896i) q^{11} +(-9.12402 - 3.32087i) q^{13} +(17.5380 - 6.64120i) q^{15} +(-13.0143 + 7.51380i) q^{17} +(-8.93226 + 15.4711i) q^{19} +(21.2458 + 11.9029i) q^{21} +(-16.9268 - 20.1726i) q^{23} +(13.2275 - 4.81440i) q^{25} +(22.8419 - 14.3961i) q^{27} +(5.18906 + 14.2568i) q^{29} +(-25.0755 + 21.0408i) q^{31} +(24.3395 - 0.314547i) q^{33} +(43.9457 + 25.3721i) q^{35} +(-15.8096 - 27.3831i) q^{37} +(-28.7492 - 4.68704i) q^{39} +(5.65018 - 15.5238i) q^{41} +(14.5559 - 82.5505i) q^{43} +(47.9794 - 29.3797i) q^{45} +(-8.46562 + 10.0889i) q^{47} +(2.93393 + 16.6391i) q^{49} +(-34.1581 + 29.4225i) q^{51} +25.7140i q^{53} +50.7206 q^{55} +(-17.6778 + 50.5941i) q^{57} +(22.3660 - 3.94373i) q^{59} +(26.1131 + 21.9115i) q^{61} +(69.2755 + 23.2050i) q^{63} +(-59.7736 - 10.5397i) q^{65} +(7.61567 + 2.77188i) q^{67} +(-61.1690 - 49.9942i) q^{69} +(-35.7557 + 20.6436i) q^{71} +(40.4046 - 69.9827i) q^{73} +(36.2956 - 21.5854i) q^{75} +(42.3374 + 50.4557i) q^{77} +(-25.9652 + 9.45057i) q^{79} +(59.2766 - 55.2022i) q^{81} +(6.01607 + 16.5290i) q^{83} +(-71.9616 + 60.3830i) q^{85} +(23.2652 + 39.1201i) q^{87} +(24.4986 + 14.1443i) q^{89} +(-39.4094 - 68.2590i) q^{91} +(-62.1451 + 76.0358i) q^{93} +(-38.1945 + 104.938i) q^{95} +(29.2825 - 166.069i) q^{97} +(71.5636 - 14.5348i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 6 q^{3} - 15 q^{5} + 6 q^{7} + 6 q^{11} - 6 q^{13} + 9 q^{15} - 9 q^{17} + 3 q^{19} + 132 q^{21} - 120 q^{23} - 15 q^{25} + 90 q^{27} - 168 q^{29} - 39 q^{31} - 207 q^{33} + 252 q^{35} - 3 q^{37}+ \cdots - 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.94744 0.559079i 0.982482 0.186360i
\(4\) 0 0
\(5\) 6.15614 1.08549i 1.23123 0.217099i 0.480076 0.877227i \(-0.340609\pi\)
0.751153 + 0.660128i \(0.229498\pi\)
\(6\) 0 0
\(7\) 6.21846 + 5.21791i 0.888352 + 0.745415i 0.967879 0.251417i \(-0.0808966\pi\)
−0.0795272 + 0.996833i \(0.525341\pi\)
\(8\) 0 0
\(9\) 8.37486 3.29571i 0.930540 0.366190i
\(10\) 0 0
\(11\) 7.99059 + 1.40896i 0.726417 + 0.128087i 0.524615 0.851339i \(-0.324209\pi\)
0.201802 + 0.979426i \(0.435320\pi\)
\(12\) 0 0
\(13\) −9.12402 3.32087i −0.701848 0.255452i −0.0336483 0.999434i \(-0.510713\pi\)
−0.668200 + 0.743982i \(0.732935\pi\)
\(14\) 0 0
\(15\) 17.5380 6.64120i 1.16920 0.442747i
\(16\) 0 0
\(17\) −13.0143 + 7.51380i −0.765546 + 0.441988i −0.831284 0.555849i \(-0.812393\pi\)
0.0657372 + 0.997837i \(0.479060\pi\)
\(18\) 0 0
\(19\) −8.93226 + 15.4711i −0.470119 + 0.814270i −0.999416 0.0341664i \(-0.989122\pi\)
0.529297 + 0.848437i \(0.322456\pi\)
\(20\) 0 0
\(21\) 21.2458 + 11.9029i 1.01170 + 0.566804i
\(22\) 0 0
\(23\) −16.9268 20.1726i −0.735949 0.877070i 0.260127 0.965575i \(-0.416236\pi\)
−0.996076 + 0.0885045i \(0.971791\pi\)
\(24\) 0 0
\(25\) 13.2275 4.81440i 0.529099 0.192576i
\(26\) 0 0
\(27\) 22.8419 14.3961i 0.845996 0.533190i
\(28\) 0 0
\(29\) 5.18906 + 14.2568i 0.178933 + 0.491615i 0.996440 0.0843038i \(-0.0268666\pi\)
−0.817507 + 0.575919i \(0.804644\pi\)
\(30\) 0 0
\(31\) −25.0755 + 21.0408i −0.808886 + 0.678736i −0.950342 0.311209i \(-0.899266\pi\)
0.141456 + 0.989945i \(0.454822\pi\)
\(32\) 0 0
\(33\) 24.3395 0.314547i 0.737562 0.00953171i
\(34\) 0 0
\(35\) 43.9457 + 25.3721i 1.25559 + 0.724917i
\(36\) 0 0
\(37\) −15.8096 27.3831i −0.427287 0.740083i 0.569344 0.822100i \(-0.307197\pi\)
−0.996631 + 0.0820163i \(0.973864\pi\)
\(38\) 0 0
\(39\) −28.7492 4.68704i −0.737159 0.120181i
\(40\) 0 0
\(41\) 5.65018 15.5238i 0.137809 0.378628i −0.851520 0.524321i \(-0.824319\pi\)
0.989330 + 0.145693i \(0.0465413\pi\)
\(42\) 0 0
\(43\) 14.5559 82.5505i 0.338509 1.91978i −0.0508761 0.998705i \(-0.516201\pi\)
0.389385 0.921075i \(-0.372688\pi\)
\(44\) 0 0
\(45\) 47.9794 29.3797i 1.06621 0.652882i
\(46\) 0 0
\(47\) −8.46562 + 10.0889i −0.180120 + 0.214658i −0.848548 0.529118i \(-0.822523\pi\)
0.668429 + 0.743776i \(0.266967\pi\)
\(48\) 0 0
\(49\) 2.93393 + 16.6391i 0.0598761 + 0.339574i
\(50\) 0 0
\(51\) −34.1581 + 29.4225i −0.669766 + 0.576912i
\(52\) 0 0
\(53\) 25.7140i 0.485169i 0.970130 + 0.242585i \(0.0779952\pi\)
−0.970130 + 0.242585i \(0.922005\pi\)
\(54\) 0 0
\(55\) 50.7206 0.922193
\(56\) 0 0
\(57\) −17.6778 + 50.5941i −0.310136 + 0.887617i
\(58\) 0 0
\(59\) 22.3660 3.94373i 0.379085 0.0668428i 0.0191407 0.999817i \(-0.493907\pi\)
0.359944 + 0.932974i \(0.382796\pi\)
\(60\) 0 0
\(61\) 26.1131 + 21.9115i 0.428084 + 0.359205i 0.831228 0.555931i \(-0.187638\pi\)
−0.403144 + 0.915137i \(0.632083\pi\)
\(62\) 0 0
\(63\) 69.2755 + 23.2050i 1.09961 + 0.368334i
\(64\) 0 0
\(65\) −59.7736 10.5397i −0.919593 0.162149i
\(66\) 0 0
\(67\) 7.61567 + 2.77188i 0.113667 + 0.0413713i 0.398227 0.917287i \(-0.369625\pi\)
−0.284561 + 0.958658i \(0.591848\pi\)
\(68\) 0 0
\(69\) −61.1690 49.9942i −0.886507 0.724554i
\(70\) 0 0
\(71\) −35.7557 + 20.6436i −0.503601 + 0.290754i −0.730199 0.683234i \(-0.760573\pi\)
0.226598 + 0.973988i \(0.427240\pi\)
\(72\) 0 0
\(73\) 40.4046 69.9827i 0.553487 0.958668i −0.444532 0.895763i \(-0.646630\pi\)
0.998020 0.0629050i \(-0.0200365\pi\)
\(74\) 0 0
\(75\) 36.2956 21.5854i 0.483941 0.287805i
\(76\) 0 0
\(77\) 42.3374 + 50.4557i 0.549836 + 0.655269i
\(78\) 0 0
\(79\) −25.9652 + 9.45057i −0.328674 + 0.119627i −0.501086 0.865397i \(-0.667066\pi\)
0.172412 + 0.985025i \(0.444844\pi\)
\(80\) 0 0
\(81\) 59.2766 55.2022i 0.731810 0.681508i
\(82\) 0 0
\(83\) 6.01607 + 16.5290i 0.0724827 + 0.199145i 0.970644 0.240522i \(-0.0773187\pi\)
−0.898161 + 0.439667i \(0.855096\pi\)
\(84\) 0 0
\(85\) −71.9616 + 60.3830i −0.846607 + 0.710388i
\(86\) 0 0
\(87\) 23.2652 + 39.1201i 0.267416 + 0.449657i
\(88\) 0 0
\(89\) 24.4986 + 14.1443i 0.275265 + 0.158924i 0.631278 0.775557i \(-0.282531\pi\)
−0.356013 + 0.934481i \(0.615864\pi\)
\(90\) 0 0
\(91\) −39.4094 68.2590i −0.433070 0.750099i
\(92\) 0 0
\(93\) −62.1451 + 76.0358i −0.668227 + 0.817589i
\(94\) 0 0
\(95\) −38.1945 + 104.938i −0.402047 + 1.10461i
\(96\) 0 0
\(97\) 29.2825 166.069i 0.301881 1.71205i −0.335953 0.941879i \(-0.609058\pi\)
0.637834 0.770174i \(-0.279831\pi\)
\(98\) 0 0
\(99\) 71.5636 14.5348i 0.722865 0.146816i
\(100\) 0 0
\(101\) −44.8847 + 53.4915i −0.444403 + 0.529619i −0.941020 0.338351i \(-0.890131\pi\)
0.496617 + 0.867970i \(0.334575\pi\)
\(102\) 0 0
\(103\) −12.1315 68.8014i −0.117782 0.667974i −0.985335 0.170630i \(-0.945420\pi\)
0.867553 0.497344i \(-0.165691\pi\)
\(104\) 0 0
\(105\) 143.713 + 50.2137i 1.36869 + 0.478226i
\(106\) 0 0
\(107\) 121.432i 1.13488i 0.823416 + 0.567438i \(0.192065\pi\)
−0.823416 + 0.567438i \(0.807935\pi\)
\(108\) 0 0
\(109\) −119.633 −1.09755 −0.548777 0.835969i \(-0.684907\pi\)
−0.548777 + 0.835969i \(0.684907\pi\)
\(110\) 0 0
\(111\) −61.9073 71.8713i −0.557723 0.647489i
\(112\) 0 0
\(113\) 122.474 21.5955i 1.08384 0.191111i 0.396929 0.917849i \(-0.370076\pi\)
0.686914 + 0.726738i \(0.258965\pi\)
\(114\) 0 0
\(115\) −126.101 105.811i −1.09653 0.920100i
\(116\) 0 0
\(117\) −87.3571 + 2.25826i −0.746642 + 0.0193013i
\(118\) 0 0
\(119\) −120.135 21.1831i −1.00954 0.178009i
\(120\) 0 0
\(121\) −51.8384 18.8676i −0.428417 0.155931i
\(122\) 0 0
\(123\) 7.97461 48.9143i 0.0648342 0.397677i
\(124\) 0 0
\(125\) −59.1363 + 34.1424i −0.473091 + 0.273139i
\(126\) 0 0
\(127\) −58.7300 + 101.723i −0.462441 + 0.800971i −0.999082 0.0428396i \(-0.986360\pi\)
0.536641 + 0.843811i \(0.319693\pi\)
\(128\) 0 0
\(129\) −3.24957 251.451i −0.0251905 1.94923i
\(130\) 0 0
\(131\) −3.02933 3.61022i −0.0231247 0.0275589i 0.754358 0.656463i \(-0.227948\pi\)
−0.777483 + 0.628904i \(0.783504\pi\)
\(132\) 0 0
\(133\) −136.272 + 49.5989i −1.02460 + 0.372924i
\(134\) 0 0
\(135\) 124.991 113.419i 0.925859 0.840143i
\(136\) 0 0
\(137\) 75.5147 + 207.475i 0.551202 + 1.51442i 0.832071 + 0.554669i \(0.187155\pi\)
−0.280869 + 0.959746i \(0.590623\pi\)
\(138\) 0 0
\(139\) 27.3980 22.9896i 0.197108 0.165393i −0.538892 0.842375i \(-0.681157\pi\)
0.736000 + 0.676982i \(0.236712\pi\)
\(140\) 0 0
\(141\) −19.3114 + 34.4695i −0.136961 + 0.244465i
\(142\) 0 0
\(143\) −68.2274 39.3911i −0.477114 0.275462i
\(144\) 0 0
\(145\) 47.4203 + 82.1344i 0.327037 + 0.566444i
\(146\) 0 0
\(147\) 17.9502 + 47.4026i 0.122110 + 0.322467i
\(148\) 0 0
\(149\) −57.3691 + 157.620i −0.385028 + 1.05786i 0.584183 + 0.811622i \(0.301415\pi\)
−0.969211 + 0.246233i \(0.920807\pi\)
\(150\) 0 0
\(151\) 14.5375 82.4463i 0.0962748 0.546002i −0.898074 0.439844i \(-0.855034\pi\)
0.994349 0.106158i \(-0.0338550\pi\)
\(152\) 0 0
\(153\) −84.2296 + 105.818i −0.550520 + 0.691623i
\(154\) 0 0
\(155\) −131.528 + 156.750i −0.848571 + 1.01129i
\(156\) 0 0
\(157\) −12.9271 73.3133i −0.0823383 0.466963i −0.997899 0.0647844i \(-0.979364\pi\)
0.915561 0.402179i \(-0.131747\pi\)
\(158\) 0 0
\(159\) 14.3761 + 75.7905i 0.0904159 + 0.476670i
\(160\) 0 0
\(161\) 213.765i 1.32773i
\(162\) 0 0
\(163\) −254.830 −1.56337 −0.781687 0.623670i \(-0.785641\pi\)
−0.781687 + 0.623670i \(0.785641\pi\)
\(164\) 0 0
\(165\) 149.496 28.3568i 0.906038 0.171859i
\(166\) 0 0
\(167\) 156.190 27.5405i 0.935269 0.164913i 0.314813 0.949154i \(-0.398058\pi\)
0.620457 + 0.784241i \(0.286947\pi\)
\(168\) 0 0
\(169\) −57.2419 48.0317i −0.338710 0.284211i
\(170\) 0 0
\(171\) −23.8181 + 159.007i −0.139287 + 0.929864i
\(172\) 0 0
\(173\) −293.553 51.7613i −1.69684 0.299198i −0.760249 0.649632i \(-0.774923\pi\)
−0.936587 + 0.350434i \(0.886034\pi\)
\(174\) 0 0
\(175\) 107.376 + 39.0815i 0.613575 + 0.223323i
\(176\) 0 0
\(177\) 63.7177 24.1283i 0.359987 0.136318i
\(178\) 0 0
\(179\) −25.3997 + 14.6645i −0.141898 + 0.0819248i −0.569268 0.822152i \(-0.692773\pi\)
0.427370 + 0.904077i \(0.359440\pi\)
\(180\) 0 0
\(181\) −41.7019 + 72.2299i −0.230397 + 0.399060i −0.957925 0.287018i \(-0.907336\pi\)
0.727528 + 0.686078i \(0.240669\pi\)
\(182\) 0 0
\(183\) 89.2173 + 49.9837i 0.487526 + 0.273135i
\(184\) 0 0
\(185\) −127.050 151.413i −0.686759 0.818448i
\(186\) 0 0
\(187\) −114.578 + 41.7031i −0.612719 + 0.223011i
\(188\) 0 0
\(189\) 217.159 + 29.6651i 1.14899 + 0.156958i
\(190\) 0 0
\(191\) −53.6797 147.484i −0.281046 0.772166i −0.997239 0.0742641i \(-0.976339\pi\)
0.716193 0.697902i \(-0.245883\pi\)
\(192\) 0 0
\(193\) −31.7673 + 26.6559i −0.164598 + 0.138114i −0.721366 0.692554i \(-0.756485\pi\)
0.556769 + 0.830668i \(0.312041\pi\)
\(194\) 0 0
\(195\) −182.072 + 2.35296i −0.933702 + 0.0120665i
\(196\) 0 0
\(197\) −182.437 105.330i −0.926074 0.534669i −0.0405063 0.999179i \(-0.512897\pi\)
−0.885568 + 0.464510i \(0.846230\pi\)
\(198\) 0 0
\(199\) −87.7654 152.014i −0.441032 0.763890i 0.556734 0.830691i \(-0.312054\pi\)
−0.997766 + 0.0668004i \(0.978721\pi\)
\(200\) 0 0
\(201\) 23.9965 + 3.91220i 0.119385 + 0.0194637i
\(202\) 0 0
\(203\) −42.1229 + 115.732i −0.207502 + 0.570107i
\(204\) 0 0
\(205\) 17.9324 101.700i 0.0874751 0.496096i
\(206\) 0 0
\(207\) −208.243 113.157i −1.00600 0.546652i
\(208\) 0 0
\(209\) −93.1722 + 111.038i −0.445800 + 0.531284i
\(210\) 0 0
\(211\) 45.2968 + 256.891i 0.214677 + 1.21749i 0.881466 + 0.472247i \(0.156557\pi\)
−0.666789 + 0.745246i \(0.732332\pi\)
\(212\) 0 0
\(213\) −93.8465 + 80.8360i −0.440594 + 0.379512i
\(214\) 0 0
\(215\) 523.993i 2.43718i
\(216\) 0 0
\(217\) −265.720 −1.22452
\(218\) 0 0
\(219\) 79.9643 228.860i 0.365134 1.04502i
\(220\) 0 0
\(221\) 143.695 25.3373i 0.650204 0.114648i
\(222\) 0 0
\(223\) 298.157 + 250.184i 1.33703 + 1.12190i 0.982379 + 0.186901i \(0.0598445\pi\)
0.354650 + 0.934999i \(0.384600\pi\)
\(224\) 0 0
\(225\) 94.9113 83.9138i 0.421828 0.372950i
\(226\) 0 0
\(227\) 343.139 + 60.5046i 1.51162 + 0.266540i 0.867135 0.498074i \(-0.165959\pi\)
0.644489 + 0.764614i \(0.277070\pi\)
\(228\) 0 0
\(229\) 342.540 + 124.675i 1.49581 + 0.544430i 0.954972 0.296696i \(-0.0958849\pi\)
0.540838 + 0.841127i \(0.318107\pi\)
\(230\) 0 0
\(231\) 152.996 + 125.045i 0.662319 + 0.541323i
\(232\) 0 0
\(233\) 164.260 94.8353i 0.704976 0.407018i −0.104222 0.994554i \(-0.533235\pi\)
0.809198 + 0.587536i \(0.199902\pi\)
\(234\) 0 0
\(235\) −41.1641 + 71.2983i −0.175166 + 0.303397i
\(236\) 0 0
\(237\) −71.2475 + 42.3716i −0.300622 + 0.178783i
\(238\) 0 0
\(239\) 196.756 + 234.485i 0.823249 + 0.981110i 0.999995 0.00314661i \(-0.00100160\pi\)
−0.176746 + 0.984256i \(0.556557\pi\)
\(240\) 0 0
\(241\) 277.120 100.864i 1.14988 0.418521i 0.304406 0.952542i \(-0.401542\pi\)
0.845471 + 0.534021i \(0.179320\pi\)
\(242\) 0 0
\(243\) 143.852 195.846i 0.591984 0.805949i
\(244\) 0 0
\(245\) 36.1234 + 99.2481i 0.147442 + 0.405094i
\(246\) 0 0
\(247\) 132.876 111.496i 0.537959 0.451401i
\(248\) 0 0
\(249\) 26.9730 + 45.3549i 0.108325 + 0.182148i
\(250\) 0 0
\(251\) −158.404 91.4547i −0.631092 0.364361i 0.150083 0.988673i \(-0.452046\pi\)
−0.781175 + 0.624312i \(0.785379\pi\)
\(252\) 0 0
\(253\) −106.833 185.040i −0.422265 0.731384i
\(254\) 0 0
\(255\) −178.344 + 218.208i −0.699388 + 0.855716i
\(256\) 0 0
\(257\) −91.7859 + 252.180i −0.357144 + 0.981244i 0.622872 + 0.782324i \(0.285966\pi\)
−0.980016 + 0.198920i \(0.936256\pi\)
\(258\) 0 0
\(259\) 44.5708 252.774i 0.172088 0.975961i
\(260\) 0 0
\(261\) 90.4440 + 102.297i 0.346529 + 0.391944i
\(262\) 0 0
\(263\) −226.246 + 269.629i −0.860250 + 1.02521i 0.139139 + 0.990273i \(0.455566\pi\)
−0.999390 + 0.0349337i \(0.988878\pi\)
\(264\) 0 0
\(265\) 27.9123 + 158.299i 0.105330 + 0.597354i
\(266\) 0 0
\(267\) 80.1160 + 27.9928i 0.300060 + 0.104842i
\(268\) 0 0
\(269\) 164.243i 0.610570i −0.952261 0.305285i \(-0.901248\pi\)
0.952261 0.305285i \(-0.0987518\pi\)
\(270\) 0 0
\(271\) 128.850 0.475462 0.237731 0.971331i \(-0.423596\pi\)
0.237731 + 0.971331i \(0.423596\pi\)
\(272\) 0 0
\(273\) −154.319 179.157i −0.565272 0.656252i
\(274\) 0 0
\(275\) 112.479 19.8330i 0.409013 0.0721200i
\(276\) 0 0
\(277\) 115.074 + 96.5583i 0.415428 + 0.348586i 0.826421 0.563053i \(-0.190373\pi\)
−0.410992 + 0.911639i \(0.634818\pi\)
\(278\) 0 0
\(279\) −140.659 + 258.855i −0.504155 + 0.927797i
\(280\) 0 0
\(281\) 453.995 + 80.0516i 1.61564 + 0.284881i 0.907140 0.420828i \(-0.138261\pi\)
0.708501 + 0.705710i \(0.249372\pi\)
\(282\) 0 0
\(283\) −64.7049 23.5506i −0.228639 0.0832178i 0.225160 0.974322i \(-0.427709\pi\)
−0.453799 + 0.891104i \(0.649932\pi\)
\(284\) 0 0
\(285\) −53.9072 + 330.654i −0.189148 + 1.16019i
\(286\) 0 0
\(287\) 116.137 67.0517i 0.404658 0.233630i
\(288\) 0 0
\(289\) −31.5856 + 54.7078i −0.109293 + 0.189300i
\(290\) 0 0
\(291\) −6.53725 505.851i −0.0224648 1.73832i
\(292\) 0 0
\(293\) 328.314 + 391.270i 1.12053 + 1.33539i 0.935772 + 0.352607i \(0.114705\pi\)
0.184755 + 0.982785i \(0.440851\pi\)
\(294\) 0 0
\(295\) 133.407 48.5563i 0.452228 0.164598i
\(296\) 0 0
\(297\) 202.804 82.8503i 0.682841 0.278957i
\(298\) 0 0
\(299\) 87.4501 + 240.267i 0.292475 + 0.803569i
\(300\) 0 0
\(301\) 521.256 437.386i 1.73175 1.45311i
\(302\) 0 0
\(303\) −102.389 + 182.757i −0.337919 + 0.603160i
\(304\) 0 0
\(305\) 184.541 + 106.545i 0.605053 + 0.349327i
\(306\) 0 0
\(307\) 26.3017 + 45.5559i 0.0856734 + 0.148391i 0.905678 0.423966i \(-0.139363\pi\)
−0.820005 + 0.572357i \(0.806029\pi\)
\(308\) 0 0
\(309\) −74.2224 196.006i −0.240202 0.634323i
\(310\) 0 0
\(311\) 121.357 333.427i 0.390217 1.07211i −0.576686 0.816966i \(-0.695654\pi\)
0.966903 0.255146i \(-0.0821234\pi\)
\(312\) 0 0
\(313\) 29.2161 165.693i 0.0933421 0.529369i −0.901901 0.431943i \(-0.857828\pi\)
0.995243 0.0974258i \(-0.0310609\pi\)
\(314\) 0 0
\(315\) 451.658 + 67.6554i 1.43384 + 0.214779i
\(316\) 0 0
\(317\) 327.814 390.674i 1.03411 1.23241i 0.0619572 0.998079i \(-0.480266\pi\)
0.972157 0.234330i \(-0.0752898\pi\)
\(318\) 0 0
\(319\) 21.3764 + 121.232i 0.0670107 + 0.380037i
\(320\) 0 0
\(321\) 67.8898 + 357.913i 0.211495 + 1.11499i
\(322\) 0 0
\(323\) 268.461i 0.831149i
\(324\) 0 0
\(325\) −136.676 −0.420541
\(326\) 0 0
\(327\) −352.613 + 66.8845i −1.07833 + 0.204540i
\(328\) 0 0
\(329\) −105.286 + 18.5648i −0.320019 + 0.0564280i
\(330\) 0 0
\(331\) 259.951 + 218.125i 0.785350 + 0.658987i 0.944590 0.328253i \(-0.106460\pi\)
−0.159240 + 0.987240i \(0.550904\pi\)
\(332\) 0 0
\(333\) −222.650 177.226i −0.668619 0.532209i
\(334\) 0 0
\(335\) 49.8920 + 8.79731i 0.148931 + 0.0262606i
\(336\) 0 0
\(337\) 64.1227 + 23.3388i 0.190275 + 0.0692545i 0.435400 0.900237i \(-0.356607\pi\)
−0.245125 + 0.969491i \(0.578829\pi\)
\(338\) 0 0
\(339\) 348.913 132.124i 1.02924 0.389748i
\(340\) 0 0
\(341\) −230.013 + 132.798i −0.674526 + 0.389438i
\(342\) 0 0
\(343\) 130.305 225.695i 0.379897 0.658002i
\(344\) 0 0
\(345\) −430.833 241.373i −1.24879 0.699632i
\(346\) 0 0
\(347\) 111.265 + 132.600i 0.320648 + 0.382134i 0.902158 0.431406i \(-0.141982\pi\)
−0.581510 + 0.813539i \(0.697538\pi\)
\(348\) 0 0
\(349\) −431.866 + 157.186i −1.23744 + 0.450390i −0.876138 0.482060i \(-0.839889\pi\)
−0.361299 + 0.932450i \(0.617667\pi\)
\(350\) 0 0
\(351\) −256.218 + 55.4956i −0.729965 + 0.158107i
\(352\) 0 0
\(353\) −137.578 377.991i −0.389738 1.07080i −0.967119 0.254322i \(-0.918148\pi\)
0.577381 0.816475i \(-0.304075\pi\)
\(354\) 0 0
\(355\) −197.709 + 165.897i −0.556926 + 0.467316i
\(356\) 0 0
\(357\) −365.935 + 4.72908i −1.02503 + 0.0132467i
\(358\) 0 0
\(359\) 197.249 + 113.882i 0.549439 + 0.317219i 0.748896 0.662688i \(-0.230584\pi\)
−0.199457 + 0.979907i \(0.563918\pi\)
\(360\) 0 0
\(361\) 20.9294 + 36.2507i 0.0579761 + 0.100418i
\(362\) 0 0
\(363\) −163.339 26.6296i −0.449971 0.0733597i
\(364\) 0 0
\(365\) 172.770 474.683i 0.473343 1.30050i
\(366\) 0 0
\(367\) 40.8884 231.890i 0.111413 0.631852i −0.877052 0.480396i \(-0.840493\pi\)
0.988464 0.151456i \(-0.0483960\pi\)
\(368\) 0 0
\(369\) −3.84223 148.631i −0.0104126 0.402793i
\(370\) 0 0
\(371\) −134.173 + 159.901i −0.361653 + 0.431001i
\(372\) 0 0
\(373\) 113.349 + 642.835i 0.303885 + 1.72342i 0.628707 + 0.777642i \(0.283585\pi\)
−0.324822 + 0.945775i \(0.605304\pi\)
\(374\) 0 0
\(375\) −155.213 + 133.695i −0.413901 + 0.356519i
\(376\) 0 0
\(377\) 147.312i 0.390748i
\(378\) 0 0
\(379\) −625.053 −1.64922 −0.824608 0.565705i \(-0.808604\pi\)
−0.824608 + 0.565705i \(0.808604\pi\)
\(380\) 0 0
\(381\) −116.232 + 332.659i −0.305071 + 0.873119i
\(382\) 0 0
\(383\) −104.921 + 18.5004i −0.273945 + 0.0483039i −0.308933 0.951084i \(-0.599972\pi\)
0.0349879 + 0.999388i \(0.488861\pi\)
\(384\) 0 0
\(385\) 315.404 + 264.656i 0.819232 + 0.687417i
\(386\) 0 0
\(387\) −150.159 739.321i −0.388007 1.91039i
\(388\) 0 0
\(389\) −584.613 103.083i −1.50286 0.264995i −0.639190 0.769049i \(-0.720730\pi\)
−0.863672 + 0.504054i \(0.831841\pi\)
\(390\) 0 0
\(391\) 371.864 + 135.347i 0.951058 + 0.346157i
\(392\) 0 0
\(393\) −10.9472 8.94729i −0.0278555 0.0227666i
\(394\) 0 0
\(395\) −149.587 + 86.3642i −0.378702 + 0.218643i
\(396\) 0 0
\(397\) −187.410 + 324.603i −0.472064 + 0.817640i −0.999489 0.0319623i \(-0.989824\pi\)
0.527425 + 0.849602i \(0.323158\pi\)
\(398\) 0 0
\(399\) −373.924 + 222.377i −0.937153 + 0.557335i
\(400\) 0 0
\(401\) −176.385 210.207i −0.439862 0.524207i 0.499879 0.866095i \(-0.333378\pi\)
−0.939741 + 0.341889i \(0.888933\pi\)
\(402\) 0 0
\(403\) 298.663 108.704i 0.741099 0.269738i
\(404\) 0 0
\(405\) 304.994 404.177i 0.753071 0.997968i
\(406\) 0 0
\(407\) −87.7467 241.082i −0.215594 0.592339i
\(408\) 0 0
\(409\) −422.454 + 354.481i −1.03289 + 0.866701i −0.991193 0.132429i \(-0.957722\pi\)
−0.0417017 + 0.999130i \(0.513278\pi\)
\(410\) 0 0
\(411\) 338.570 + 569.302i 0.823772 + 1.38516i
\(412\) 0 0
\(413\) 159.660 + 92.1798i 0.386586 + 0.223196i
\(414\) 0 0
\(415\) 54.9779 + 95.2245i 0.132477 + 0.229457i
\(416\) 0 0
\(417\) 67.9010 83.0783i 0.162832 0.199228i
\(418\) 0 0
\(419\) 29.9567 82.3055i 0.0714958 0.196433i −0.898798 0.438363i \(-0.855558\pi\)
0.970294 + 0.241930i \(0.0777805\pi\)
\(420\) 0 0
\(421\) 51.4449 291.759i 0.122197 0.693013i −0.860736 0.509051i \(-0.829996\pi\)
0.982933 0.183962i \(-0.0588924\pi\)
\(422\) 0 0
\(423\) −37.6482 + 112.394i −0.0890029 + 0.265706i
\(424\) 0 0
\(425\) −135.972 + 162.045i −0.319933 + 0.381281i
\(426\) 0 0
\(427\) 48.0512 + 272.512i 0.112532 + 0.638201i
\(428\) 0 0
\(429\) −223.119 77.9586i −0.520091 0.181722i
\(430\) 0 0
\(431\) 586.175i 1.36003i −0.733196 0.680017i \(-0.761972\pi\)
0.733196 0.680017i \(-0.238028\pi\)
\(432\) 0 0
\(433\) 415.367 0.959277 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(434\) 0 0
\(435\) 185.688 + 215.575i 0.426870 + 0.495575i
\(436\) 0 0
\(437\) 463.288 81.6902i 1.06016 0.186934i
\(438\) 0 0
\(439\) −256.133 214.921i −0.583447 0.489570i 0.302630 0.953108i \(-0.402135\pi\)
−0.886077 + 0.463538i \(0.846580\pi\)
\(440\) 0 0
\(441\) 79.4090 + 129.681i 0.180066 + 0.294062i
\(442\) 0 0
\(443\) −444.780 78.4268i −1.00402 0.177036i −0.352616 0.935768i \(-0.614708\pi\)
−0.651402 + 0.758732i \(0.725819\pi\)
\(444\) 0 0
\(445\) 166.170 + 60.4810i 0.373416 + 0.135912i
\(446\) 0 0
\(447\) −80.9702 + 496.651i −0.181141 + 1.11108i
\(448\) 0 0
\(449\) −165.422 + 95.5067i −0.368424 + 0.212710i −0.672770 0.739852i \(-0.734896\pi\)
0.304346 + 0.952562i \(0.401562\pi\)
\(450\) 0 0
\(451\) 67.0206 116.083i 0.148604 0.257390i
\(452\) 0 0
\(453\) −3.24547 251.133i −0.00716438 0.554378i
\(454\) 0 0
\(455\) −316.704 377.434i −0.696054 0.829525i
\(456\) 0 0
\(457\) 362.489 131.935i 0.793192 0.288698i 0.0865297 0.996249i \(-0.472422\pi\)
0.706662 + 0.707551i \(0.250200\pi\)
\(458\) 0 0
\(459\) −189.101 + 358.985i −0.411985 + 0.782102i
\(460\) 0 0
\(461\) 148.113 + 406.937i 0.321286 + 0.882727i 0.990234 + 0.139417i \(0.0445229\pi\)
−0.668947 + 0.743310i \(0.733255\pi\)
\(462\) 0 0
\(463\) −423.513 + 355.369i −0.914714 + 0.767536i −0.973010 0.230763i \(-0.925878\pi\)
0.0582960 + 0.998299i \(0.481433\pi\)
\(464\) 0 0
\(465\) −300.038 + 535.545i −0.645242 + 1.15171i
\(466\) 0 0
\(467\) 186.467 + 107.657i 0.399286 + 0.230528i 0.686176 0.727436i \(-0.259288\pi\)
−0.286890 + 0.957964i \(0.592621\pi\)
\(468\) 0 0
\(469\) 32.8943 + 56.9747i 0.0701372 + 0.121481i
\(470\) 0 0
\(471\) −79.0898 208.860i −0.167919 0.443439i
\(472\) 0 0
\(473\) 232.620 639.119i 0.491798 1.35120i
\(474\) 0 0
\(475\) −43.6669 + 247.647i −0.0919304 + 0.521363i
\(476\) 0 0
\(477\) 84.7457 + 215.351i 0.177664 + 0.451469i
\(478\) 0 0
\(479\) 145.585 173.501i 0.303935 0.362216i −0.592360 0.805673i \(-0.701804\pi\)
0.896295 + 0.443457i \(0.146248\pi\)
\(480\) 0 0
\(481\) 53.3117 + 302.346i 0.110835 + 0.628577i
\(482\) 0 0
\(483\) −119.512 630.061i −0.247436 1.30447i
\(484\) 0 0
\(485\) 1054.13i 2.17347i
\(486\) 0 0
\(487\) 443.130 0.909919 0.454959 0.890512i \(-0.349654\pi\)
0.454959 + 0.890512i \(0.349654\pi\)
\(488\) 0 0
\(489\) −751.098 + 142.470i −1.53599 + 0.291350i
\(490\) 0 0
\(491\) 657.316 115.902i 1.33873 0.236054i 0.541993 0.840383i \(-0.317670\pi\)
0.796735 + 0.604329i \(0.206559\pi\)
\(492\) 0 0
\(493\) −174.655 146.553i −0.354270 0.297268i
\(494\) 0 0
\(495\) 424.778 167.160i 0.858138 0.337698i
\(496\) 0 0
\(497\) −330.061 58.1987i −0.664108 0.117100i
\(498\) 0 0
\(499\) −54.0177 19.6608i −0.108252 0.0394005i 0.287326 0.957833i \(-0.407234\pi\)
−0.395578 + 0.918432i \(0.629456\pi\)
\(500\) 0 0
\(501\) 444.964 168.497i 0.888152 0.336321i
\(502\) 0 0
\(503\) −423.202 + 244.336i −0.841356 + 0.485757i −0.857725 0.514109i \(-0.828123\pi\)
0.0163686 + 0.999866i \(0.494789\pi\)
\(504\) 0 0
\(505\) −218.252 + 378.024i −0.432182 + 0.748562i
\(506\) 0 0
\(507\) −195.571 109.568i −0.385741 0.216110i
\(508\) 0 0
\(509\) 182.714 + 217.750i 0.358966 + 0.427799i 0.915058 0.403322i \(-0.132144\pi\)
−0.556093 + 0.831120i \(0.687700\pi\)
\(510\) 0 0
\(511\) 616.418 224.358i 1.20630 0.439056i
\(512\) 0 0
\(513\) 18.6946 + 481.980i 0.0364417 + 0.939532i
\(514\) 0 0
\(515\) −149.367 410.382i −0.290033 0.796859i
\(516\) 0 0
\(517\) −81.8602 + 68.6889i −0.158337 + 0.132860i
\(518\) 0 0
\(519\) −894.169 + 11.5556i −1.72287 + 0.0222651i
\(520\) 0 0
\(521\) 35.1966 + 20.3207i 0.0675558 + 0.0390033i 0.533397 0.845865i \(-0.320915\pi\)
−0.465842 + 0.884868i \(0.654248\pi\)
\(522\) 0 0
\(523\) 174.951 + 303.024i 0.334514 + 0.579395i 0.983391 0.181498i \(-0.0580946\pi\)
−0.648877 + 0.760893i \(0.724761\pi\)
\(524\) 0 0
\(525\) 338.333 + 55.1592i 0.644444 + 0.105065i
\(526\) 0 0
\(527\) 168.243 462.243i 0.319246 0.877122i
\(528\) 0 0
\(529\) −28.5567 + 161.953i −0.0539825 + 0.306150i
\(530\) 0 0
\(531\) 174.315 106.740i 0.328276 0.201017i
\(532\) 0 0
\(533\) −103.105 + 122.876i −0.193442 + 0.230536i
\(534\) 0 0
\(535\) 131.813 + 747.550i 0.246380 + 1.39729i
\(536\) 0 0
\(537\) −66.6656 + 57.4233i −0.124145 + 0.106934i
\(538\) 0 0
\(539\) 137.090i 0.254342i
\(540\) 0 0
\(541\) 145.531 0.269003 0.134501 0.990913i \(-0.457057\pi\)
0.134501 + 0.990913i \(0.457057\pi\)
\(542\) 0 0
\(543\) −82.5320 + 236.208i −0.151993 + 0.435006i
\(544\) 0 0
\(545\) −736.481 + 129.861i −1.35134 + 0.238278i
\(546\) 0 0
\(547\) −372.320 312.413i −0.680657 0.571139i 0.235541 0.971864i \(-0.424314\pi\)
−0.916198 + 0.400725i \(0.868758\pi\)
\(548\) 0 0
\(549\) 290.908 + 97.4448i 0.529887 + 0.177495i
\(550\) 0 0
\(551\) −266.919 47.0651i −0.484427 0.0854176i
\(552\) 0 0
\(553\) −210.776 76.7162i −0.381150 0.138727i
\(554\) 0 0
\(555\) −459.126 375.250i −0.827254 0.676126i
\(556\) 0 0
\(557\) 2.82805 1.63278i 0.00507730 0.00293138i −0.497459 0.867487i \(-0.665734\pi\)
0.502537 + 0.864556i \(0.332400\pi\)
\(558\) 0 0
\(559\) −406.948 + 704.855i −0.727993 + 1.26092i
\(560\) 0 0
\(561\) −314.398 + 186.976i −0.560425 + 0.333291i
\(562\) 0 0
\(563\) 427.292 + 509.227i 0.758956 + 0.904489i 0.997781 0.0665739i \(-0.0212068\pi\)
−0.238825 + 0.971063i \(0.576762\pi\)
\(564\) 0 0
\(565\) 730.527 265.890i 1.29297 0.470602i
\(566\) 0 0
\(567\) 656.649 33.9726i 1.15811 0.0599164i
\(568\) 0 0
\(569\) 25.9713 + 71.3556i 0.0456438 + 0.125405i 0.960420 0.278555i \(-0.0898555\pi\)
−0.914776 + 0.403960i \(0.867633\pi\)
\(570\) 0 0
\(571\) 225.287 189.038i 0.394548 0.331065i −0.423834 0.905740i \(-0.639316\pi\)
0.818382 + 0.574675i \(0.194871\pi\)
\(572\) 0 0
\(573\) −240.673 404.689i −0.420023 0.706264i
\(574\) 0 0
\(575\) −321.018 185.340i −0.558292 0.322330i
\(576\) 0 0
\(577\) −529.296 916.768i −0.917325 1.58885i −0.803461 0.595357i \(-0.797011\pi\)
−0.113864 0.993496i \(-0.536323\pi\)
\(578\) 0 0
\(579\) −78.7297 + 96.3274i −0.135975 + 0.166369i
\(580\) 0 0
\(581\) −48.8362 + 134.176i −0.0840554 + 0.230940i
\(582\) 0 0
\(583\) −36.2299 + 205.470i −0.0621438 + 0.352435i
\(584\) 0 0
\(585\) −535.331 + 108.728i −0.915096 + 0.185859i
\(586\) 0 0
\(587\) −89.2844 + 106.405i −0.152103 + 0.181269i −0.836715 0.547638i \(-0.815527\pi\)
0.684612 + 0.728907i \(0.259971\pi\)
\(588\) 0 0
\(589\) −101.545 575.888i −0.172402 0.977738i
\(590\) 0 0
\(591\) −596.609 208.457i −1.00949 0.352720i
\(592\) 0 0
\(593\) 145.309i 0.245040i 0.992466 + 0.122520i \(0.0390975\pi\)
−0.992466 + 0.122520i \(0.960902\pi\)
\(594\) 0 0
\(595\) −762.563 −1.28162
\(596\) 0 0
\(597\) −343.672 398.986i −0.575664 0.668318i
\(598\) 0 0
\(599\) 22.6235 3.98914i 0.0377688 0.00665966i −0.154732 0.987957i \(-0.549451\pi\)
0.192501 + 0.981297i \(0.438340\pi\)
\(600\) 0 0
\(601\) −710.406 596.102i −1.18204 0.991849i −0.999963 0.00856516i \(-0.997274\pi\)
−0.182077 0.983284i \(-0.558282\pi\)
\(602\) 0 0
\(603\) 72.9155 1.88493i 0.120921 0.00312592i
\(604\) 0 0
\(605\) −339.605 59.8816i −0.561331 0.0989779i
\(606\) 0 0
\(607\) 492.373 + 179.209i 0.811158 + 0.295237i 0.714102 0.700042i \(-0.246835\pi\)
0.0970557 + 0.995279i \(0.469057\pi\)
\(608\) 0 0
\(609\) −59.4517 + 364.663i −0.0976219 + 0.598789i
\(610\) 0 0
\(611\) 110.745 63.9384i 0.181251 0.104646i
\(612\) 0 0
\(613\) −35.0848 + 60.7687i −0.0572346 + 0.0991333i −0.893223 0.449614i \(-0.851562\pi\)
0.835988 + 0.548747i \(0.184895\pi\)
\(614\) 0 0
\(615\) −4.00337 309.780i −0.00650954 0.503707i
\(616\) 0 0
\(617\) 427.172 + 509.083i 0.692337 + 0.825095i 0.991636 0.129064i \(-0.0411974\pi\)
−0.299299 + 0.954159i \(0.596753\pi\)
\(618\) 0 0
\(619\) −912.210 + 332.017i −1.47368 + 0.536377i −0.949098 0.314981i \(-0.898002\pi\)
−0.524585 + 0.851358i \(0.675780\pi\)
\(620\) 0 0
\(621\) −677.048 217.100i −1.09025 0.349597i
\(622\) 0 0
\(623\) 78.5400 + 215.787i 0.126067 + 0.346367i
\(624\) 0 0
\(625\) −596.569 + 500.581i −0.954510 + 0.800929i
\(626\) 0 0
\(627\) −212.541 + 379.370i −0.338981 + 0.605056i
\(628\) 0 0
\(629\) 411.502 + 237.581i 0.654216 + 0.377712i
\(630\) 0 0
\(631\) −94.6588 163.954i −0.150014 0.259832i 0.781218 0.624258i \(-0.214599\pi\)
−0.931232 + 0.364426i \(0.881265\pi\)
\(632\) 0 0
\(633\) 277.132 + 731.848i 0.437808 + 1.15616i
\(634\) 0 0
\(635\) −251.130 + 689.974i −0.395480 + 1.08657i
\(636\) 0 0
\(637\) 28.4872 161.559i 0.0447209 0.253625i
\(638\) 0 0
\(639\) −231.414 + 290.727i −0.362150 + 0.454972i
\(640\) 0 0
\(641\) −445.262 + 530.643i −0.694637 + 0.827836i −0.991908 0.126957i \(-0.959479\pi\)
0.297271 + 0.954793i \(0.403923\pi\)
\(642\) 0 0
\(643\) −184.867 1048.43i −0.287506 1.63053i −0.696193 0.717854i \(-0.745124\pi\)
0.408687 0.912675i \(-0.365987\pi\)
\(644\) 0 0
\(645\) −292.953 1544.44i −0.454191 2.39448i
\(646\) 0 0
\(647\) 352.755i 0.545217i −0.962125 0.272608i \(-0.912114\pi\)
0.962125 0.272608i \(-0.0878863\pi\)
\(648\) 0 0
\(649\) 184.274 0.283935
\(650\) 0 0
\(651\) −783.195 + 148.558i −1.20306 + 0.228200i
\(652\) 0 0
\(653\) 461.316 81.3425i 0.706457 0.124567i 0.191135 0.981564i \(-0.438783\pi\)
0.515322 + 0.856996i \(0.327672\pi\)
\(654\) 0 0
\(655\) −22.5679 18.9367i −0.0344548 0.0289110i
\(656\) 0 0
\(657\) 107.740 719.257i 0.163988 1.09476i
\(658\) 0 0
\(659\) 84.6349 + 14.9234i 0.128429 + 0.0226455i 0.237493 0.971389i \(-0.423674\pi\)
−0.109064 + 0.994035i \(0.534785\pi\)
\(660\) 0 0
\(661\) −115.687 42.1068i −0.175019 0.0637016i 0.253024 0.967460i \(-0.418575\pi\)
−0.428043 + 0.903758i \(0.640797\pi\)
\(662\) 0 0
\(663\) 409.368 155.017i 0.617447 0.233812i
\(664\) 0 0
\(665\) −785.070 + 453.260i −1.18056 + 0.681594i
\(666\) 0 0
\(667\) 199.763 346.000i 0.299495 0.518741i
\(668\) 0 0
\(669\) 1018.67 + 570.709i 1.52268 + 0.853078i
\(670\) 0 0
\(671\) 177.787 + 211.878i 0.264958 + 0.315765i
\(672\) 0 0
\(673\) 598.221 217.735i 0.888887 0.323528i 0.143096 0.989709i \(-0.454294\pi\)
0.745791 + 0.666180i \(0.232072\pi\)
\(674\) 0 0
\(675\) 232.832 300.394i 0.344936 0.445029i
\(676\) 0 0
\(677\) 56.5391 + 155.340i 0.0835141 + 0.229453i 0.974420 0.224735i \(-0.0721516\pi\)
−0.890906 + 0.454188i \(0.849929\pi\)
\(678\) 0 0
\(679\) 1048.63 879.901i 1.54437 1.29588i
\(680\) 0 0
\(681\) 1045.21 13.5075i 1.53481 0.0198348i
\(682\) 0 0
\(683\) 1129.58 + 652.163i 1.65385 + 0.954851i 0.975468 + 0.220142i \(0.0706522\pi\)
0.678383 + 0.734709i \(0.262681\pi\)
\(684\) 0 0
\(685\) 690.092 + 1195.27i 1.00743 + 1.74493i
\(686\) 0 0
\(687\) 1079.32 + 175.964i 1.57107 + 0.256134i
\(688\) 0 0
\(689\) 85.3928 234.615i 0.123937 0.340515i
\(690\) 0 0
\(691\) 62.8288 356.320i 0.0909245 0.515658i −0.904996 0.425421i \(-0.860126\pi\)
0.995920 0.0902378i \(-0.0287627\pi\)
\(692\) 0 0
\(693\) 520.857 + 283.028i 0.751597 + 0.408410i
\(694\) 0 0
\(695\) 143.711 171.268i 0.206778 0.246428i
\(696\) 0 0
\(697\) 43.1093 + 244.485i 0.0618498 + 0.350767i
\(698\) 0 0
\(699\) 431.125 371.356i 0.616775 0.531267i
\(700\) 0 0
\(701\) 893.344i 1.27438i −0.770705 0.637192i \(-0.780096\pi\)
0.770705 0.637192i \(-0.219904\pi\)
\(702\) 0 0
\(703\) 564.863 0.803504
\(704\) 0 0
\(705\) −81.4675 + 233.162i −0.115557 + 0.330726i
\(706\) 0 0
\(707\) −558.228 + 98.4307i −0.789573 + 0.139223i
\(708\) 0 0
\(709\) −529.040 443.917i −0.746178 0.626118i 0.188311 0.982109i \(-0.439699\pi\)
−0.934489 + 0.355992i \(0.884143\pi\)
\(710\) 0 0
\(711\) −186.309 + 164.721i −0.262038 + 0.231675i
\(712\) 0 0
\(713\) 848.896 + 149.683i 1.19060 + 0.209935i
\(714\) 0 0
\(715\) −462.776 168.437i −0.647239 0.235576i
\(716\) 0 0
\(717\) 711.025 + 581.130i 0.991666 + 0.810502i
\(718\) 0 0
\(719\) −417.508 + 241.049i −0.580679 + 0.335255i −0.761403 0.648279i \(-0.775489\pi\)
0.180724 + 0.983534i \(0.442156\pi\)
\(720\) 0 0
\(721\) 283.560 491.140i 0.393287 0.681192i
\(722\) 0 0
\(723\) 760.406 452.222i 1.05174 0.625480i
\(724\) 0 0
\(725\) 137.276 + 163.600i 0.189347 + 0.225655i
\(726\) 0 0
\(727\) 324.225 118.008i 0.445977 0.162322i −0.109263 0.994013i \(-0.534849\pi\)
0.555239 + 0.831691i \(0.312627\pi\)
\(728\) 0 0
\(729\) 314.503 657.669i 0.431418 0.902152i
\(730\) 0 0
\(731\) 430.834 + 1183.71i 0.589376 + 1.61930i
\(732\) 0 0
\(733\) 413.108 346.639i 0.563585 0.472904i −0.315925 0.948784i \(-0.602315\pi\)
0.879510 + 0.475880i \(0.157870\pi\)
\(734\) 0 0
\(735\) 161.959 + 272.333i 0.220353 + 0.370521i
\(736\) 0 0
\(737\) 56.9482 + 32.8791i 0.0772704 + 0.0446121i
\(738\) 0 0
\(739\) 368.737 + 638.671i 0.498968 + 0.864237i 0.999999 0.00119161i \(-0.000379300\pi\)
−0.501032 + 0.865429i \(0.667046\pi\)
\(740\) 0 0
\(741\) 329.309 402.917i 0.444412 0.543747i
\(742\) 0 0
\(743\) 356.128 978.454i 0.479311 1.31690i −0.430768 0.902463i \(-0.641757\pi\)
0.910079 0.414434i \(-0.136020\pi\)
\(744\) 0 0
\(745\) −182.077 + 1032.61i −0.244398 + 1.38605i
\(746\) 0 0
\(747\) 104.858 + 118.601i 0.140373 + 0.158770i
\(748\) 0 0
\(749\) −633.619 + 755.118i −0.845953 + 1.00817i
\(750\) 0 0
\(751\) −41.8554 237.374i −0.0557329 0.316077i 0.944178 0.329436i \(-0.106859\pi\)
−0.999911 + 0.0133592i \(0.995748\pi\)
\(752\) 0 0
\(753\) −518.018 180.997i −0.687939 0.240368i
\(754\) 0 0
\(755\) 523.331i 0.693154i
\(756\) 0 0
\(757\) 32.7615 0.0432781 0.0216391 0.999766i \(-0.493112\pi\)
0.0216391 + 0.999766i \(0.493112\pi\)
\(758\) 0 0
\(759\) −418.336 485.668i −0.551168 0.639879i
\(760\) 0 0
\(761\) 314.502 55.4551i 0.413274 0.0728714i 0.0368545 0.999321i \(-0.488266\pi\)
0.376420 + 0.926449i \(0.377155\pi\)
\(762\) 0 0
\(763\) −743.936 624.236i −0.975014 0.818134i
\(764\) 0 0
\(765\) −403.664 + 742.863i −0.527665 + 0.971063i
\(766\) 0 0
\(767\) −217.164 38.2920i −0.283135 0.0499243i
\(768\) 0 0
\(769\) 447.488 + 162.872i 0.581910 + 0.211798i 0.616167 0.787615i \(-0.288685\pi\)
−0.0342578 + 0.999413i \(0.510907\pi\)
\(770\) 0 0
\(771\) −129.546 + 794.601i −0.168023 + 1.03061i
\(772\) 0 0
\(773\) 1122.62 648.147i 1.45229 0.838482i 0.453682 0.891164i \(-0.350110\pi\)
0.998611 + 0.0526817i \(0.0167769\pi\)
\(774\) 0 0
\(775\) −230.386 + 399.040i −0.297272 + 0.514890i
\(776\) 0 0
\(777\) −9.95035 769.955i −0.0128061 0.990934i
\(778\) 0 0
\(779\) 189.701 + 226.077i 0.243519 + 0.290214i
\(780\) 0 0
\(781\) −314.795 + 114.576i −0.403066 + 0.146704i
\(782\) 0 0
\(783\) 323.771 + 250.951i 0.413501 + 0.320499i
\(784\) 0 0
\(785\) −159.162 437.295i −0.202754 0.557063i
\(786\) 0 0
\(787\) −659.528 + 553.410i −0.838028 + 0.703189i −0.957119 0.289694i \(-0.906446\pi\)
0.119091 + 0.992883i \(0.462002\pi\)
\(788\) 0 0
\(789\) −516.103 + 921.207i −0.654123 + 1.16756i
\(790\) 0 0
\(791\) 874.285 + 504.769i 1.10529 + 0.638140i
\(792\) 0 0
\(793\) −165.492 286.640i −0.208690 0.361462i
\(794\) 0 0
\(795\) 170.772 + 450.972i 0.214807 + 0.567260i
\(796\) 0 0
\(797\) −198.415 + 545.140i −0.248952 + 0.683990i 0.750774 + 0.660560i \(0.229681\pi\)
−0.999725 + 0.0234300i \(0.992541\pi\)
\(798\) 0 0
\(799\) 34.3678 194.909i 0.0430135 0.243942i
\(800\) 0 0
\(801\) 251.788 + 37.7161i 0.314342 + 0.0470863i
\(802\) 0 0
\(803\) 421.459 502.275i 0.524855 0.625498i
\(804\) 0 0
\(805\) −232.041 1315.97i −0.288249 1.63474i
\(806\) 0 0
\(807\) −91.8250 484.098i −0.113786 0.599874i
\(808\) 0 0
\(809\) 661.323i 0.817457i 0.912656 + 0.408729i \(0.134028\pi\)
−0.912656 + 0.408729i \(0.865972\pi\)
\(810\) 0 0
\(811\) 168.725 0.208045 0.104023 0.994575i \(-0.466829\pi\)
0.104023 + 0.994575i \(0.466829\pi\)
\(812\) 0 0
\(813\) 379.779 72.0374i 0.467133 0.0886069i
\(814\) 0 0
\(815\) −1568.77 + 276.617i −1.92487 + 0.339407i
\(816\) 0 0
\(817\) 1147.13 + 962.559i 1.40408 + 1.17816i
\(818\) 0 0
\(819\) −555.010 441.778i −0.677668 0.539412i
\(820\) 0 0
\(821\) 149.275 + 26.3213i 0.181822 + 0.0320600i 0.263817 0.964573i \(-0.415018\pi\)
−0.0819959 + 0.996633i \(0.526129\pi\)
\(822\) 0 0
\(823\) 211.263 + 76.8935i 0.256699 + 0.0934307i 0.467164 0.884171i \(-0.345276\pi\)
−0.210465 + 0.977601i \(0.567498\pi\)
\(824\) 0 0
\(825\) 320.436 121.341i 0.388407 0.147080i
\(826\) 0 0
\(827\) −292.855 + 169.080i −0.354117 + 0.204449i −0.666497 0.745508i \(-0.732207\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(828\) 0 0
\(829\) 401.806 695.949i 0.484688 0.839504i −0.515157 0.857096i \(-0.672267\pi\)
0.999845 + 0.0175917i \(0.00559990\pi\)
\(830\) 0 0
\(831\) 393.157 + 220.265i 0.473113 + 0.265060i
\(832\) 0 0
\(833\) −163.206 194.502i −0.195926 0.233495i
\(834\) 0 0
\(835\) 931.633 339.087i 1.11573 0.406092i
\(836\) 0 0
\(837\) −269.865 + 841.601i −0.322419 + 1.00550i
\(838\) 0 0
\(839\) −292.066 802.443i −0.348111 0.956428i −0.982965 0.183795i \(-0.941162\pi\)
0.634853 0.772633i \(-0.281061\pi\)
\(840\) 0 0
\(841\) 467.912 392.625i 0.556376 0.466855i
\(842\) 0 0
\(843\) 1382.88 17.8714i 1.64043 0.0211997i
\(844\) 0 0
\(845\) −404.527 233.554i −0.478731 0.276395i
\(846\) 0 0
\(847\) −223.906 387.816i −0.264351 0.457870i
\(848\) 0 0
\(849\) −203.881 33.2391i −0.240142 0.0391509i
\(850\) 0 0
\(851\) −284.781 + 782.430i −0.334643 + 0.919424i
\(852\) 0 0
\(853\) −138.765 + 786.975i −0.162679 + 0.922596i 0.788747 + 0.614718i \(0.210730\pi\)
−0.951426 + 0.307878i \(0.900381\pi\)
\(854\) 0 0
\(855\) 25.9729 + 1004.72i 0.0303777 + 1.17511i
\(856\) 0 0
\(857\) 998.416 1189.87i 1.16501 1.38841i 0.258616 0.965980i \(-0.416734\pi\)
0.906397 0.422427i \(-0.138822\pi\)
\(858\) 0 0
\(859\) 4.90592 + 27.8228i 0.00571119 + 0.0323898i 0.987530 0.157430i \(-0.0503208\pi\)
−0.981819 + 0.189820i \(0.939210\pi\)
\(860\) 0 0
\(861\) 304.820 262.561i 0.354030 0.304949i
\(862\) 0 0
\(863\) 951.550i 1.10261i 0.834305 + 0.551304i \(0.185869\pi\)
−0.834305 + 0.551304i \(0.814131\pi\)
\(864\) 0 0
\(865\) −1863.34 −2.15415
\(866\) 0 0
\(867\) −62.5107 + 178.907i −0.0721000 + 0.206352i
\(868\) 0 0
\(869\) −220.793 + 38.9318i −0.254077 + 0.0448006i
\(870\) 0 0
\(871\) −60.2805 50.5813i −0.0692084 0.0580727i
\(872\) 0 0
\(873\) −302.079 1487.31i −0.346024 1.70368i
\(874\) 0 0
\(875\) −545.889 96.2549i −0.623873 0.110006i
\(876\) 0 0
\(877\) 214.431 + 78.0465i 0.244505 + 0.0889926i 0.461366 0.887210i \(-0.347360\pi\)
−0.216861 + 0.976203i \(0.569582\pi\)
\(878\) 0 0
\(879\) 1186.44 + 969.692i 1.34976 + 1.10318i
\(880\) 0 0
\(881\) −1343.36 + 775.592i −1.52482 + 0.880354i −0.525250 + 0.850948i \(0.676028\pi\)
−0.999568 + 0.0294054i \(0.990639\pi\)
\(882\) 0 0
\(883\) 781.794 1354.11i 0.885384 1.53353i 0.0401121 0.999195i \(-0.487228\pi\)
0.845272 0.534336i \(-0.179438\pi\)
\(884\) 0 0
\(885\) 366.064 217.702i 0.413632 0.245991i
\(886\) 0 0
\(887\) −451.340 537.886i −0.508839 0.606411i 0.449065 0.893499i \(-0.351757\pi\)
−0.957904 + 0.287088i \(0.907313\pi\)
\(888\) 0 0
\(889\) −895.993 + 326.115i −1.00787 + 0.366833i
\(890\) 0 0
\(891\) 551.433 357.580i 0.618892 0.401324i
\(892\) 0 0
\(893\) −80.4701 221.090i −0.0901121 0.247581i
\(894\) 0 0
\(895\) −140.446 + 117.848i −0.156923 + 0.131674i
\(896\) 0 0
\(897\) 392.083 + 659.283i 0.437104 + 0.734986i
\(898\) 0 0
\(899\) −430.094 248.315i −0.478413 0.276212i
\(900\) 0 0
\(901\) −193.210 334.649i −0.214439 0.371419i
\(902\) 0 0
\(903\) 1291.84 1580.59i 1.43061 1.75038i
\(904\) 0 0
\(905\) −178.318 + 489.924i −0.197036 + 0.541353i
\(906\) 0 0
\(907\) −280.357 + 1589.99i −0.309104 + 1.75302i 0.294424 + 0.955675i \(0.404872\pi\)
−0.603528 + 0.797341i \(0.706239\pi\)
\(908\) 0 0
\(909\) −199.611 + 595.911i −0.219594 + 0.655568i
\(910\) 0 0
\(911\) 394.005 469.556i 0.432497 0.515430i −0.505144 0.863035i \(-0.668561\pi\)
0.937641 + 0.347605i \(0.113005\pi\)
\(912\) 0 0
\(913\) 24.7833 + 140.553i 0.0271449 + 0.153946i
\(914\) 0 0
\(915\) 603.491 + 210.862i 0.659554 + 0.230450i
\(916\) 0 0
\(917\) 38.2568i 0.0417195i
\(918\) 0 0
\(919\) −628.091 −0.683451 −0.341725 0.939800i \(-0.611011\pi\)
−0.341725 + 0.939800i \(0.611011\pi\)
\(920\) 0 0
\(921\) 102.992 + 119.569i 0.111827 + 0.129825i
\(922\) 0 0
\(923\) 394.790 69.6122i 0.427725 0.0754195i
\(924\) 0 0
\(925\) −340.955 286.095i −0.368600 0.309292i
\(926\) 0 0
\(927\) −328.349 536.220i −0.354206 0.578446i
\(928\) 0 0
\(929\) 1234.51 + 217.678i 1.32886 + 0.234314i 0.792603 0.609738i \(-0.208726\pi\)
0.536260 + 0.844053i \(0.319837\pi\)
\(930\) 0 0
\(931\) −283.633 103.234i −0.304654 0.110885i
\(932\) 0 0
\(933\) 171.282 1050.61i 0.183583 1.12605i
\(934\) 0 0
\(935\) −660.093 + 381.105i −0.705981 + 0.407599i
\(936\) 0 0
\(937\) 460.132 796.972i 0.491070 0.850557i −0.508878 0.860839i \(-0.669939\pi\)
0.999947 + 0.0102815i \(0.00327275\pi\)
\(938\) 0 0
\(939\) −6.52243 504.704i −0.00694614 0.537491i
\(940\) 0 0
\(941\) −439.314 523.554i −0.466859 0.556381i 0.480317 0.877095i \(-0.340522\pi\)
−0.947176 + 0.320714i \(0.896077\pi\)
\(942\) 0 0
\(943\) −408.794 + 148.789i −0.433504 + 0.157783i
\(944\) 0 0
\(945\) 1369.06 53.1020i 1.44874 0.0561926i
\(946\) 0 0
\(947\) 287.907 + 791.018i 0.304020 + 0.835288i 0.993791 + 0.111261i \(0.0354889\pi\)
−0.689771 + 0.724027i \(0.742289\pi\)
\(948\) 0 0
\(949\) −601.056 + 504.346i −0.633357 + 0.531450i
\(950\) 0 0
\(951\) 747.797 1334.76i 0.786327 1.40354i
\(952\) 0 0
\(953\) 1277.52 + 737.576i 1.34052 + 0.773952i 0.986884 0.161430i \(-0.0516105\pi\)
0.353640 + 0.935382i \(0.384944\pi\)
\(954\) 0 0
\(955\) −490.553 849.662i −0.513668 0.889698i
\(956\) 0 0
\(957\) 130.784 + 345.373i 0.136660 + 0.360891i
\(958\) 0 0
\(959\) −613.000 + 1684.20i −0.639207 + 1.75621i
\(960\) 0 0
\(961\) 19.1872 108.816i 0.0199659 0.113232i
\(962\) 0 0
\(963\) 400.203 + 1016.97i 0.415580 + 1.05605i
\(964\) 0 0
\(965\) −166.629 + 198.581i −0.172673 + 0.205783i
\(966\) 0 0
\(967\) −56.3919 319.814i −0.0583163 0.330728i 0.941667 0.336547i \(-0.109259\pi\)
−0.999983 + 0.00581841i \(0.998148\pi\)
\(968\) 0 0
\(969\) −150.091 791.274i −0.154892 0.816588i
\(970\) 0 0
\(971\) 1203.37i 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(972\) 0 0
\(973\) 290.331 0.298387
\(974\) 0 0
\(975\) −402.844 + 76.4125i −0.413174 + 0.0783718i
\(976\) 0 0
\(977\) 186.452 32.8765i 0.190841 0.0336505i −0.0774104 0.996999i \(-0.524665\pi\)
0.268252 + 0.963349i \(0.413554\pi\)
\(978\) 0 0
\(979\) 175.829 + 147.538i 0.179601 + 0.150703i
\(980\) 0 0
\(981\) −1001.91 + 394.277i −1.02132 + 0.401913i
\(982\) 0 0
\(983\) 1245.48 + 219.613i 1.26702 + 0.223411i 0.766462 0.642290i \(-0.222016\pi\)
0.500562 + 0.865701i \(0.333127\pi\)
\(984\) 0 0
\(985\) −1237.44 450.391i −1.25628 0.457250i
\(986\) 0 0
\(987\) −299.946 + 113.582i −0.303897 + 0.115078i
\(988\) 0 0
\(989\) −1911.64 + 1103.69i −1.93291 + 1.11596i
\(990\) 0 0
\(991\) −697.271 + 1207.71i −0.703604 + 1.21868i 0.263589 + 0.964635i \(0.415094\pi\)
−0.967193 + 0.254043i \(0.918240\pi\)
\(992\) 0 0
\(993\) 888.140 + 497.578i 0.894401 + 0.501085i
\(994\) 0 0
\(995\) −705.307 840.552i −0.708851 0.844776i
\(996\) 0 0
\(997\) −947.882 + 345.001i −0.950734 + 0.346039i −0.770396 0.637566i \(-0.779941\pi\)
−0.180338 + 0.983605i \(0.557719\pi\)
\(998\) 0 0
\(999\) −755.332 397.884i −0.756088 0.398282i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.a.209.5 30
4.3 odd 2 27.3.f.a.20.5 30
12.11 even 2 81.3.f.a.62.1 30
27.23 odd 18 inner 432.3.bc.a.401.5 30
36.7 odd 6 243.3.f.c.107.5 30
36.11 even 6 243.3.f.b.107.1 30
36.23 even 6 243.3.f.a.26.5 30
36.31 odd 6 243.3.f.d.26.1 30
108.23 even 18 27.3.f.a.23.5 yes 30
108.31 odd 18 81.3.f.a.17.1 30
108.59 even 18 243.3.f.d.215.1 30
108.67 odd 18 243.3.f.b.134.1 30
108.79 odd 18 729.3.b.a.728.5 30
108.83 even 18 729.3.b.a.728.26 30
108.95 even 18 243.3.f.c.134.5 30
108.103 odd 18 243.3.f.a.215.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.5 30 4.3 odd 2
27.3.f.a.23.5 yes 30 108.23 even 18
81.3.f.a.17.1 30 108.31 odd 18
81.3.f.a.62.1 30 12.11 even 2
243.3.f.a.26.5 30 36.23 even 6
243.3.f.a.215.5 30 108.103 odd 18
243.3.f.b.107.1 30 36.11 even 6
243.3.f.b.134.1 30 108.67 odd 18
243.3.f.c.107.5 30 36.7 odd 6
243.3.f.c.134.5 30 108.95 even 18
243.3.f.d.26.1 30 36.31 odd 6
243.3.f.d.215.1 30 108.59 even 18
432.3.bc.a.209.5 30 1.1 even 1 trivial
432.3.bc.a.401.5 30 27.23 odd 18 inner
729.3.b.a.728.5 30 108.79 odd 18
729.3.b.a.728.26 30 108.83 even 18