Properties

Label 243.3.f.a.26.5
Level $243$
Weight $3$
Character 243.26
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-3,0,3,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 26.5
Character \(\chi\) \(=\) 243.26
Dual form 243.3.f.a.215.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.58795 + 0.456325i) q^{2} +(2.73048 + 0.993814i) q^{4} +(4.01814 + 4.78863i) q^{5} +(7.62807 - 2.77639i) q^{7} +(-2.49037 - 1.43782i) q^{8} +(8.21356 + 14.2263i) q^{10} +(-5.21549 + 6.21558i) q^{11} +(1.68605 + 9.56207i) q^{13} +(21.0080 - 3.70428i) q^{14} +(-14.6925 - 12.3285i) q^{16} +(13.0143 - 7.51380i) q^{17} +(8.93226 - 15.4711i) q^{19} +(6.21244 + 17.0685i) q^{20} +(-16.3337 + 13.7056i) q^{22} +(-9.00658 + 24.7454i) q^{23} +(-2.44434 + 13.8625i) q^{25} +25.5156i q^{26} +23.5875 q^{28} +(14.9413 + 2.63456i) q^{29} +(-30.7596 - 11.1956i) q^{31} +(-25.0039 - 29.7985i) q^{32} +(37.1091 - 13.5066i) q^{34} +(43.9457 + 25.3721i) q^{35} +(-15.8096 - 27.3831i) q^{37} +(30.1761 - 35.9625i) q^{38} +(-3.12149 - 17.7028i) q^{40} +(16.2691 - 2.86867i) q^{41} +(-64.2129 - 53.8810i) q^{43} +(-20.4179 + 11.7883i) q^{44} +(-34.6005 + 59.9298i) q^{46} +(-4.50446 - 12.3759i) q^{47} +(12.9430 - 10.8604i) q^{49} +(-12.6516 + 34.7601i) q^{50} +(-4.89919 + 27.7847i) q^{52} -25.7140i q^{53} -50.7206 q^{55} +(-22.9887 - 4.05353i) q^{56} +(37.4652 + 13.6362i) q^{58} +(-14.5984 - 17.3977i) q^{59} +(-32.0325 + 11.6589i) q^{61} +(-74.4955 - 43.0100i) q^{62} +(-12.7517 - 22.0867i) q^{64} +(-39.0144 + 46.4956i) q^{65} +(1.40732 + 7.98130i) q^{67} +(43.0026 - 7.58252i) q^{68} +(102.151 + 85.7152i) q^{70} +(-35.7557 + 20.6436i) q^{71} +(40.4046 - 69.9827i) q^{73} +(-28.4189 - 78.0804i) q^{74} +(39.7648 - 33.3666i) q^{76} +(-22.5272 + 61.8931i) q^{77} +(-4.79818 + 27.2118i) q^{79} -119.894i q^{80} +43.4126 q^{82} +(-17.3226 - 3.05444i) q^{83} +(88.2740 + 32.1291i) q^{85} +(-141.593 - 168.743i) q^{86} +(21.9254 - 7.98019i) q^{88} +(-24.4986 - 14.1443i) q^{89} +(39.4094 + 68.2590i) q^{91} +(-49.1846 + 58.6159i) q^{92} +(-6.00988 - 34.0837i) q^{94} +(109.977 - 19.3918i) q^{95} +(129.179 + 108.394i) q^{97} +(38.4516 - 22.2000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} - 21 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} - 57 q^{11} + 3 q^{13} + 114 q^{14} + 27 q^{16} + 9 q^{17} - 3 q^{19} + 183 q^{20} + 75 q^{22} - 48 q^{23} + 21 q^{25} - 12 q^{28} + 78 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58795 + 0.456325i 1.29397 + 0.228163i 0.777904 0.628383i \(-0.216283\pi\)
0.516071 + 0.856546i \(0.327394\pi\)
\(3\) 0 0
\(4\) 2.73048 + 0.993814i 0.682620 + 0.248453i
\(5\) 4.01814 + 4.78863i 0.803627 + 0.957726i 0.999739 0.0228560i \(-0.00727592\pi\)
−0.196112 + 0.980582i \(0.562831\pi\)
\(6\) 0 0
\(7\) 7.62807 2.77639i 1.08972 0.396627i 0.266206 0.963916i \(-0.414230\pi\)
0.823519 + 0.567289i \(0.192008\pi\)
\(8\) −2.49037 1.43782i −0.311297 0.179727i
\(9\) 0 0
\(10\) 8.21356 + 14.2263i 0.821356 + 1.42263i
\(11\) −5.21549 + 6.21558i −0.474135 + 0.565052i −0.949109 0.314948i \(-0.898013\pi\)
0.474974 + 0.880000i \(0.342458\pi\)
\(12\) 0 0
\(13\) 1.68605 + 9.56207i 0.129696 + 0.735544i 0.978407 + 0.206687i \(0.0662681\pi\)
−0.848711 + 0.528857i \(0.822621\pi\)
\(14\) 21.0080 3.70428i 1.50057 0.264591i
\(15\) 0 0
\(16\) −14.6925 12.3285i −0.918280 0.770529i
\(17\) 13.0143 7.51380i 0.765546 0.441988i −0.0657372 0.997837i \(-0.520940\pi\)
0.831284 + 0.555849i \(0.187607\pi\)
\(18\) 0 0
\(19\) 8.93226 15.4711i 0.470119 0.814270i −0.529297 0.848437i \(-0.677544\pi\)
0.999416 + 0.0341664i \(0.0108776\pi\)
\(20\) 6.21244 + 17.0685i 0.310622 + 0.853427i
\(21\) 0 0
\(22\) −16.3337 + 13.7056i −0.742443 + 0.622984i
\(23\) −9.00658 + 24.7454i −0.391590 + 1.07589i 0.574685 + 0.818375i \(0.305125\pi\)
−0.966275 + 0.257511i \(0.917098\pi\)
\(24\) 0 0
\(25\) −2.44434 + 13.8625i −0.0977735 + 0.554501i
\(26\) 25.5156i 0.981367i
\(27\) 0 0
\(28\) 23.5875 0.842411
\(29\) 14.9413 + 2.63456i 0.515218 + 0.0908468i 0.425211 0.905094i \(-0.360200\pi\)
0.0900069 + 0.995941i \(0.471311\pi\)
\(30\) 0 0
\(31\) −30.7596 11.1956i −0.992246 0.361148i −0.205656 0.978624i \(-0.565933\pi\)
−0.786589 + 0.617476i \(0.788155\pi\)
\(32\) −25.0039 29.7985i −0.781373 0.931204i
\(33\) 0 0
\(34\) 37.1091 13.5066i 1.09144 0.397253i
\(35\) 43.9457 + 25.3721i 1.25559 + 0.724917i
\(36\) 0 0
\(37\) −15.8096 27.3831i −0.427287 0.740083i 0.569344 0.822100i \(-0.307197\pi\)
−0.996631 + 0.0820163i \(0.973864\pi\)
\(38\) 30.1761 35.9625i 0.794108 0.946382i
\(39\) 0 0
\(40\) −3.12149 17.7028i −0.0780371 0.442571i
\(41\) 16.2691 2.86867i 0.396806 0.0699677i 0.0283154 0.999599i \(-0.490986\pi\)
0.368491 + 0.929631i \(0.379875\pi\)
\(42\) 0 0
\(43\) −64.2129 53.8810i −1.49332 1.25305i −0.890342 0.455292i \(-0.849535\pi\)
−0.602982 0.797755i \(-0.706021\pi\)
\(44\) −20.4179 + 11.7883i −0.464044 + 0.267916i
\(45\) 0 0
\(46\) −34.6005 + 59.9298i −0.752185 + 1.30282i
\(47\) −4.50446 12.3759i −0.0958397 0.263317i 0.882504 0.470305i \(-0.155856\pi\)
−0.978344 + 0.206988i \(0.933634\pi\)
\(48\) 0 0
\(49\) 12.9430 10.8604i 0.264142 0.221641i
\(50\) −12.6516 + 34.7601i −0.253033 + 0.695202i
\(51\) 0 0
\(52\) −4.89919 + 27.7847i −0.0942152 + 0.534321i
\(53\) 25.7140i 0.485169i −0.970130 0.242585i \(-0.922005\pi\)
0.970130 0.242585i \(-0.0779952\pi\)
\(54\) 0 0
\(55\) −50.7206 −0.922193
\(56\) −22.9887 4.05353i −0.410512 0.0723844i
\(57\) 0 0
\(58\) 37.4652 + 13.6362i 0.645951 + 0.235107i
\(59\) −14.5984 17.3977i −0.247430 0.294875i 0.628007 0.778208i \(-0.283871\pi\)
−0.875437 + 0.483332i \(0.839426\pi\)
\(60\) 0 0
\(61\) −32.0325 + 11.6589i −0.525123 + 0.191129i −0.590959 0.806701i \(-0.701251\pi\)
0.0658363 + 0.997830i \(0.479028\pi\)
\(62\) −74.4955 43.0100i −1.20154 0.693710i
\(63\) 0 0
\(64\) −12.7517 22.0867i −0.199246 0.345104i
\(65\) −39.0144 + 46.4956i −0.600222 + 0.715317i
\(66\) 0 0
\(67\) 1.40732 + 7.98130i 0.0210048 + 0.119124i 0.993507 0.113768i \(-0.0362922\pi\)
−0.972503 + 0.232892i \(0.925181\pi\)
\(68\) 43.0026 7.58252i 0.632391 0.111508i
\(69\) 0 0
\(70\) 102.151 + 85.7152i 1.45931 + 1.22450i
\(71\) −35.7557 + 20.6436i −0.503601 + 0.290754i −0.730199 0.683234i \(-0.760573\pi\)
0.226598 + 0.973988i \(0.427240\pi\)
\(72\) 0 0
\(73\) 40.4046 69.9827i 0.553487 0.958668i −0.444532 0.895763i \(-0.646630\pi\)
0.998020 0.0629050i \(-0.0200365\pi\)
\(74\) −28.4189 78.0804i −0.384040 1.05514i
\(75\) 0 0
\(76\) 39.7648 33.3666i 0.523221 0.439035i
\(77\) −22.5272 + 61.8931i −0.292562 + 0.803806i
\(78\) 0 0
\(79\) −4.79818 + 27.2118i −0.0607365 + 0.344454i 0.939263 + 0.343199i \(0.111510\pi\)
−0.999999 + 0.00125471i \(0.999601\pi\)
\(80\) 119.894i 1.49868i
\(81\) 0 0
\(82\) 43.4126 0.529421
\(83\) −17.3226 3.05444i −0.208706 0.0368004i 0.0683177 0.997664i \(-0.478237\pi\)
−0.277023 + 0.960863i \(0.589348\pi\)
\(84\) 0 0
\(85\) 88.2740 + 32.1291i 1.03852 + 0.377989i
\(86\) −141.593 168.743i −1.64642 1.96213i
\(87\) 0 0
\(88\) 21.9254 7.98019i 0.249152 0.0906839i
\(89\) −24.4986 14.1443i −0.275265 0.158924i 0.356013 0.934481i \(-0.384136\pi\)
−0.631278 + 0.775557i \(0.717469\pi\)
\(90\) 0 0
\(91\) 39.4094 + 68.2590i 0.433070 + 0.750099i
\(92\) −49.1846 + 58.6159i −0.534615 + 0.637129i
\(93\) 0 0
\(94\) −6.00988 34.0837i −0.0639349 0.362593i
\(95\) 109.977 19.3918i 1.15765 0.204125i
\(96\) 0 0
\(97\) 129.179 + 108.394i 1.33174 + 1.11746i 0.983667 + 0.179996i \(0.0576083\pi\)
0.348073 + 0.937467i \(0.386836\pi\)
\(98\) 38.4516 22.2000i 0.392363 0.226531i
\(99\) 0 0
\(100\) −20.4510 + 35.4221i −0.204510 + 0.354221i
\(101\) 23.8827 + 65.6171i 0.236462 + 0.649674i 0.999992 + 0.00390224i \(0.00124213\pi\)
−0.763530 + 0.645772i \(0.776536\pi\)
\(102\) 0 0
\(103\) 53.5180 44.9069i 0.519592 0.435989i −0.344898 0.938640i \(-0.612086\pi\)
0.864489 + 0.502651i \(0.167642\pi\)
\(104\) 9.54962 26.2374i 0.0918233 0.252282i
\(105\) 0 0
\(106\) 11.7339 66.5464i 0.110697 0.627797i
\(107\) 121.432i 1.13488i 0.823416 + 0.567438i \(0.192065\pi\)
−0.823416 + 0.567438i \(0.807935\pi\)
\(108\) 0 0
\(109\) −119.633 −1.09755 −0.548777 0.835969i \(-0.684907\pi\)
−0.548777 + 0.835969i \(0.684907\pi\)
\(110\) −131.262 23.1451i −1.19329 0.210410i
\(111\) 0 0
\(112\) −146.304 53.2503i −1.30629 0.475449i
\(113\) 79.9394 + 95.2681i 0.707429 + 0.843081i 0.993345 0.115174i \(-0.0367425\pi\)
−0.285917 + 0.958254i \(0.592298\pi\)
\(114\) 0 0
\(115\) −154.686 + 56.3011i −1.34510 + 0.489575i
\(116\) 38.1787 + 22.0425i 0.329127 + 0.190021i
\(117\) 0 0
\(118\) −29.8408 51.6859i −0.252889 0.438016i
\(119\) 78.4127 93.4486i 0.658930 0.785282i
\(120\) 0 0
\(121\) 9.57936 + 54.3272i 0.0791682 + 0.448985i
\(122\) −88.2188 + 15.5554i −0.723105 + 0.127503i
\(123\) 0 0
\(124\) −72.8622 61.1387i −0.587599 0.493054i
\(125\) 59.1363 34.1424i 0.473091 0.273139i
\(126\) 0 0
\(127\) 58.7300 101.723i 0.462441 0.800971i −0.536641 0.843811i \(-0.680307\pi\)
0.999082 + 0.0428396i \(0.0136404\pi\)
\(128\) 30.2951 + 83.2351i 0.236680 + 0.650274i
\(129\) 0 0
\(130\) −122.184 + 102.525i −0.939881 + 0.788654i
\(131\) −1.61188 + 4.42859i −0.0123044 + 0.0338060i −0.945693 0.325062i \(-0.894615\pi\)
0.933388 + 0.358868i \(0.116837\pi\)
\(132\) 0 0
\(133\) 25.1820 142.814i 0.189339 1.07379i
\(134\) 21.2974i 0.158936i
\(135\) 0 0
\(136\) −43.2139 −0.317749
\(137\) 217.436 + 38.3398i 1.58712 + 0.279853i 0.896393 0.443260i \(-0.146178\pi\)
0.690730 + 0.723113i \(0.257289\pi\)
\(138\) 0 0
\(139\) 33.6086 + 12.2325i 0.241788 + 0.0880038i 0.460072 0.887882i \(-0.347824\pi\)
−0.218284 + 0.975885i \(0.570046\pi\)
\(140\) 94.7779 + 112.952i 0.676985 + 0.806799i
\(141\) 0 0
\(142\) −101.954 + 37.1083i −0.717986 + 0.261326i
\(143\) −68.2274 39.3911i −0.477114 0.275462i
\(144\) 0 0
\(145\) 47.4203 + 82.1344i 0.327037 + 0.566444i
\(146\) 136.500 162.674i 0.934931 1.11421i
\(147\) 0 0
\(148\) −15.9542 90.4808i −0.107799 0.611357i
\(149\) −165.188 + 29.1271i −1.10864 + 0.195484i −0.697849 0.716245i \(-0.745860\pi\)
−0.410794 + 0.911728i \(0.634748\pi\)
\(150\) 0 0
\(151\) −64.1318 53.8130i −0.424714 0.356377i 0.405239 0.914211i \(-0.367188\pi\)
−0.829953 + 0.557834i \(0.811633\pi\)
\(152\) −44.4893 + 25.6859i −0.292693 + 0.168986i
\(153\) 0 0
\(154\) −86.5428 + 149.896i −0.561966 + 0.973354i
\(155\) −69.9848 192.282i −0.451515 1.24053i
\(156\) 0 0
\(157\) −57.0276 + 47.8518i −0.363233 + 0.304789i −0.806078 0.591810i \(-0.798414\pi\)
0.442845 + 0.896598i \(0.353969\pi\)
\(158\) −24.8349 + 68.2333i −0.157183 + 0.431857i
\(159\) 0 0
\(160\) 42.2249 239.469i 0.263905 1.49668i
\(161\) 213.765i 1.32773i
\(162\) 0 0
\(163\) 254.830 1.56337 0.781687 0.623670i \(-0.214359\pi\)
0.781687 + 0.623670i \(0.214359\pi\)
\(164\) 47.2733 + 8.33555i 0.288252 + 0.0508266i
\(165\) 0 0
\(166\) −43.4361 15.8095i −0.261663 0.0952377i
\(167\) −101.946 121.494i −0.610454 0.727510i 0.368944 0.929452i \(-0.379719\pi\)
−0.979398 + 0.201941i \(0.935275\pi\)
\(168\) 0 0
\(169\) 70.2176 25.5571i 0.415489 0.151226i
\(170\) 213.787 + 123.430i 1.25757 + 0.726060i
\(171\) 0 0
\(172\) −121.784 210.937i −0.708049 1.22638i
\(173\) −191.603 + 228.343i −1.10753 + 1.31990i −0.164809 + 0.986325i \(0.552701\pi\)
−0.942722 + 0.333579i \(0.891744\pi\)
\(174\) 0 0
\(175\) 19.8422 + 112.531i 0.113384 + 0.643033i
\(176\) 153.257 27.0233i 0.870778 0.153542i
\(177\) 0 0
\(178\) −56.9467 47.7840i −0.319925 0.268449i
\(179\) −25.3997 + 14.6645i −0.141898 + 0.0819248i −0.569268 0.822152i \(-0.692773\pi\)
0.427370 + 0.904077i \(0.359440\pi\)
\(180\) 0 0
\(181\) −41.7019 + 72.2299i −0.230397 + 0.399060i −0.957925 0.287018i \(-0.907336\pi\)
0.727528 + 0.686078i \(0.240669\pi\)
\(182\) 70.8411 + 194.634i 0.389237 + 1.06942i
\(183\) 0 0
\(184\) 58.0091 48.6754i 0.315267 0.264540i
\(185\) 67.6021 185.735i 0.365417 1.00398i
\(186\) 0 0
\(187\) −21.1732 + 120.079i −0.113226 + 0.642136i
\(188\) 38.2688i 0.203557i
\(189\) 0 0
\(190\) 293.463 1.54454
\(191\) 154.565 + 27.2539i 0.809238 + 0.142691i 0.562934 0.826502i \(-0.309673\pi\)
0.246305 + 0.969192i \(0.420784\pi\)
\(192\) 0 0
\(193\) 38.9684 + 14.1833i 0.201909 + 0.0734888i 0.440995 0.897510i \(-0.354626\pi\)
−0.239086 + 0.970998i \(0.576848\pi\)
\(194\) 284.845 + 339.466i 1.46828 + 1.74982i
\(195\) 0 0
\(196\) 46.1337 16.7913i 0.235376 0.0856699i
\(197\) 182.437 + 105.330i 0.926074 + 0.534669i 0.885568 0.464510i \(-0.153770\pi\)
0.0405063 + 0.999179i \(0.487103\pi\)
\(198\) 0 0
\(199\) 87.7654 + 152.014i 0.441032 + 0.763890i 0.997766 0.0668004i \(-0.0212791\pi\)
−0.556734 + 0.830691i \(0.687946\pi\)
\(200\) 26.0191 31.0084i 0.130096 0.155042i
\(201\) 0 0
\(202\) 31.8644 + 180.712i 0.157745 + 0.894614i
\(203\) 121.288 21.3863i 0.597478 0.105351i
\(204\) 0 0
\(205\) 79.1083 + 66.3797i 0.385894 + 0.323804i
\(206\) 158.994 91.7952i 0.771815 0.445608i
\(207\) 0 0
\(208\) 93.1133 161.277i 0.447660 0.775370i
\(209\) 49.5759 + 136.209i 0.237205 + 0.651716i
\(210\) 0 0
\(211\) −199.826 + 167.674i −0.947042 + 0.794662i −0.978797 0.204833i \(-0.934335\pi\)
0.0317552 + 0.999496i \(0.489890\pi\)
\(212\) 25.5549 70.2115i 0.120542 0.331186i
\(213\) 0 0
\(214\) −55.4123 + 314.259i −0.258936 + 1.46850i
\(215\) 523.993i 2.43718i
\(216\) 0 0
\(217\) −265.720 −1.22452
\(218\) −309.605 54.5918i −1.42021 0.250421i
\(219\) 0 0
\(220\) −138.492 50.4069i −0.629508 0.229122i
\(221\) 93.7903 + 111.775i 0.424390 + 0.505769i
\(222\) 0 0
\(223\) 365.744 133.120i 1.64011 0.596951i 0.653051 0.757314i \(-0.273489\pi\)
0.987058 + 0.160364i \(0.0512666\pi\)
\(224\) −273.464 157.885i −1.22082 0.704842i
\(225\) 0 0
\(226\) 163.406 + 283.027i 0.723035 + 1.25233i
\(227\) −223.968 + 266.914i −0.986642 + 1.17583i −0.00222294 + 0.999998i \(0.500708\pi\)
−0.984419 + 0.175837i \(0.943737\pi\)
\(228\) 0 0
\(229\) −63.2989 358.986i −0.276415 1.56762i −0.734433 0.678682i \(-0.762552\pi\)
0.458018 0.888943i \(-0.348560\pi\)
\(230\) −426.011 + 75.1173i −1.85222 + 0.326597i
\(231\) 0 0
\(232\) −33.4214 28.0439i −0.144058 0.120879i
\(233\) −164.260 + 94.8353i −0.704976 + 0.407018i −0.809198 0.587536i \(-0.800098\pi\)
0.104222 + 0.994554i \(0.466765\pi\)
\(234\) 0 0
\(235\) 41.1641 71.2983i 0.175166 0.303397i
\(236\) −22.5705 62.0120i −0.0956378 0.262763i
\(237\) 0 0
\(238\) 245.571 206.059i 1.03181 0.865792i
\(239\) 104.692 287.639i 0.438042 1.20351i −0.502723 0.864448i \(-0.667668\pi\)
0.940764 0.339062i \(-0.110110\pi\)
\(240\) 0 0
\(241\) −51.2098 + 290.425i −0.212489 + 1.20508i 0.672723 + 0.739894i \(0.265125\pi\)
−0.885212 + 0.465189i \(0.845987\pi\)
\(242\) 144.967i 0.599039i
\(243\) 0 0
\(244\) −99.0509 −0.405946
\(245\) 104.013 + 18.3403i 0.424543 + 0.0748584i
\(246\) 0 0
\(247\) 162.996 + 59.3258i 0.659904 + 0.240185i
\(248\) 60.5057 + 72.1079i 0.243975 + 0.290758i
\(249\) 0 0
\(250\) 168.622 61.3734i 0.674488 0.245493i
\(251\) −158.404 91.4547i −0.631092 0.364361i 0.150083 0.988673i \(-0.452046\pi\)
−0.781175 + 0.624312i \(0.785379\pi\)
\(252\) 0 0
\(253\) −106.833 185.040i −0.422265 0.731384i
\(254\) 198.409 236.455i 0.781138 0.930925i
\(255\) 0 0
\(256\) 58.1344 + 329.697i 0.227088 + 1.28788i
\(257\) −264.287 + 46.6009i −1.02835 + 0.181327i −0.662278 0.749258i \(-0.730410\pi\)
−0.366076 + 0.930585i \(0.619299\pi\)
\(258\) 0 0
\(259\) −196.623 164.986i −0.759163 0.637013i
\(260\) −152.736 + 88.1822i −0.587447 + 0.339162i
\(261\) 0 0
\(262\) −6.19233 + 10.7254i −0.0236348 + 0.0409368i
\(263\) −120.383 330.749i −0.457730 1.25760i −0.927171 0.374638i \(-0.877767\pi\)
0.469441 0.882964i \(-0.344455\pi\)
\(264\) 0 0
\(265\) 123.135 103.322i 0.464659 0.389895i
\(266\) 130.340 358.105i 0.489999 1.34626i
\(267\) 0 0
\(268\) −4.08927 + 23.1914i −0.0152585 + 0.0865351i
\(269\) 164.243i 0.610570i 0.952261 + 0.305285i \(0.0987518\pi\)
−0.952261 + 0.305285i \(0.901248\pi\)
\(270\) 0 0
\(271\) −128.850 −0.475462 −0.237731 0.971331i \(-0.576404\pi\)
−0.237731 + 0.971331i \(0.576404\pi\)
\(272\) −283.846 50.0497i −1.04355 0.184006i
\(273\) 0 0
\(274\) 545.218 + 198.443i 1.98985 + 0.724245i
\(275\) −73.4152 87.4928i −0.266964 0.318156i
\(276\) 0 0
\(277\) −141.159 + 51.3776i −0.509598 + 0.185479i −0.584006 0.811749i \(-0.698516\pi\)
0.0744078 + 0.997228i \(0.476293\pi\)
\(278\) 81.3953 + 46.9936i 0.292789 + 0.169042i
\(279\) 0 0
\(280\) −72.9609 126.372i −0.260575 0.451328i
\(281\) 296.324 353.146i 1.05454 1.25675i 0.0891220 0.996021i \(-0.471594\pi\)
0.965413 0.260725i \(-0.0839617\pi\)
\(282\) 0 0
\(283\) −11.9570 67.8114i −0.0422508 0.239616i 0.956367 0.292166i \(-0.0943761\pi\)
−0.998618 + 0.0525503i \(0.983265\pi\)
\(284\) −118.146 + 20.8323i −0.416007 + 0.0733533i
\(285\) 0 0
\(286\) −158.594 133.076i −0.554524 0.465301i
\(287\) 116.137 67.0517i 0.404658 0.233630i
\(288\) 0 0
\(289\) −31.5856 + 54.7078i −0.109293 + 0.189300i
\(290\) 85.2414 + 234.199i 0.293936 + 0.807582i
\(291\) 0 0
\(292\) 179.874 150.932i 0.616006 0.516890i
\(293\) −174.692 + 479.963i −0.596220 + 1.63810i 0.162519 + 0.986705i \(0.448038\pi\)
−0.758739 + 0.651395i \(0.774184\pi\)
\(294\) 0 0
\(295\) 24.6527 139.812i 0.0835684 0.473940i
\(296\) 90.9255i 0.307181i
\(297\) 0 0
\(298\) −440.789 −1.47916
\(299\) −251.803 44.3996i −0.842149 0.148494i
\(300\) 0 0
\(301\) −639.416 232.728i −2.12430 0.773184i
\(302\) −141.414 168.530i −0.468257 0.558047i
\(303\) 0 0
\(304\) −321.972 + 117.188i −1.05912 + 0.385488i
\(305\) −184.541 106.545i −0.605053 0.349327i
\(306\) 0 0
\(307\) −26.3017 45.5559i −0.0856734 0.148391i 0.820005 0.572357i \(-0.193971\pi\)
−0.905678 + 0.423966i \(0.860637\pi\)
\(308\) −123.020 + 146.610i −0.399417 + 0.476007i
\(309\) 0 0
\(310\) −93.3742 529.551i −0.301207 1.70823i
\(311\) −349.435 + 61.6148i −1.12358 + 0.198118i −0.704414 0.709789i \(-0.748790\pi\)
−0.419170 + 0.907908i \(0.637679\pi\)
\(312\) 0 0
\(313\) 128.886 + 108.148i 0.411776 + 0.345521i 0.825024 0.565097i \(-0.191161\pi\)
−0.413248 + 0.910618i \(0.635606\pi\)
\(314\) −169.421 + 97.8150i −0.539556 + 0.311513i
\(315\) 0 0
\(316\) −40.1448 + 69.5329i −0.127041 + 0.220041i
\(317\) −174.426 479.232i −0.550241 1.51177i −0.833383 0.552696i \(-0.813599\pi\)
0.283142 0.959078i \(-0.408623\pi\)
\(318\) 0 0
\(319\) −94.3015 + 79.1284i −0.295616 + 0.248051i
\(320\) 54.5266 149.811i 0.170396 0.468158i
\(321\) 0 0
\(322\) −97.5465 + 553.214i −0.302939 + 1.71805i
\(323\) 268.461i 0.831149i
\(324\) 0 0
\(325\) −136.676 −0.420541
\(326\) 659.488 + 116.285i 2.02297 + 0.356704i
\(327\) 0 0
\(328\) −44.6407 16.2479i −0.136100 0.0495362i
\(329\) −68.7207 81.8982i −0.208878 0.248931i
\(330\) 0 0
\(331\) 318.877 116.062i 0.963375 0.350640i 0.188020 0.982165i \(-0.439793\pi\)
0.775355 + 0.631526i \(0.217571\pi\)
\(332\) −44.2634 25.5555i −0.133324 0.0769744i
\(333\) 0 0
\(334\) −208.390 360.941i −0.623921 1.08066i
\(335\) −32.5647 + 38.8091i −0.0972080 + 0.115848i
\(336\) 0 0
\(337\) −11.8494 67.2013i −0.0351614 0.199410i 0.962167 0.272461i \(-0.0878376\pi\)
−0.997328 + 0.0730508i \(0.976726\pi\)
\(338\) 193.382 34.0985i 0.572136 0.100883i
\(339\) 0 0
\(340\) 209.100 + 175.456i 0.615000 + 0.516046i
\(341\) 230.013 132.798i 0.674526 0.389438i
\(342\) 0 0
\(343\) −130.305 + 225.695i −0.379897 + 0.658002i
\(344\) 82.4431 + 226.510i 0.239660 + 0.658461i
\(345\) 0 0
\(346\) −600.058 + 503.508i −1.73427 + 1.45523i
\(347\) 59.2029 162.659i 0.170613 0.468757i −0.824687 0.565589i \(-0.808649\pi\)
0.995301 + 0.0968324i \(0.0308711\pi\)
\(348\) 0 0
\(349\) 79.8055 452.600i 0.228669 1.29685i −0.626876 0.779119i \(-0.715667\pi\)
0.855545 0.517728i \(-0.173222\pi\)
\(350\) 300.278i 0.857939i
\(351\) 0 0
\(352\) 315.623 0.896655
\(353\) −396.139 69.8500i −1.12221 0.197875i −0.418397 0.908264i \(-0.637408\pi\)
−0.703809 + 0.710389i \(0.748519\pi\)
\(354\) 0 0
\(355\) −242.525 88.2721i −0.683170 0.248654i
\(356\) −52.8361 62.9677i −0.148416 0.176875i
\(357\) 0 0
\(358\) −72.4250 + 26.3605i −0.202304 + 0.0736328i
\(359\) 197.249 + 113.882i 0.549439 + 0.317219i 0.748896 0.662688i \(-0.230584\pi\)
−0.199457 + 0.979907i \(0.563918\pi\)
\(360\) 0 0
\(361\) 20.9294 + 36.2507i 0.0579761 + 0.100418i
\(362\) −140.883 + 167.898i −0.389179 + 0.463806i
\(363\) 0 0
\(364\) 39.7698 + 225.546i 0.109258 + 0.619631i
\(365\) 497.472 87.7178i 1.36294 0.240323i
\(366\) 0 0
\(367\) −180.378 151.355i −0.491493 0.412412i 0.363068 0.931763i \(-0.381729\pi\)
−0.854561 + 0.519351i \(0.826174\pi\)
\(368\) 437.401 252.534i 1.18859 0.686233i
\(369\) 0 0
\(370\) 259.707 449.825i 0.701910 1.21574i
\(371\) −71.3920 196.148i −0.192431 0.528701i
\(372\) 0 0
\(373\) 500.037 419.581i 1.34058 1.12488i 0.359105 0.933297i \(-0.383082\pi\)
0.981476 0.191584i \(-0.0613623\pi\)
\(374\) −109.591 + 301.098i −0.293023 + 0.805074i
\(375\) 0 0
\(376\) −6.57651 + 37.2973i −0.0174907 + 0.0991948i
\(377\) 147.312i 0.390748i
\(378\) 0 0
\(379\) 625.053 1.64922 0.824608 0.565705i \(-0.191396\pi\)
0.824608 + 0.565705i \(0.191396\pi\)
\(380\) 319.561 + 56.3472i 0.840949 + 0.148282i
\(381\) 0 0
\(382\) 387.569 + 141.063i 1.01458 + 0.369276i
\(383\) 68.4823 + 81.6140i 0.178805 + 0.213091i 0.848001 0.529994i \(-0.177806\pi\)
−0.669196 + 0.743086i \(0.733361\pi\)
\(384\) 0 0
\(385\) −386.901 + 140.820i −1.00494 + 0.365767i
\(386\) 94.3760 + 54.4880i 0.244497 + 0.141161i
\(387\) 0 0
\(388\) 244.997 + 424.347i 0.631436 + 1.09368i
\(389\) −381.579 + 454.749i −0.980924 + 1.16902i 0.00468714 + 0.999989i \(0.498508\pi\)
−0.985611 + 0.169030i \(0.945936\pi\)
\(390\) 0 0
\(391\) 68.7176 + 389.717i 0.175748 + 0.996719i
\(392\) −47.8481 + 8.43691i −0.122061 + 0.0215227i
\(393\) 0 0
\(394\) 424.072 + 355.839i 1.07633 + 0.903144i
\(395\) −149.587 + 86.3642i −0.378702 + 0.218643i
\(396\) 0 0
\(397\) −187.410 + 324.603i −0.472064 + 0.817640i −0.999489 0.0319623i \(-0.989824\pi\)
0.527425 + 0.849602i \(0.323158\pi\)
\(398\) 157.765 + 433.455i 0.396393 + 1.08908i
\(399\) 0 0
\(400\) 206.817 173.540i 0.517042 0.433850i
\(401\) 93.8523 257.857i 0.234046 0.643035i −0.765954 0.642895i \(-0.777733\pi\)
1.00000 0.000140039i \(-4.45758e-5\pi\)
\(402\) 0 0
\(403\) 55.1907 313.002i 0.136950 0.776680i
\(404\) 202.901i 0.502231i
\(405\) 0 0
\(406\) 323.646 0.797158
\(407\) 252.657 + 44.5502i 0.620778 + 0.109460i
\(408\) 0 0
\(409\) 518.216 + 188.615i 1.26703 + 0.461162i 0.886123 0.463450i \(-0.153389\pi\)
0.380909 + 0.924612i \(0.375611\pi\)
\(410\) 174.438 + 207.887i 0.425457 + 0.507040i
\(411\) 0 0
\(412\) 190.759 69.4305i 0.463007 0.168521i
\(413\) −159.660 92.1798i −0.386586 0.223196i
\(414\) 0 0
\(415\) −54.9779 95.2245i −0.132477 0.229457i
\(416\) 242.778 289.331i 0.583600 0.695508i
\(417\) 0 0
\(418\) 66.1445 + 375.124i 0.158240 + 0.897426i
\(419\) −86.2570 + 15.2094i −0.205864 + 0.0362994i −0.275629 0.961264i \(-0.588886\pi\)
0.0697651 + 0.997563i \(0.477775\pi\)
\(420\) 0 0
\(421\) 226.948 + 190.432i 0.539069 + 0.452332i 0.871219 0.490894i \(-0.163330\pi\)
−0.332151 + 0.943226i \(0.607774\pi\)
\(422\) −593.653 + 342.746i −1.40676 + 0.812194i
\(423\) 0 0
\(424\) −36.9720 + 64.0374i −0.0871981 + 0.151032i
\(425\) 72.3490 + 198.777i 0.170233 + 0.467711i
\(426\) 0 0
\(427\) −211.977 + 177.870i −0.496433 + 0.416556i
\(428\) −120.680 + 331.567i −0.281964 + 0.774689i
\(429\) 0 0
\(430\) 239.111 1356.07i 0.556073 3.15365i
\(431\) 586.175i 1.36003i −0.733196 0.680017i \(-0.761972\pi\)
0.733196 0.680017i \(-0.238028\pi\)
\(432\) 0 0
\(433\) 415.367 0.959277 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(434\) −687.670 121.255i −1.58449 0.279389i
\(435\) 0 0
\(436\) −326.657 118.893i −0.749213 0.272691i
\(437\) 302.390 + 360.374i 0.691967 + 0.824655i
\(438\) 0 0
\(439\) −314.194 + 114.357i −0.715704 + 0.260495i −0.674101 0.738639i \(-0.735469\pi\)
−0.0416031 + 0.999134i \(0.513247\pi\)
\(440\) 126.313 + 72.9270i 0.287076 + 0.165743i
\(441\) 0 0
\(442\) 191.719 + 332.067i 0.433753 + 0.751282i
\(443\) 290.310 345.978i 0.655327 0.780988i −0.331380 0.943497i \(-0.607514\pi\)
0.986707 + 0.162509i \(0.0519588\pi\)
\(444\) 0 0
\(445\) −30.7070 174.148i −0.0690045 0.391344i
\(446\) 1007.27 177.610i 2.25846 0.398228i
\(447\) 0 0
\(448\) −158.592 133.075i −0.354001 0.297042i
\(449\) 165.422 95.5067i 0.368424 0.212710i −0.304346 0.952562i \(-0.598438\pi\)
0.672770 + 0.739852i \(0.265104\pi\)
\(450\) 0 0
\(451\) −67.0206 + 116.083i −0.148604 + 0.257390i
\(452\) 123.594 + 339.573i 0.273439 + 0.751267i
\(453\) 0 0
\(454\) −701.417 + 588.559i −1.54497 + 1.29639i
\(455\) −168.515 + 462.991i −0.370362 + 1.01756i
\(456\) 0 0
\(457\) −66.9852 + 379.892i −0.146576 + 0.831274i 0.819512 + 0.573062i \(0.194244\pi\)
−0.966088 + 0.258212i \(0.916867\pi\)
\(458\) 957.923i 2.09153i
\(459\) 0 0
\(460\) −478.320 −1.03983
\(461\) 426.474 + 75.1990i 0.925107 + 0.163121i 0.615856 0.787859i \(-0.288810\pi\)
0.309252 + 0.950980i \(0.399921\pi\)
\(462\) 0 0
\(463\) −519.515 189.088i −1.12206 0.408397i −0.286658 0.958033i \(-0.592544\pi\)
−0.835405 + 0.549635i \(0.814767\pi\)
\(464\) −187.045 222.912i −0.403114 0.480413i
\(465\) 0 0
\(466\) −468.371 + 170.473i −1.00509 + 0.365822i
\(467\) 186.467 + 107.657i 0.399286 + 0.230528i 0.686176 0.727436i \(-0.259288\pi\)
−0.286890 + 0.957964i \(0.592621\pi\)
\(468\) 0 0
\(469\) 32.8943 + 56.9747i 0.0701372 + 0.121481i
\(470\) 139.066 165.732i 0.295885 0.352622i
\(471\) 0 0
\(472\) 11.3407 + 64.3165i 0.0240270 + 0.136264i
\(473\) 669.803 118.104i 1.41607 0.249692i
\(474\) 0 0
\(475\) 192.635 + 161.640i 0.405548 + 0.340296i
\(476\) 306.975 177.232i 0.644905 0.372336i
\(477\) 0 0
\(478\) 402.194 696.621i 0.841411 1.45737i
\(479\) 77.4641 + 212.831i 0.161721 + 0.444323i 0.993914 0.110163i \(-0.0351371\pi\)
−0.832193 + 0.554486i \(0.812915\pi\)
\(480\) 0 0
\(481\) 235.183 197.342i 0.488946 0.410275i
\(482\) −265.057 + 728.237i −0.549910 + 1.51087i
\(483\) 0 0
\(484\) −27.8349 + 157.860i −0.0575101 + 0.326156i
\(485\) 1054.13i 2.17347i
\(486\) 0 0
\(487\) −443.130 −0.909919 −0.454959 0.890512i \(-0.650346\pi\)
−0.454959 + 0.890512i \(0.650346\pi\)
\(488\) 96.5363 + 17.0220i 0.197820 + 0.0348810i
\(489\) 0 0
\(490\) 260.812 + 94.9276i 0.532268 + 0.193730i
\(491\) −429.032 511.301i −0.873793 1.04135i −0.998790 0.0491885i \(-0.984336\pi\)
0.124997 0.992157i \(-0.460108\pi\)
\(492\) 0 0
\(493\) 214.246 77.9792i 0.434576 0.158173i
\(494\) 394.754 + 227.912i 0.799098 + 0.461360i
\(495\) 0 0
\(496\) 313.911 + 543.710i 0.632885 + 1.09619i
\(497\) −215.432 + 256.742i −0.433465 + 0.516584i
\(498\) 0 0
\(499\) −9.98207 56.6112i −0.0200042 0.113449i 0.973171 0.230084i \(-0.0739003\pi\)
−0.993175 + 0.116635i \(0.962789\pi\)
\(500\) 195.402 34.4546i 0.390804 0.0689092i
\(501\) 0 0
\(502\) −368.209 308.964i −0.733484 0.615466i
\(503\) −423.202 + 244.336i −0.841356 + 0.485757i −0.857725 0.514109i \(-0.828123\pi\)
0.0163686 + 0.999866i \(0.494789\pi\)
\(504\) 0 0
\(505\) −218.252 + 378.024i −0.432182 + 0.748562i
\(506\) −192.040 527.625i −0.379526 1.04274i
\(507\) 0 0
\(508\) 261.455 219.387i 0.514675 0.431864i
\(509\) −97.2199 + 267.109i −0.191002 + 0.524773i −0.997818 0.0660300i \(-0.978967\pi\)
0.806816 + 0.590803i \(0.201189\pi\)
\(510\) 0 0
\(511\) 113.909 646.012i 0.222915 1.26421i
\(512\) 525.459i 1.02629i
\(513\) 0 0
\(514\) −705.227 −1.37204
\(515\) 430.085 + 75.8356i 0.835116 + 0.147254i
\(516\) 0 0
\(517\) 100.416 + 36.5486i 0.194229 + 0.0706936i
\(518\) −433.563 516.701i −0.836995 0.997492i
\(519\) 0 0
\(520\) 164.013 59.6957i 0.315409 0.114799i
\(521\) −35.1966 20.3207i −0.0675558 0.0390033i 0.465842 0.884868i \(-0.345752\pi\)
−0.533397 + 0.845865i \(0.679085\pi\)
\(522\) 0 0
\(523\) −174.951 303.024i −0.334514 0.579395i 0.648877 0.760893i \(-0.275239\pi\)
−0.983391 + 0.181498i \(0.941905\pi\)
\(524\) −8.80239 + 10.4903i −0.0167985 + 0.0200196i
\(525\) 0 0
\(526\) −160.616 910.896i −0.305353 1.73174i
\(527\) −484.436 + 85.4191i −0.919233 + 0.162086i
\(528\) 0 0
\(529\) −125.977 105.708i −0.238142 0.199825i
\(530\) 365.815 211.203i 0.690216 0.398497i
\(531\) 0 0
\(532\) 210.690 364.926i 0.396034 0.685951i
\(533\) 54.8609 + 150.729i 0.102929 + 0.282794i
\(534\) 0 0
\(535\) −581.491 + 487.929i −1.08690 + 0.912017i
\(536\) 7.97091 21.8999i 0.0148711 0.0408580i
\(537\) 0 0
\(538\) −74.9484 + 425.054i −0.139309 + 0.790063i
\(539\) 137.090i 0.254342i
\(540\) 0 0
\(541\) 145.531 0.269003 0.134501 0.990913i \(-0.457057\pi\)
0.134501 + 0.990913i \(0.457057\pi\)
\(542\) −333.458 58.7976i −0.615236 0.108483i
\(543\) 0 0
\(544\) −549.309 199.932i −1.00976 0.367522i
\(545\) −480.704 572.880i −0.882025 1.05116i
\(546\) 0 0
\(547\) −456.718 + 166.232i −0.834950 + 0.303897i −0.723889 0.689917i \(-0.757647\pi\)
−0.111061 + 0.993814i \(0.535425\pi\)
\(548\) 555.602 + 320.777i 1.01387 + 0.585359i
\(549\) 0 0
\(550\) −150.070 259.928i −0.272854 0.472597i
\(551\) 174.219 207.626i 0.316187 0.376818i
\(552\) 0 0
\(553\) 38.9498 + 220.895i 0.0704337 + 0.399449i
\(554\) −388.757 + 68.5483i −0.701727 + 0.123733i
\(555\) 0 0
\(556\) 79.6107 + 66.8013i 0.143185 + 0.120146i
\(557\) −2.82805 + 1.63278i −0.00507730 + 0.00293138i −0.502537 0.864556i \(-0.667600\pi\)
0.497459 + 0.867487i \(0.334266\pi\)
\(558\) 0 0
\(559\) 406.948 704.855i 0.727993 1.26092i
\(560\) −332.873 914.562i −0.594417 1.63315i
\(561\) 0 0
\(562\) 928.022 778.703i 1.65128 1.38559i
\(563\) 227.357 624.659i 0.403832 1.10952i −0.556545 0.830817i \(-0.687873\pi\)
0.960378 0.278702i \(-0.0899043\pi\)
\(564\) 0 0
\(565\) −134.996 + 765.600i −0.238931 + 1.35505i
\(566\) 180.949i 0.319697i
\(567\) 0 0
\(568\) 118.727 0.209026
\(569\) 74.7814 + 13.1860i 0.131426 + 0.0231739i 0.238974 0.971026i \(-0.423189\pi\)
−0.107548 + 0.994200i \(0.534300\pi\)
\(570\) 0 0
\(571\) 276.356 + 100.585i 0.483985 + 0.176156i 0.572477 0.819921i \(-0.305983\pi\)
−0.0884919 + 0.996077i \(0.528205\pi\)
\(572\) −147.146 175.362i −0.257248 0.306577i
\(573\) 0 0
\(574\) 331.154 120.530i 0.576923 0.209983i
\(575\) −321.018 185.340i −0.558292 0.322330i
\(576\) 0 0
\(577\) −529.296 916.768i −0.917325 1.58885i −0.803461 0.595357i \(-0.797011\pi\)
−0.113864 0.993496i \(-0.536323\pi\)
\(578\) −106.706 + 127.168i −0.184613 + 0.220013i
\(579\) 0 0
\(580\) 47.8540 + 271.393i 0.0825069 + 0.467920i
\(581\) −140.618 + 24.7948i −0.242028 + 0.0426760i
\(582\) 0 0
\(583\) 159.827 + 134.111i 0.274146 + 0.230036i
\(584\) −201.245 + 116.189i −0.344597 + 0.198953i
\(585\) 0 0
\(586\) −671.115 + 1162.40i −1.14525 + 1.98363i
\(587\) −47.5072 130.525i −0.0809322 0.222359i 0.892626 0.450798i \(-0.148860\pi\)
−0.973558 + 0.228438i \(0.926638\pi\)
\(588\) 0 0
\(589\) −447.961 + 375.884i −0.760546 + 0.638173i
\(590\) 127.600 350.578i 0.216271 0.594199i
\(591\) 0 0
\(592\) −105.308 + 597.234i −0.177886 + 1.00884i
\(593\) 145.309i 0.245040i −0.992466 0.122520i \(-0.960902\pi\)
0.992466 0.122520i \(-0.0390975\pi\)
\(594\) 0 0
\(595\) 762.563 1.28162
\(596\) −479.989 84.6350i −0.805351 0.142005i
\(597\) 0 0
\(598\) −631.392 229.808i −1.05584 0.384294i
\(599\) −14.7665 17.5980i −0.0246518 0.0293789i 0.753578 0.657359i \(-0.228326\pi\)
−0.778230 + 0.627980i \(0.783882\pi\)
\(600\) 0 0
\(601\) 871.442 317.179i 1.44999 0.527752i 0.507399 0.861711i \(-0.330607\pi\)
0.942588 + 0.333959i \(0.108385\pi\)
\(602\) −1548.58 894.071i −2.57238 1.48517i
\(603\) 0 0
\(604\) −121.631 210.670i −0.201375 0.348792i
\(605\) −221.662 + 264.166i −0.366383 + 0.436638i
\(606\) 0 0
\(607\) 90.9868 + 516.012i 0.149896 + 0.850102i 0.963305 + 0.268410i \(0.0864981\pi\)
−0.813409 + 0.581692i \(0.802391\pi\)
\(608\) −684.359 + 120.671i −1.12559 + 0.198472i
\(609\) 0 0
\(610\) −428.964 359.943i −0.703219 0.590071i
\(611\) 110.745 63.9384i 0.181251 0.104646i
\(612\) 0 0
\(613\) −35.0848 + 60.7687i −0.0572346 + 0.0991333i −0.893223 0.449614i \(-0.851562\pi\)
0.835988 + 0.548747i \(0.184895\pi\)
\(614\) −47.2792 129.899i −0.0770020 0.211561i
\(615\) 0 0
\(616\) 145.092 121.747i 0.235539 0.197641i
\(617\) −227.293 + 624.483i −0.368385 + 1.01213i 0.607591 + 0.794250i \(0.292136\pi\)
−0.975976 + 0.217879i \(0.930086\pi\)
\(618\) 0 0
\(619\) −168.570 + 956.006i −0.272326 + 1.54444i 0.475005 + 0.879983i \(0.342446\pi\)
−0.747330 + 0.664453i \(0.768665\pi\)
\(620\) 594.574i 0.958990i
\(621\) 0 0
\(622\) −932.436 −1.49909
\(623\) −226.147 39.8758i −0.362997 0.0640061i
\(624\) 0 0
\(625\) 731.800 + 266.353i 1.17088 + 0.426165i
\(626\) 284.200 + 338.696i 0.453993 + 0.541048i
\(627\) 0 0
\(628\) −203.269 + 73.9837i −0.323676 + 0.117808i
\(629\) −411.502 237.581i −0.654216 0.377712i
\(630\) 0 0
\(631\) 94.6588 + 163.954i 0.150014 + 0.259832i 0.931232 0.364426i \(-0.118735\pi\)
−0.781218 + 0.624258i \(0.785401\pi\)
\(632\) 51.0749 60.8687i 0.0808148 0.0963113i
\(633\) 0 0
\(634\) −232.721 1319.82i −0.367067 2.08174i
\(635\) 723.100 127.502i 1.13874 0.200791i
\(636\) 0 0
\(637\) 125.671 + 105.450i 0.197285 + 0.165542i
\(638\) −280.156 + 161.748i −0.439116 + 0.253524i
\(639\) 0 0
\(640\) −276.852 + 479.522i −0.432581 + 0.749253i
\(641\) 236.919 + 650.930i 0.369609 + 1.01549i 0.975511 + 0.219952i \(0.0705901\pi\)
−0.605902 + 0.795539i \(0.707188\pi\)
\(642\) 0 0
\(643\) 815.534 684.314i 1.26833 1.06425i 0.273584 0.961848i \(-0.411791\pi\)
0.994743 0.102404i \(-0.0326535\pi\)
\(644\) −212.443 + 583.682i −0.329880 + 0.906338i
\(645\) 0 0
\(646\) 122.506 694.764i 0.189637 1.07549i
\(647\) 352.755i 0.545217i −0.962125 0.272608i \(-0.912114\pi\)
0.962125 0.272608i \(-0.0878863\pi\)
\(648\) 0 0
\(649\) 184.274 0.283935
\(650\) −353.710 62.3686i −0.544169 0.0959517i
\(651\) 0 0
\(652\) 695.809 + 253.254i 1.06719 + 0.388426i
\(653\) 301.103 + 358.840i 0.461107 + 0.549526i 0.945626 0.325255i \(-0.105450\pi\)
−0.484520 + 0.874780i \(0.661006\pi\)
\(654\) 0 0
\(655\) −27.6836 + 10.0760i −0.0422650 + 0.0153832i
\(656\) −274.399 158.424i −0.418291 0.241501i
\(657\) 0 0
\(658\) −140.474 243.307i −0.213486 0.369768i
\(659\) −55.2415 + 65.8343i −0.0838262 + 0.0999002i −0.806327 0.591470i \(-0.798548\pi\)
0.722501 + 0.691370i \(0.242992\pi\)
\(660\) 0 0
\(661\) 21.3782 + 121.242i 0.0323422 + 0.183422i 0.996699 0.0811828i \(-0.0258698\pi\)
−0.964357 + 0.264604i \(0.914759\pi\)
\(662\) 878.200 154.850i 1.32659 0.233913i
\(663\) 0 0
\(664\) 38.7480 + 32.5134i 0.0583554 + 0.0489660i
\(665\) 785.070 453.260i 1.18056 0.681594i
\(666\) 0 0
\(667\) −199.763 + 346.000i −0.299495 + 0.518741i
\(668\) −157.618 433.053i −0.235956 0.648283i
\(669\) 0 0
\(670\) −101.985 + 85.5759i −0.152217 + 0.127725i
\(671\) 94.5985 259.907i 0.140981 0.387343i
\(672\) 0 0
\(673\) −110.547 + 626.942i −0.164260 + 0.931563i 0.785565 + 0.618779i \(0.212373\pi\)
−0.949824 + 0.312784i \(0.898739\pi\)
\(674\) 179.321i 0.266054i
\(675\) 0 0
\(676\) 217.127 0.321194
\(677\) 162.798 + 28.7056i 0.240469 + 0.0424012i 0.292584 0.956240i \(-0.405485\pi\)
−0.0521144 + 0.998641i \(0.516596\pi\)
\(678\) 0 0
\(679\) 1286.33 + 468.186i 1.89445 + 0.689522i
\(680\) −173.639 206.935i −0.255352 0.304317i
\(681\) 0 0
\(682\) 655.862 238.714i 0.961675 0.350021i
\(683\) 1129.58 + 652.163i 1.65385 + 0.954851i 0.975468 + 0.220142i \(0.0706522\pi\)
0.678383 + 0.734709i \(0.262681\pi\)
\(684\) 0 0
\(685\) 690.092 + 1195.27i 1.00743 + 1.74493i
\(686\) −440.212 + 524.625i −0.641709 + 0.764759i
\(687\) 0 0
\(688\) 279.177 + 1583.29i 0.405781 + 2.30130i
\(689\) 245.879 43.3551i 0.356863 0.0629246i
\(690\) 0 0
\(691\) −277.168 232.571i −0.401111 0.336572i 0.419812 0.907611i \(-0.362096\pi\)
−0.820923 + 0.571039i \(0.806540\pi\)
\(692\) −750.099 + 433.070i −1.08396 + 0.625824i
\(693\) 0 0
\(694\) 227.439 393.936i 0.327722 0.567632i
\(695\) 76.4668 + 210.091i 0.110024 + 0.302289i
\(696\) 0 0
\(697\) 190.176 159.576i 0.272849 0.228947i
\(698\) 413.066 1134.89i 0.591784 1.62591i
\(699\) 0 0
\(700\) −57.6559 + 326.983i −0.0823655 + 0.467118i
\(701\) 893.344i 1.27438i 0.770705 + 0.637192i \(0.219904\pi\)
−0.770705 + 0.637192i \(0.780096\pi\)
\(702\) 0 0
\(703\) −564.863 −0.803504
\(704\) 203.788 + 35.9333i 0.289472 + 0.0510416i
\(705\) 0 0
\(706\) −993.313 361.537i −1.40696 0.512091i
\(707\) 364.357 + 434.224i 0.515357 + 0.614179i
\(708\) 0 0
\(709\) 648.964 236.203i 0.915323 0.333150i 0.158947 0.987287i \(-0.449190\pi\)
0.756376 + 0.654137i \(0.226968\pi\)
\(710\) −587.363 339.114i −0.827272 0.477626i
\(711\) 0 0
\(712\) 40.6737 + 70.4490i 0.0571260 + 0.0989452i
\(713\) 554.078 660.324i 0.777108 0.926121i
\(714\) 0 0
\(715\) −85.5176 484.994i −0.119605 0.678314i
\(716\) −83.9273 + 14.7986i −0.117217 + 0.0206685i
\(717\) 0 0
\(718\) 458.502 + 384.729i 0.638583 + 0.535834i
\(719\) −417.508 + 241.049i −0.580679 + 0.335255i −0.761403 0.648279i \(-0.775489\pi\)
0.180724 + 0.983534i \(0.442156\pi\)
\(720\) 0 0
\(721\) 283.560 491.140i 0.393287 0.681192i
\(722\) 37.6220 + 103.366i 0.0521081 + 0.143166i
\(723\) 0 0
\(724\) −185.649 + 155.778i −0.256422 + 0.215163i
\(725\) −73.0432 + 200.685i −0.100749 + 0.276806i
\(726\) 0 0
\(727\) 59.9144 339.791i 0.0824132 0.467388i −0.915472 0.402382i \(-0.868182\pi\)
0.997885 0.0650059i \(-0.0207066\pi\)
\(728\) 226.654i 0.311338i
\(729\) 0 0
\(730\) 1327.46 1.81844
\(731\) −1240.54 218.740i −1.69704 0.299234i
\(732\) 0 0
\(733\) −506.752 184.443i −0.691339 0.251627i −0.0276307 0.999618i \(-0.508796\pi\)
−0.663709 + 0.747991i \(0.731018\pi\)
\(734\) −397.742 474.011i −0.541883 0.645791i
\(735\) 0 0
\(736\) 962.575 350.349i 1.30785 0.476017i
\(737\) −56.9482 32.8791i −0.0772704 0.0446121i
\(738\) 0 0
\(739\) −368.737 638.671i −0.498968 0.864237i 0.501032 0.865429i \(-0.332954\pi\)
−0.999999 + 0.00119161i \(0.999621\pi\)
\(740\) 369.173 439.963i 0.498882 0.594545i
\(741\) 0 0
\(742\) −95.2517 540.199i −0.128372 0.728031i
\(743\) −1025.43 + 180.811i −1.38012 + 0.243353i −0.813950 0.580935i \(-0.802687\pi\)
−0.566171 + 0.824288i \(0.691576\pi\)
\(744\) 0 0
\(745\) −803.226 673.987i −1.07816 0.904680i
\(746\) 1485.54 857.674i 1.99133 1.14970i
\(747\) 0 0
\(748\) −177.150 + 306.832i −0.236831 + 0.410204i
\(749\) 337.142 + 926.289i 0.450122 + 1.23670i
\(750\) 0 0
\(751\) 184.644 154.935i 0.245864 0.206305i −0.511525 0.859269i \(-0.670919\pi\)
0.757389 + 0.652964i \(0.226475\pi\)
\(752\) −86.3942 + 237.366i −0.114886 + 0.315646i
\(753\) 0 0
\(754\) −67.2222 + 381.236i −0.0891541 + 0.505618i
\(755\) 523.331i 0.693154i
\(756\) 0 0
\(757\) 32.7615 0.0432781 0.0216391 0.999766i \(-0.493112\pi\)
0.0216391 + 0.999766i \(0.493112\pi\)
\(758\) 1617.60 + 285.227i 2.13404 + 0.376289i
\(759\) 0 0
\(760\) −301.765 109.833i −0.397059 0.144518i
\(761\) 205.276 + 244.639i 0.269746 + 0.321470i 0.883864 0.467743i \(-0.154933\pi\)
−0.614119 + 0.789214i \(0.710488\pi\)
\(762\) 0 0
\(763\) −912.573 + 332.149i −1.19603 + 0.435320i
\(764\) 394.950 + 228.025i 0.516951 + 0.298462i
\(765\) 0 0
\(766\) 139.986 + 242.463i 0.182750 + 0.316531i
\(767\) 141.744 168.924i 0.184803 0.220240i
\(768\) 0 0
\(769\) −82.6925 468.973i −0.107533 0.609847i −0.990179 0.139809i \(-0.955351\pi\)
0.882646 0.470038i \(-0.155760\pi\)
\(770\) −1065.54 + 187.883i −1.38382 + 0.244004i
\(771\) 0 0
\(772\) 92.3069 + 77.4546i 0.119568 + 0.100330i
\(773\) −1122.62 + 648.147i −1.45229 + 0.838482i −0.998611 0.0526817i \(-0.983223\pi\)
−0.453682 + 0.891164i \(0.649890\pi\)
\(774\) 0 0
\(775\) 230.386 399.040i 0.297272 0.514890i
\(776\) −165.853 455.677i −0.213728 0.587213i
\(777\) 0 0
\(778\) −1195.02 + 1002.74i −1.53602 + 1.28887i
\(779\) 100.938 277.324i 0.129574 0.356001i
\(780\) 0 0
\(781\) 58.1717 329.908i 0.0744837 0.422418i
\(782\) 1039.93i 1.32983i
\(783\) 0 0
\(784\) −324.056 −0.413337
\(785\) −458.289 80.8088i −0.583808 0.102941i
\(786\) 0 0
\(787\) −809.031 294.463i −1.02799 0.374159i −0.227677 0.973737i \(-0.573113\pi\)
−0.800317 + 0.599577i \(0.795335\pi\)
\(788\) 393.461 + 468.909i 0.499317 + 0.595062i
\(789\) 0 0
\(790\) −426.534 + 155.246i −0.539917 + 0.196514i
\(791\) 874.285 + 504.769i 1.10529 + 0.638140i
\(792\) 0 0
\(793\) −165.492 286.640i −0.208690 0.361462i
\(794\) −633.131 + 754.536i −0.797394 + 0.950298i
\(795\) 0 0
\(796\) 88.5680 + 502.294i 0.111266 + 0.631023i
\(797\) −571.312 + 100.738i −0.716828 + 0.126396i −0.520154 0.854073i \(-0.674125\pi\)
−0.196675 + 0.980469i \(0.563014\pi\)
\(798\) 0 0
\(799\) −151.613 127.218i −0.189753 0.159222i
\(800\) 474.201 273.780i 0.592751 0.342225i
\(801\) 0 0
\(802\) 360.552 624.494i 0.449566 0.778671i
\(803\) 224.254 + 616.132i 0.279270 + 0.767287i
\(804\) 0 0
\(805\) −1023.64 + 858.938i −1.27161 + 1.06700i
\(806\) 285.661 784.849i 0.354419 0.973757i
\(807\) 0 0
\(808\) 34.8687 197.750i 0.0431543 0.244740i
\(809\) 661.323i 0.817457i −0.912656 0.408729i \(-0.865972\pi\)
0.912656 0.408729i \(-0.134028\pi\)
\(810\) 0 0
\(811\) −168.725 −0.208045 −0.104023 0.994575i \(-0.533171\pi\)
−0.104023 + 0.994575i \(0.533171\pi\)
\(812\) 352.429 + 62.1427i 0.434025 + 0.0765304i
\(813\) 0 0
\(814\) 633.533 + 230.587i 0.778296 + 0.283277i
\(815\) 1023.94 + 1220.29i 1.25637 + 1.49728i
\(816\) 0 0
\(817\) −1407.17 + 512.167i −1.72236 + 0.626887i
\(818\) 1255.05 + 724.602i 1.53429 + 0.885822i
\(819\) 0 0
\(820\) 150.035 + 259.868i 0.182969 + 0.316912i
\(821\) 97.4327 116.116i 0.118676 0.141432i −0.703436 0.710759i \(-0.748352\pi\)
0.822111 + 0.569327i \(0.192796\pi\)
\(822\) 0 0
\(823\) 39.0398 + 221.406i 0.0474360 + 0.269023i 0.999296 0.0375092i \(-0.0119424\pi\)
−0.951860 + 0.306532i \(0.900831\pi\)
\(824\) −197.848 + 34.8859i −0.240106 + 0.0423372i
\(825\) 0 0
\(826\) −371.128 311.414i −0.449308 0.377014i
\(827\) −292.855 + 169.080i −0.354117 + 0.204449i −0.666497 0.745508i \(-0.732207\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(828\) 0 0
\(829\) 401.806 695.949i 0.484688 0.839504i −0.515157 0.857096i \(-0.672267\pi\)
0.999845 + 0.0175917i \(0.00559990\pi\)
\(830\) −98.8267 271.524i −0.119068 0.327137i
\(831\) 0 0
\(832\) 189.694 159.172i 0.227998 0.191313i
\(833\) 86.8402 238.591i 0.104250 0.286424i
\(834\) 0 0
\(835\) 172.159 976.361i 0.206178 1.16929i
\(836\) 421.184i 0.503809i
\(837\) 0 0
\(838\) −230.169 −0.274665
\(839\) 840.969 + 148.286i 1.00235 + 0.176741i 0.650654 0.759374i \(-0.274495\pi\)
0.351693 + 0.936115i \(0.385606\pi\)
\(840\) 0 0
\(841\) −573.980 208.911i −0.682496 0.248408i
\(842\) 500.431 + 596.390i 0.594336 + 0.708302i
\(843\) 0 0
\(844\) −712.257 + 259.240i −0.843906 + 0.307157i
\(845\) 404.527 + 233.554i 0.478731 + 0.276395i
\(846\) 0 0
\(847\) 223.906 + 387.816i 0.264351 + 0.457870i
\(848\) −317.013 + 377.802i −0.373837 + 0.445521i
\(849\) 0 0
\(850\) 96.5284 + 547.440i 0.113563 + 0.644047i
\(851\) 819.995 144.587i 0.963567 0.169903i
\(852\) 0 0
\(853\) −612.158 513.661i −0.717653 0.602182i 0.209082 0.977898i \(-0.432952\pi\)
−0.926735 + 0.375716i \(0.877397\pi\)
\(854\) −629.751 + 363.587i −0.737414 + 0.425746i
\(855\) 0 0
\(856\) 174.597 302.410i 0.203968 0.353283i
\(857\) −531.246 1459.59i −0.619890 1.70313i −0.707256 0.706958i \(-0.750067\pi\)
0.0873655 0.996176i \(-0.472155\pi\)
\(858\) 0 0
\(859\) −21.6423 + 18.1601i −0.0251948 + 0.0211409i −0.655298 0.755370i \(-0.727457\pi\)
0.630103 + 0.776511i \(0.283013\pi\)
\(860\) 520.752 1430.75i 0.605525 1.66367i
\(861\) 0 0
\(862\) 267.487 1516.99i 0.310309 1.75985i
\(863\) 951.550i 1.10261i 0.834305 + 0.551304i \(0.185869\pi\)
−0.834305 + 0.551304i \(0.814131\pi\)
\(864\) 0 0
\(865\) −1863.34 −2.15415
\(866\) 1074.95 + 189.543i 1.24128 + 0.218871i
\(867\) 0 0
\(868\) −725.543 264.076i −0.835879 0.304235i
\(869\) −144.112 171.746i −0.165837 0.197637i
\(870\) 0 0
\(871\) −73.9450 + 26.9138i −0.0848967 + 0.0308999i
\(872\) 297.932 + 172.011i 0.341665 + 0.197260i
\(873\) 0 0
\(874\) 618.122 + 1070.62i 0.707233 + 1.22496i
\(875\) 356.304 424.626i 0.407204 0.485287i
\(876\) 0 0
\(877\) −39.6252 224.726i −0.0451827 0.256244i 0.953847 0.300294i \(-0.0970849\pi\)
−0.999029 + 0.0440504i \(0.985974\pi\)
\(878\) −865.303 + 152.576i −0.985538 + 0.173777i
\(879\) 0 0
\(880\) 745.212 + 625.307i 0.846832 + 0.710576i
\(881\) 1343.36 775.592i 1.52482 0.880354i 0.525250 0.850948i \(-0.323972\pi\)
0.999568 0.0294054i \(-0.00936139\pi\)
\(882\) 0 0
\(883\) −781.794 + 1354.11i −0.885384 + 1.53353i −0.0401121 + 0.999195i \(0.512772\pi\)
−0.845272 + 0.534336i \(0.820562\pi\)
\(884\) 145.009 + 398.409i 0.164037 + 0.450689i
\(885\) 0 0
\(886\) 909.185 762.897i 1.02617 0.861058i
\(887\) −240.153 + 659.815i −0.270748 + 0.743873i 0.727578 + 0.686025i \(0.240646\pi\)
−0.998325 + 0.0578478i \(0.981576\pi\)
\(888\) 0 0
\(889\) 165.573 939.010i 0.186246 1.05625i
\(890\) 464.699i 0.522134i
\(891\) 0 0
\(892\) 1130.95 1.26789
\(893\) −231.704 40.8557i −0.259467 0.0457511i
\(894\) 0 0
\(895\) −172.283 62.7057i −0.192494 0.0700622i
\(896\) 462.186 + 550.812i 0.515833 + 0.614746i
\(897\) 0 0
\(898\) 471.687 171.680i 0.525264 0.191180i
\(899\) −430.094 248.315i −0.478413 0.276212i
\(900\) 0 0
\(901\) −193.210 334.649i −0.214439 0.371419i
\(902\) −226.418 + 269.834i −0.251017 + 0.299151i
\(903\) 0 0
\(904\) −62.1009 352.192i −0.0686957 0.389592i
\(905\) −513.446 + 90.5344i −0.567344 + 0.100038i
\(906\) 0 0
\(907\) 1236.79 + 1037.79i 1.36360 + 1.14420i 0.974851 + 0.222858i \(0.0715387\pi\)
0.388754 + 0.921342i \(0.372906\pi\)
\(908\) −876.803 + 506.222i −0.965642 + 0.557514i
\(909\) 0 0
\(910\) −647.383 + 1121.30i −0.711410 + 1.23220i
\(911\) 209.645 + 575.996i 0.230127 + 0.632268i 0.999982 0.00595016i \(-0.00189401\pi\)
−0.769856 + 0.638218i \(0.779672\pi\)
\(912\) 0 0
\(913\) 109.331 91.7394i 0.119749 0.100481i
\(914\) −346.709 + 952.574i −0.379331 + 1.04220i
\(915\) 0 0
\(916\) 183.929 1043.11i 0.200796 1.13877i
\(917\) 38.2568i 0.0417195i
\(918\) 0 0
\(919\) 628.091 0.683451 0.341725 0.939800i \(-0.388989\pi\)
0.341725 + 0.939800i \(0.388989\pi\)
\(920\) 466.177 + 82.1995i 0.506714 + 0.0893473i
\(921\) 0 0
\(922\) 1069.38 + 389.222i 1.15985 + 0.422150i
\(923\) −257.681 307.092i −0.279178 0.332711i
\(924\) 0 0
\(925\) 418.243 152.228i 0.452154 0.164571i
\(926\) −1258.19 726.418i −1.35874 0.784469i
\(927\) 0 0
\(928\) −295.086 511.103i −0.317980 0.550758i
\(929\) 805.771 960.281i 0.867354 1.03367i −0.131748 0.991283i \(-0.542059\pi\)
0.999101 0.0423885i \(-0.0134967\pi\)
\(930\) 0 0
\(931\) −52.4133 297.250i −0.0562978 0.319281i
\(932\) −542.756 + 95.7025i −0.582356 + 0.102685i
\(933\) 0 0
\(934\) 433.440 + 363.700i 0.464069 + 0.389400i
\(935\) −660.093 + 381.105i −0.705981 + 0.407599i
\(936\) 0 0
\(937\) 460.132 796.972i 0.491070 0.850557i −0.508878 0.860839i \(-0.669939\pi\)
0.999947 + 0.0102815i \(0.00327275\pi\)
\(938\) 59.1299 + 162.458i 0.0630383 + 0.173196i
\(939\) 0 0
\(940\) 183.255 153.769i 0.194952 0.163584i
\(941\) 233.754 642.234i 0.248410 0.682502i −0.751335 0.659921i \(-0.770590\pi\)
0.999745 0.0225805i \(-0.00718822\pi\)
\(942\) 0 0
\(943\) −75.5421 + 428.421i −0.0801083 + 0.454317i
\(944\) 435.590i 0.461430i
\(945\) 0 0
\(946\) 1787.31 1.88934
\(947\) −828.995 146.174i −0.875391 0.154355i −0.282141 0.959373i \(-0.591044\pi\)
−0.593250 + 0.805018i \(0.702156\pi\)
\(948\) 0 0
\(949\) 737.304 + 268.357i 0.776928 + 0.282779i
\(950\) 424.770 + 506.222i 0.447127 + 0.532865i
\(951\) 0 0
\(952\) −329.639 + 119.979i −0.346259 + 0.126028i
\(953\) −1277.52 737.576i −1.34052 0.773952i −0.353640 0.935382i \(-0.615056\pi\)
−0.986884 + 0.161430i \(0.948390\pi\)
\(954\) 0 0
\(955\) 490.553 + 849.662i 0.513668 + 0.889698i
\(956\) 571.719 681.348i 0.598032 0.712707i
\(957\) 0 0
\(958\) 103.353 + 586.145i 0.107884 + 0.611842i
\(959\) 1765.06 311.228i 1.84052 0.324534i
\(960\) 0 0
\(961\) 84.6440 + 71.0248i 0.0880791 + 0.0739072i
\(962\) 698.694 403.391i 0.726294 0.419326i
\(963\) 0 0
\(964\) −428.456 + 742.107i −0.444456 + 0.769821i
\(965\) 88.6616 + 243.596i 0.0918773 + 0.252431i
\(966\) 0 0
\(967\) 248.771 208.744i 0.257261 0.215868i −0.505030 0.863102i \(-0.668519\pi\)
0.762291 + 0.647234i \(0.224074\pi\)
\(968\) 54.2565 149.068i 0.0560501 0.153996i
\(969\) 0 0
\(970\) −481.027 + 2728.04i −0.495904 + 2.81241i
\(971\) 1203.37i 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(972\) 0 0
\(973\) 290.331 0.298387
\(974\) −1146.80 202.212i −1.17741 0.207609i
\(975\) 0 0
\(976\) 614.373 + 223.614i 0.629481 + 0.229112i
\(977\) 121.698 + 145.034i 0.124563 + 0.148448i 0.824722 0.565539i \(-0.191332\pi\)
−0.700159 + 0.713987i \(0.746887\pi\)
\(978\) 0 0
\(979\) 215.687 78.5036i 0.220313 0.0801875i
\(980\) 265.779 + 153.448i 0.271203 + 0.156579i
\(981\) 0 0
\(982\) −876.994 1519.00i −0.893070 1.54684i
\(983\) −812.932 + 968.815i −0.826991 + 0.985570i 0.173009 + 0.984920i \(0.444651\pi\)
−1.00000 0.000649412i \(0.999793\pi\)
\(984\) 0 0
\(985\) 228.670 + 1296.85i 0.232152 + 1.31660i
\(986\) 590.042 104.040i 0.598420 0.105518i
\(987\) 0 0
\(988\) 386.100 + 323.976i 0.390789 + 0.327911i
\(989\) 1911.64 1103.69i 1.93291 1.11596i
\(990\) 0 0
\(991\) 697.271 1207.71i 0.703604 1.21868i −0.263589 0.964635i \(-0.584906\pi\)
0.967193 0.254043i \(-0.0817603\pi\)
\(992\) 435.499 + 1196.52i 0.439011 + 1.20617i
\(993\) 0 0
\(994\) −674.686 + 566.129i −0.678759 + 0.569546i
\(995\) −375.286 + 1031.09i −0.377172 + 1.03627i
\(996\) 0 0
\(997\) 175.161 993.390i 0.175689 0.996379i −0.761658 0.647980i \(-0.775614\pi\)
0.937346 0.348399i \(-0.113275\pi\)
\(998\) 151.062i 0.151365i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.a.26.5 30
3.2 odd 2 243.3.f.d.26.1 30
9.2 odd 6 27.3.f.a.20.5 30
9.4 even 3 243.3.f.b.107.1 30
9.5 odd 6 243.3.f.c.107.5 30
9.7 even 3 81.3.f.a.62.1 30
27.4 even 9 243.3.f.c.134.5 30
27.5 odd 18 81.3.f.a.17.1 30
27.11 odd 18 729.3.b.a.728.5 30
27.13 even 9 243.3.f.d.215.1 30
27.14 odd 18 inner 243.3.f.a.215.5 30
27.16 even 9 729.3.b.a.728.26 30
27.22 even 9 27.3.f.a.23.5 yes 30
27.23 odd 18 243.3.f.b.134.1 30
36.11 even 6 432.3.bc.a.209.5 30
108.103 odd 18 432.3.bc.a.401.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.5 30 9.2 odd 6
27.3.f.a.23.5 yes 30 27.22 even 9
81.3.f.a.17.1 30 27.5 odd 18
81.3.f.a.62.1 30 9.7 even 3
243.3.f.a.26.5 30 1.1 even 1 trivial
243.3.f.a.215.5 30 27.14 odd 18 inner
243.3.f.b.107.1 30 9.4 even 3
243.3.f.b.134.1 30 27.23 odd 18
243.3.f.c.107.5 30 9.5 odd 6
243.3.f.c.134.5 30 27.4 even 9
243.3.f.d.26.1 30 3.2 odd 2
243.3.f.d.215.1 30 27.13 even 9
432.3.bc.a.209.5 30 36.11 even 6
432.3.bc.a.401.5 30 108.103 odd 18
729.3.b.a.728.5 30 27.11 odd 18
729.3.b.a.728.26 30 27.16 even 9