Properties

Label 27.3.f.a.20.5
Level $27$
Weight $3$
Character 27.20
Analytic conductor $0.736$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,3,Mod(2,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 27.f (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.735696713773\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 20.5
Character \(\chi\) \(=\) 27.20
Dual form 27.3.f.a.23.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.898786 + 2.46939i) q^{2} +(-2.94744 + 0.559079i) q^{3} +(-2.22591 + 1.86776i) q^{4} +(6.15614 - 1.08549i) q^{5} +(-4.02971 - 6.77591i) q^{6} +(-6.21846 - 5.21791i) q^{7} +(2.49037 + 1.43782i) q^{8} +(8.37486 - 3.29571i) q^{9} +(8.21356 + 14.2263i) q^{10} +(-7.99059 - 1.40896i) q^{11} +(5.51652 - 6.74957i) q^{12} +(-9.12402 - 3.32087i) q^{13} +(7.29600 - 20.0456i) q^{14} +(-17.5380 + 6.64120i) q^{15} +(-3.33052 + 18.8883i) q^{16} +(-13.0143 + 7.51380i) q^{17} +(15.6656 + 17.7187i) q^{18} +(8.93226 - 15.4711i) q^{19} +(-11.6756 + 13.9144i) q^{20} +(21.2458 + 11.9029i) q^{21} +(-3.70256 - 20.9983i) q^{22} +(16.9268 + 20.1726i) q^{23} +(-8.14409 - 2.84557i) q^{24} +(13.2275 - 4.81440i) q^{25} -25.5156i q^{26} +(-22.8419 + 14.3961i) q^{27} +23.5875 q^{28} +(5.18906 + 14.2568i) q^{29} +(-32.1626 - 37.3392i) q^{30} +(25.0755 - 21.0408i) q^{31} +(-38.3082 + 6.75478i) q^{32} +(24.3395 - 0.314547i) q^{33} +(-30.2516 - 25.3841i) q^{34} +(-43.9457 - 25.3721i) q^{35} +(-12.4861 + 22.9782i) q^{36} +(-15.8096 - 27.3831i) q^{37} +(46.2325 + 8.15204i) q^{38} +(28.7492 + 4.68704i) q^{39} +(16.8918 + 6.14813i) q^{40} +(5.65018 - 15.5238i) q^{41} +(-10.2975 + 63.1624i) q^{42} +(-14.5559 + 82.5505i) q^{43} +(20.4179 - 11.7883i) q^{44} +(47.9794 - 29.3797i) q^{45} +(-34.6005 + 59.9298i) q^{46} +(8.46562 - 10.0889i) q^{47} +(-0.743531 - 57.5342i) q^{48} +(2.93393 + 16.6391i) q^{49} +(23.7773 + 28.3367i) q^{50} +(34.1581 - 29.4225i) q^{51} +(26.5118 - 9.64952i) q^{52} +25.7140i q^{53} +(-56.0796 - 43.4666i) q^{54} -50.7206 q^{55} +(-7.98389 - 21.9356i) q^{56} +(-17.6778 + 50.5941i) q^{57} +(-30.5419 + 25.6277i) q^{58} +(-22.3660 + 3.94373i) q^{59} +(26.6338 - 47.5395i) q^{60} +(26.1131 + 21.9115i) q^{61} +(74.4955 + 43.0100i) q^{62} +(-69.2755 - 23.2050i) q^{63} +(-12.7517 - 22.0867i) q^{64} +(-59.7736 - 10.5397i) q^{65} +(22.6528 + 59.8212i) q^{66} +(-7.61567 - 2.77188i) q^{67} +(14.9346 - 41.0326i) q^{68} +(-61.1690 - 49.9942i) q^{69} +(23.1558 - 131.323i) q^{70} +(35.7557 - 20.6436i) q^{71} +(25.5952 + 3.83398i) q^{72} +(40.4046 - 69.9827i) q^{73} +(53.4101 - 63.6517i) q^{74} +(-36.2956 + 21.5854i) q^{75} +(9.01395 + 51.1206i) q^{76} +(42.3374 + 50.4557i) q^{77} +(14.2652 + 75.2057i) q^{78} +(25.9652 - 9.45057i) q^{79} +119.894i q^{80} +(59.2766 - 55.2022i) q^{81} +43.4126 q^{82} +(-6.01607 - 16.5290i) q^{83} +(-69.5229 + 13.1873i) q^{84} +(-71.9616 + 60.3830i) q^{85} +(-216.932 + 38.2510i) q^{86} +(-23.2652 - 39.1201i) q^{87} +(-17.8737 - 14.9978i) q^{88} +(24.4986 + 14.1443i) q^{89} +(115.673 + 92.0739i) q^{90} +(39.4094 + 68.2590i) q^{91} +(-75.3552 - 13.2871i) q^{92} +(-62.1451 + 76.0358i) q^{93} +(32.5223 + 11.8372i) q^{94} +(38.1945 - 104.938i) q^{95} +(109.135 - 41.3267i) q^{96} +(29.2825 - 166.069i) q^{97} +(-38.4516 + 22.2000i) q^{98} +(-71.5636 + 14.5348i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 15 q^{5} - 18 q^{6} - 6 q^{7} - 9 q^{8} - 3 q^{10} - 6 q^{11} - 15 q^{12} - 6 q^{13} - 15 q^{14} - 9 q^{15} - 18 q^{16} - 9 q^{17} + 63 q^{18} - 3 q^{19} + 213 q^{20}+ \cdots + 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.898786 + 2.46939i 0.449393 + 1.23470i 0.933148 + 0.359493i \(0.117050\pi\)
−0.483755 + 0.875203i \(0.660727\pi\)
\(3\) −2.94744 + 0.559079i −0.982482 + 0.186360i
\(4\) −2.22591 + 1.86776i −0.556477 + 0.466940i
\(5\) 6.15614 1.08549i 1.23123 0.217099i 0.480076 0.877227i \(-0.340609\pi\)
0.751153 + 0.660128i \(0.229498\pi\)
\(6\) −4.02971 6.77591i −0.671618 1.12932i
\(7\) −6.21846 5.21791i −0.888352 0.745415i 0.0795272 0.996833i \(-0.474659\pi\)
−0.967879 + 0.251417i \(0.919103\pi\)
\(8\) 2.49037 + 1.43782i 0.311297 + 0.179727i
\(9\) 8.37486 3.29571i 0.930540 0.366190i
\(10\) 8.21356 + 14.2263i 0.821356 + 1.42263i
\(11\) −7.99059 1.40896i −0.726417 0.128087i −0.201802 0.979426i \(-0.564680\pi\)
−0.524615 + 0.851339i \(0.675791\pi\)
\(12\) 5.51652 6.74957i 0.459710 0.562465i
\(13\) −9.12402 3.32087i −0.701848 0.255452i −0.0336483 0.999434i \(-0.510713\pi\)
−0.668200 + 0.743982i \(0.732935\pi\)
\(14\) 7.29600 20.0456i 0.521143 1.43183i
\(15\) −17.5380 + 6.64120i −1.16920 + 0.442747i
\(16\) −3.33052 + 18.8883i −0.208157 + 1.18052i
\(17\) −13.0143 + 7.51380i −0.765546 + 0.441988i −0.831284 0.555849i \(-0.812393\pi\)
0.0657372 + 0.997837i \(0.479060\pi\)
\(18\) 15.6656 + 17.7187i 0.870311 + 0.984372i
\(19\) 8.93226 15.4711i 0.470119 0.814270i −0.529297 0.848437i \(-0.677544\pi\)
0.999416 + 0.0341664i \(0.0108776\pi\)
\(20\) −11.6756 + 13.9144i −0.583778 + 0.695720i
\(21\) 21.2458 + 11.9029i 1.01170 + 0.566804i
\(22\) −3.70256 20.9983i −0.168298 0.954466i
\(23\) 16.9268 + 20.1726i 0.735949 + 0.877070i 0.996076 0.0885045i \(-0.0282088\pi\)
−0.260127 + 0.965575i \(0.583764\pi\)
\(24\) −8.14409 2.84557i −0.339337 0.118566i
\(25\) 13.2275 4.81440i 0.529099 0.192576i
\(26\) 25.5156i 0.981367i
\(27\) −22.8419 + 14.3961i −0.845996 + 0.533190i
\(28\) 23.5875 0.842411
\(29\) 5.18906 + 14.2568i 0.178933 + 0.491615i 0.996440 0.0843038i \(-0.0268666\pi\)
−0.817507 + 0.575919i \(0.804644\pi\)
\(30\) −32.1626 37.3392i −1.07209 1.24464i
\(31\) 25.0755 21.0408i 0.808886 0.678736i −0.141456 0.989945i \(-0.545178\pi\)
0.950342 + 0.311209i \(0.100734\pi\)
\(32\) −38.3082 + 6.75478i −1.19713 + 0.211087i
\(33\) 24.3395 0.314547i 0.737562 0.00953171i
\(34\) −30.2516 25.3841i −0.889752 0.746591i
\(35\) −43.9457 25.3721i −1.25559 0.724917i
\(36\) −12.4861 + 22.9782i −0.346836 + 0.638282i
\(37\) −15.8096 27.3831i −0.427287 0.740083i 0.569344 0.822100i \(-0.307197\pi\)
−0.996631 + 0.0820163i \(0.973864\pi\)
\(38\) 46.2325 + 8.15204i 1.21664 + 0.214527i
\(39\) 28.7492 + 4.68704i 0.737159 + 0.120181i
\(40\) 16.8918 + 6.14813i 0.422296 + 0.153703i
\(41\) 5.65018 15.5238i 0.137809 0.378628i −0.851520 0.524321i \(-0.824319\pi\)
0.989330 + 0.145693i \(0.0465413\pi\)
\(42\) −10.2975 + 63.1624i −0.245179 + 1.50387i
\(43\) −14.5559 + 82.5505i −0.338509 + 1.91978i 0.0508761 + 0.998705i \(0.483799\pi\)
−0.389385 + 0.921075i \(0.627312\pi\)
\(44\) 20.4179 11.7883i 0.464044 0.267916i
\(45\) 47.9794 29.3797i 1.06621 0.652882i
\(46\) −34.6005 + 59.9298i −0.752185 + 1.30282i
\(47\) 8.46562 10.0889i 0.180120 0.214658i −0.668429 0.743776i \(-0.733033\pi\)
0.848548 + 0.529118i \(0.177477\pi\)
\(48\) −0.743531 57.5342i −0.0154902 1.19863i
\(49\) 2.93393 + 16.6391i 0.0598761 + 0.339574i
\(50\) 23.7773 + 28.3367i 0.475546 + 0.566734i
\(51\) 34.1581 29.4225i 0.669766 0.576912i
\(52\) 26.5118 9.64952i 0.509843 0.185568i
\(53\) 25.7140i 0.485169i 0.970130 + 0.242585i \(0.0779952\pi\)
−0.970130 + 0.242585i \(0.922005\pi\)
\(54\) −56.0796 43.4666i −1.03851 0.804936i
\(55\) −50.7206 −0.922193
\(56\) −7.98389 21.9356i −0.142569 0.391706i
\(57\) −17.6778 + 50.5941i −0.310136 + 0.887617i
\(58\) −30.5419 + 25.6277i −0.526584 + 0.441856i
\(59\) −22.3660 + 3.94373i −0.379085 + 0.0668428i −0.359944 0.932974i \(-0.617204\pi\)
−0.0191407 + 0.999817i \(0.506093\pi\)
\(60\) 26.6338 47.5395i 0.443897 0.792325i
\(61\) 26.1131 + 21.9115i 0.428084 + 0.359205i 0.831228 0.555931i \(-0.187638\pi\)
−0.403144 + 0.915137i \(0.632083\pi\)
\(62\) 74.4955 + 43.0100i 1.20154 + 0.693710i
\(63\) −69.2755 23.2050i −1.09961 0.368334i
\(64\) −12.7517 22.0867i −0.199246 0.345104i
\(65\) −59.7736 10.5397i −0.919593 0.162149i
\(66\) 22.6528 + 59.8212i 0.343224 + 0.906382i
\(67\) −7.61567 2.77188i −0.113667 0.0413713i 0.284561 0.958658i \(-0.408152\pi\)
−0.398227 + 0.917287i \(0.630375\pi\)
\(68\) 14.9346 41.0326i 0.219627 0.603420i
\(69\) −61.1690 49.9942i −0.886507 0.724554i
\(70\) 23.1558 131.323i 0.330798 1.87605i
\(71\) 35.7557 20.6436i 0.503601 0.290754i −0.226598 0.973988i \(-0.572760\pi\)
0.730199 + 0.683234i \(0.239427\pi\)
\(72\) 25.5952 + 3.83398i 0.355488 + 0.0532498i
\(73\) 40.4046 69.9827i 0.553487 0.958668i −0.444532 0.895763i \(-0.646630\pi\)
0.998020 0.0629050i \(-0.0200365\pi\)
\(74\) 53.4101 63.6517i 0.721758 0.860158i
\(75\) −36.2956 + 21.5854i −0.483941 + 0.287805i
\(76\) 9.01395 + 51.1206i 0.118605 + 0.672640i
\(77\) 42.3374 + 50.4557i 0.549836 + 0.655269i
\(78\) 14.2652 + 75.2057i 0.182887 + 0.964175i
\(79\) 25.9652 9.45057i 0.328674 0.119627i −0.172412 0.985025i \(-0.555156\pi\)
0.501086 + 0.865397i \(0.332934\pi\)
\(80\) 119.894i 1.49868i
\(81\) 59.2766 55.2022i 0.731810 0.681508i
\(82\) 43.4126 0.529421
\(83\) −6.01607 16.5290i −0.0724827 0.199145i 0.898161 0.439667i \(-0.144904\pi\)
−0.970644 + 0.240522i \(0.922681\pi\)
\(84\) −69.5229 + 13.1873i −0.827654 + 0.156991i
\(85\) −71.9616 + 60.3830i −0.846607 + 0.710388i
\(86\) −216.932 + 38.2510i −2.52247 + 0.444779i
\(87\) −23.2652 39.1201i −0.267416 0.449657i
\(88\) −17.8737 14.9978i −0.203111 0.170430i
\(89\) 24.4986 + 14.1443i 0.275265 + 0.158924i 0.631278 0.775557i \(-0.282531\pi\)
−0.356013 + 0.934481i \(0.615864\pi\)
\(90\) 115.673 + 92.0739i 1.28526 + 1.02304i
\(91\) 39.4094 + 68.2590i 0.433070 + 0.750099i
\(92\) −75.3552 13.2871i −0.819078 0.144426i
\(93\) −62.1451 + 76.0358i −0.668227 + 0.817589i
\(94\) 32.5223 + 11.8372i 0.345982 + 0.125927i
\(95\) 38.1945 104.938i 0.402047 1.10461i
\(96\) 109.135 41.3267i 1.13682 0.430486i
\(97\) 29.2825 166.069i 0.301881 1.71205i −0.335953 0.941879i \(-0.609058\pi\)
0.637834 0.770174i \(-0.279831\pi\)
\(98\) −38.4516 + 22.2000i −0.392363 + 0.226531i
\(99\) −71.5636 + 14.5348i −0.722865 + 0.146816i
\(100\) −20.4510 + 35.4221i −0.204510 + 0.354221i
\(101\) −44.8847 + 53.4915i −0.444403 + 0.529619i −0.941020 0.338351i \(-0.890131\pi\)
0.496617 + 0.867970i \(0.334575\pi\)
\(102\) 103.357 + 57.9052i 1.01330 + 0.567698i
\(103\) 12.1315 + 68.8014i 0.117782 + 0.667974i 0.985335 + 0.170630i \(0.0545803\pi\)
−0.867553 + 0.497344i \(0.834309\pi\)
\(104\) −17.9474 21.3889i −0.172571 0.205662i
\(105\) 143.713 + 50.2137i 1.36869 + 0.478226i
\(106\) −63.4979 + 23.1113i −0.599037 + 0.218031i
\(107\) 121.432i 1.13488i −0.823416 0.567438i \(-0.807935\pi\)
0.823416 0.567438i \(-0.192065\pi\)
\(108\) 23.9555 74.7076i 0.221810 0.691737i
\(109\) −119.633 −1.09755 −0.548777 0.835969i \(-0.684907\pi\)
−0.548777 + 0.835969i \(0.684907\pi\)
\(110\) −45.5870 125.249i −0.414427 1.13863i
\(111\) 61.9073 + 71.8713i 0.557723 + 0.647489i
\(112\) 119.268 100.078i 1.06489 0.893552i
\(113\) 122.474 21.5955i 1.08384 0.191111i 0.396929 0.917849i \(-0.370076\pi\)
0.686914 + 0.726738i \(0.258965\pi\)
\(114\) −140.825 + 1.81992i −1.23531 + 0.0159643i
\(115\) 126.101 + 105.811i 1.09653 + 0.920100i
\(116\) −38.1787 22.0425i −0.329127 0.190021i
\(117\) −87.3571 + 2.25826i −0.746642 + 0.0193013i
\(118\) −29.8408 51.6859i −0.252889 0.438016i
\(119\) 120.135 + 21.1831i 1.00954 + 0.178009i
\(120\) −53.2250 8.67740i −0.443542 0.0723116i
\(121\) −51.8384 18.8676i −0.428417 0.155931i
\(122\) −30.6381 + 84.1774i −0.251132 + 0.689979i
\(123\) −7.97461 + 48.9143i −0.0648342 + 0.397677i
\(124\) −16.5165 + 93.6699i −0.133198 + 0.755402i
\(125\) −59.1363 + 34.1424i −0.473091 + 0.273139i
\(126\) −4.96142 191.925i −0.0393763 1.52321i
\(127\) 58.7300 101.723i 0.462441 0.800971i −0.536641 0.843811i \(-0.680307\pi\)
0.999082 + 0.0428396i \(0.0136404\pi\)
\(128\) −56.9361 + 67.8538i −0.444814 + 0.530108i
\(129\) −3.24957 251.451i −0.0251905 1.94923i
\(130\) −27.6970 157.077i −0.213054 1.20829i
\(131\) 3.02933 + 3.61022i 0.0231247 + 0.0275589i 0.777483 0.628904i \(-0.216496\pi\)
−0.754358 + 0.656463i \(0.772052\pi\)
\(132\) −53.5901 + 46.1606i −0.405986 + 0.349701i
\(133\) −136.272 + 49.5989i −1.02460 + 0.372924i
\(134\) 21.2974i 0.158936i
\(135\) −124.991 + 113.419i −0.925859 + 0.840143i
\(136\) −43.2139 −0.317749
\(137\) 75.5147 + 207.475i 0.551202 + 1.51442i 0.832071 + 0.554669i \(0.187155\pi\)
−0.280869 + 0.959746i \(0.590623\pi\)
\(138\) 68.4776 195.984i 0.496215 1.42018i
\(139\) −27.3980 + 22.9896i −0.197108 + 0.165393i −0.736000 0.676982i \(-0.763288\pi\)
0.538892 + 0.842375i \(0.318843\pi\)
\(140\) 145.208 25.6041i 1.03720 0.182886i
\(141\) −19.3114 + 34.4695i −0.136961 + 0.244465i
\(142\) 83.1137 + 69.7407i 0.585308 + 0.491132i
\(143\) 68.2274 + 39.3911i 0.477114 + 0.275462i
\(144\) 34.3577 + 169.163i 0.238595 + 1.17474i
\(145\) 47.4203 + 82.1344i 0.327037 + 0.566444i
\(146\) 209.130 + 36.8753i 1.43240 + 0.252570i
\(147\) −17.9502 47.4026i −0.122110 0.322467i
\(148\) 86.3358 + 31.4237i 0.583350 + 0.212322i
\(149\) −57.3691 + 157.620i −0.385028 + 1.05786i 0.584183 + 0.811622i \(0.301415\pi\)
−0.969211 + 0.246233i \(0.920807\pi\)
\(150\) −85.9248 70.2275i −0.572832 0.468183i
\(151\) −14.5375 + 82.4463i −0.0962748 + 0.546002i 0.898074 + 0.439844i \(0.144966\pi\)
−0.994349 + 0.106158i \(0.966145\pi\)
\(152\) 44.4893 25.6859i 0.292693 0.168986i
\(153\) −84.2296 + 105.818i −0.550520 + 0.691623i
\(154\) −86.5428 + 149.896i −0.561966 + 0.973354i
\(155\) 131.528 156.750i 0.848571 1.01129i
\(156\) −72.7473 + 43.2636i −0.466329 + 0.277331i
\(157\) −12.9271 73.3133i −0.0823383 0.466963i −0.997899 0.0647844i \(-0.979364\pi\)
0.915561 0.402179i \(-0.131747\pi\)
\(158\) 46.6744 + 55.6243i 0.295407 + 0.352053i
\(159\) −14.3761 75.7905i −0.0904159 0.476670i
\(160\) −228.499 + 83.1667i −1.42812 + 0.519792i
\(161\) 213.765i 1.32773i
\(162\) 189.593 + 96.7624i 1.17033 + 0.597299i
\(163\) 254.830 1.56337 0.781687 0.623670i \(-0.214359\pi\)
0.781687 + 0.623670i \(0.214359\pi\)
\(164\) 16.4178 + 45.1076i 0.100109 + 0.275047i
\(165\) 149.496 28.3568i 0.906038 0.171859i
\(166\) 35.4095 29.7121i 0.213310 0.178988i
\(167\) −156.190 + 27.5405i −0.935269 + 0.164913i −0.620457 0.784241i \(-0.713053\pi\)
−0.314813 + 0.949154i \(0.601942\pi\)
\(168\) 35.7958 + 60.1902i 0.213070 + 0.358275i
\(169\) −57.2419 48.0317i −0.338710 0.284211i
\(170\) −213.787 123.430i −1.25757 0.726060i
\(171\) 23.8181 159.007i 0.139287 0.929864i
\(172\) −121.784 210.937i −0.708049 1.22638i
\(173\) −293.553 51.7613i −1.69684 0.299198i −0.760249 0.649632i \(-0.774923\pi\)
−0.936587 + 0.350434i \(0.886034\pi\)
\(174\) 75.6926 92.6115i 0.435015 0.532250i
\(175\) −107.376 39.0815i −0.613575 0.223323i
\(176\) 53.2256 146.236i 0.302418 0.830887i
\(177\) 63.7177 24.1283i 0.359987 0.136318i
\(178\) −12.9088 + 73.2093i −0.0725212 + 0.411288i
\(179\) 25.3997 14.6645i 0.141898 0.0819248i −0.427370 0.904077i \(-0.640560\pi\)
0.569268 + 0.822152i \(0.307227\pi\)
\(180\) −51.9235 + 155.010i −0.288464 + 0.861169i
\(181\) −41.7019 + 72.2299i −0.230397 + 0.399060i −0.957925 0.287018i \(-0.907336\pi\)
0.727528 + 0.686078i \(0.240669\pi\)
\(182\) −133.138 + 158.667i −0.731526 + 0.871799i
\(183\) −89.2173 49.9837i −0.487526 0.273135i
\(184\) 13.1496 + 74.5750i 0.0714652 + 0.405299i
\(185\) −127.050 151.413i −0.686759 0.818448i
\(186\) −243.617 85.1208i −1.30977 0.457638i
\(187\) 114.578 41.7031i 0.612719 0.223011i
\(188\) 38.2688i 0.203557i
\(189\) 217.159 + 29.6651i 1.14899 + 0.156958i
\(190\) 293.463 1.54454
\(191\) 53.6797 + 147.484i 0.281046 + 0.772166i 0.997239 + 0.0742641i \(0.0236608\pi\)
−0.716193 + 0.697902i \(0.754117\pi\)
\(192\) 49.9333 + 57.9700i 0.260069 + 0.301927i
\(193\) −31.7673 + 26.6559i −0.164598 + 0.138114i −0.721366 0.692554i \(-0.756485\pi\)
0.556769 + 0.830668i \(0.312041\pi\)
\(194\) 436.409 76.9506i 2.24953 0.396653i
\(195\) 182.072 2.35296i 0.933702 0.0120665i
\(196\) −37.6086 31.5573i −0.191880 0.161007i
\(197\) −182.437 105.330i −0.926074 0.534669i −0.0405063 0.999179i \(-0.512897\pi\)
−0.885568 + 0.464510i \(0.846230\pi\)
\(198\) −100.213 163.655i −0.506124 0.826540i
\(199\) 87.7654 + 152.014i 0.441032 + 0.763890i 0.997766 0.0668004i \(-0.0212791\pi\)
−0.556734 + 0.830691i \(0.687946\pi\)
\(200\) 39.8636 + 7.02902i 0.199318 + 0.0351451i
\(201\) 23.9965 + 3.91220i 0.119385 + 0.0194637i
\(202\) −172.433 62.7606i −0.853631 0.310696i
\(203\) 42.1229 115.732i 0.207502 0.570107i
\(204\) −21.0786 + 129.291i −0.103326 + 0.633779i
\(205\) 17.9324 101.700i 0.0874751 0.496096i
\(206\) −158.994 + 91.7952i −0.771815 + 0.445608i
\(207\) 208.243 + 113.157i 1.00600 + 0.546652i
\(208\) 93.1133 161.277i 0.447660 0.775370i
\(209\) −93.1722 + 111.038i −0.445800 + 0.531284i
\(210\) 5.16949 + 400.014i 0.0246166 + 1.90483i
\(211\) −45.2968 256.891i −0.214677 1.21749i −0.881466 0.472247i \(-0.843443\pi\)
0.666789 0.745246i \(-0.267668\pi\)
\(212\) −48.0275 57.2369i −0.226545 0.269985i
\(213\) −93.8465 + 80.8360i −0.440594 + 0.379512i
\(214\) 299.862 109.141i 1.40123 0.510005i
\(215\) 523.993i 2.43718i
\(216\) −77.5838 + 3.00925i −0.359184 + 0.0139317i
\(217\) −265.720 −1.22452
\(218\) −107.525 295.422i −0.493233 1.35515i
\(219\) −79.9643 + 228.860i −0.365134 + 1.04502i
\(220\) 112.899 94.7339i 0.513179 0.430609i
\(221\) 143.695 25.3373i 0.650204 0.114648i
\(222\) −121.837 + 217.470i −0.548816 + 0.979596i
\(223\) −298.157 250.184i −1.33703 1.12190i −0.982379 0.186901i \(-0.940156\pi\)
−0.354650 0.934999i \(-0.615400\pi\)
\(224\) 273.464 + 157.885i 1.22082 + 0.704842i
\(225\) 94.9113 83.9138i 0.421828 0.372950i
\(226\) 163.406 + 283.027i 0.723035 + 1.25233i
\(227\) −343.139 60.5046i −1.51162 0.266540i −0.644489 0.764614i \(-0.722930\pi\)
−0.867135 + 0.498074i \(0.834041\pi\)
\(228\) −55.1486 145.636i −0.241880 0.638753i
\(229\) 342.540 + 124.675i 1.49581 + 0.544430i 0.954972 0.296696i \(-0.0958849\pi\)
0.540838 + 0.841127i \(0.318107\pi\)
\(230\) −147.952 + 406.495i −0.643270 + 1.76737i
\(231\) −152.996 125.045i −0.662319 0.541323i
\(232\) −7.57603 + 42.9658i −0.0326553 + 0.185197i
\(233\) 164.260 94.8353i 0.704976 0.407018i −0.104222 0.994554i \(-0.533235\pi\)
0.809198 + 0.587536i \(0.199902\pi\)
\(234\) −84.0918 213.689i −0.359367 0.913202i
\(235\) 41.1641 71.2983i 0.175166 0.303397i
\(236\) 42.4187 50.5527i 0.179740 0.214206i
\(237\) −71.2475 + 42.3716i −0.300622 + 0.178783i
\(238\) 55.6664 + 315.700i 0.233893 + 1.32647i
\(239\) −196.756 234.485i −0.823249 0.981110i 0.176746 0.984256i \(-0.443443\pi\)
−0.999995 + 0.00314661i \(0.998998\pi\)
\(240\) −67.0303 353.382i −0.279293 1.47242i
\(241\) 277.120 100.864i 1.14988 0.418521i 0.304406 0.952542i \(-0.401542\pi\)
0.845471 + 0.534021i \(0.179320\pi\)
\(242\) 144.967i 0.599039i
\(243\) −143.852 + 195.846i −0.591984 + 0.805949i
\(244\) −99.0509 −0.405946
\(245\) 36.1234 + 99.2481i 0.147442 + 0.405094i
\(246\) −127.956 + 24.2710i −0.520147 + 0.0986627i
\(247\) −132.876 + 111.496i −0.537959 + 0.451401i
\(248\) 92.7002 16.3455i 0.373791 0.0659094i
\(249\) 26.9730 + 45.3549i 0.108325 + 0.182148i
\(250\) −137.462 115.344i −0.549847 0.461377i
\(251\) 158.404 + 91.4547i 0.631092 + 0.364361i 0.781175 0.624312i \(-0.214621\pi\)
−0.150083 + 0.988673i \(0.547954\pi\)
\(252\) 197.542 77.7376i 0.783898 0.308482i
\(253\) −106.833 185.040i −0.422265 0.731384i
\(254\) 303.980 + 53.6000i 1.19677 + 0.211023i
\(255\) 178.344 218.208i 0.699388 0.855716i
\(256\) −314.593 114.502i −1.22888 0.447275i
\(257\) −91.7859 + 252.180i −0.357144 + 0.981244i 0.622872 + 0.782324i \(0.285966\pi\)
−0.980016 + 0.198920i \(0.936256\pi\)
\(258\) 618.011 234.025i 2.39539 0.907074i
\(259\) −44.5708 + 252.774i −0.172088 + 0.975961i
\(260\) 152.736 88.1822i 0.587447 0.339162i
\(261\) 90.4440 + 102.297i 0.346529 + 0.391944i
\(262\) −6.19233 + 10.7254i −0.0236348 + 0.0409368i
\(263\) 226.246 269.629i 0.860250 1.02521i −0.139139 0.990273i \(-0.544434\pi\)
0.999390 0.0349337i \(-0.0111220\pi\)
\(264\) 61.0668 + 34.2125i 0.231314 + 0.129593i
\(265\) 27.9123 + 158.299i 0.105330 + 0.597354i
\(266\) −244.958 291.930i −0.920896 1.09748i
\(267\) −80.1160 27.9928i −0.300060 0.104842i
\(268\) 22.1290 8.05429i 0.0825708 0.0300533i
\(269\) 164.243i 0.610570i −0.952261 0.305285i \(-0.901248\pi\)
0.952261 0.305285i \(-0.0987518\pi\)
\(270\) −392.417 206.712i −1.45340 0.765601i
\(271\) −128.850 −0.475462 −0.237731 0.971331i \(-0.576404\pi\)
−0.237731 + 0.971331i \(0.576404\pi\)
\(272\) −98.5786 270.843i −0.362421 0.995745i
\(273\) −154.319 179.157i −0.565272 0.656252i
\(274\) −444.466 + 372.951i −1.62214 + 1.36113i
\(275\) −112.479 + 19.8330i −0.409013 + 0.0721200i
\(276\) 229.534 2.96633i 0.831644 0.0107476i
\(277\) 115.074 + 96.5583i 0.415428 + 0.348586i 0.826421 0.563053i \(-0.190373\pi\)
−0.410992 + 0.911639i \(0.634818\pi\)
\(278\) −81.3953 46.9936i −0.292789 0.169042i
\(279\) 140.659 258.855i 0.504155 0.927797i
\(280\) −72.9609 126.372i −0.260575 0.451328i
\(281\) 453.995 + 80.0516i 1.61564 + 0.284881i 0.907140 0.420828i \(-0.138261\pi\)
0.708501 + 0.705710i \(0.249372\pi\)
\(282\) −102.476 16.7068i −0.363389 0.0592441i
\(283\) 64.7049 + 23.5506i 0.228639 + 0.0832178i 0.453799 0.891104i \(-0.350068\pi\)
−0.225160 + 0.974322i \(0.572291\pi\)
\(284\) −41.0317 + 112.734i −0.144478 + 0.396949i
\(285\) −53.9072 + 330.654i −0.189148 + 1.16019i
\(286\) −35.9503 + 203.884i −0.125700 + 0.712882i
\(287\) −116.137 + 67.0517i −0.404658 + 0.233630i
\(288\) −298.565 + 182.823i −1.03668 + 0.634802i
\(289\) −31.5856 + 54.7078i −0.109293 + 0.189300i
\(290\) −160.201 + 190.921i −0.552419 + 0.658347i
\(291\) 6.53725 + 505.851i 0.0224648 + 1.73832i
\(292\) 40.7741 + 231.241i 0.139637 + 0.791922i
\(293\) 328.314 + 391.270i 1.12053 + 1.33539i 0.935772 + 0.352607i \(0.114705\pi\)
0.184755 + 0.982785i \(0.440851\pi\)
\(294\) 100.922 86.9309i 0.343273 0.295683i
\(295\) −133.407 + 48.5563i −0.452228 + 0.164598i
\(296\) 90.9255i 0.307181i
\(297\) 202.804 82.8503i 0.682841 0.278957i
\(298\) −440.789 −1.47916
\(299\) −87.4501 240.267i −0.292475 0.803569i
\(300\) 40.4744 115.839i 0.134915 0.386128i
\(301\) 521.256 437.386i 1.73175 1.45311i
\(302\) −216.658 + 38.2027i −0.717412 + 0.126499i
\(303\) 102.389 182.757i 0.337919 0.603160i
\(304\) 262.474 + 220.242i 0.863402 + 0.724480i
\(305\) 184.541 + 106.545i 0.605053 + 0.349327i
\(306\) −337.011 112.888i −1.10134 0.368915i
\(307\) −26.3017 45.5559i −0.0856734 0.148391i 0.820005 0.572357i \(-0.193971\pi\)
−0.905678 + 0.423966i \(0.860637\pi\)
\(308\) −188.478 33.2338i −0.611942 0.107902i
\(309\) −74.2224 196.006i −0.240202 0.634323i
\(310\) 505.292 + 183.911i 1.62997 + 0.593262i
\(311\) −121.357 + 333.427i −0.390217 + 1.07211i 0.576686 + 0.816966i \(0.304346\pi\)
−0.966903 + 0.255146i \(0.917877\pi\)
\(312\) 64.8571 + 53.0086i 0.207875 + 0.169899i
\(313\) 29.2161 165.693i 0.0933421 0.529369i −0.901901 0.431943i \(-0.857828\pi\)
0.995243 0.0974258i \(-0.0310609\pi\)
\(314\) 169.421 97.8150i 0.539556 0.311513i
\(315\) −451.658 67.6554i −1.43384 0.214779i
\(316\) −40.1448 + 69.5329i −0.127041 + 0.220041i
\(317\) 327.814 390.674i 1.03411 1.23241i 0.0619572 0.998079i \(-0.480266\pi\)
0.972157 0.234330i \(-0.0752898\pi\)
\(318\) 174.235 103.620i 0.547910 0.325848i
\(319\) −21.3764 121.232i −0.0670107 0.380037i
\(320\) −102.476 122.127i −0.320239 0.381646i
\(321\) 67.8898 + 357.913i 0.211495 + 1.11499i
\(322\) 527.870 192.129i 1.63935 0.596674i
\(323\) 268.461i 0.831149i
\(324\) −28.8400 + 233.589i −0.0890123 + 0.720955i
\(325\) −136.676 −0.420541
\(326\) 229.038 + 629.276i 0.702569 + 1.93029i
\(327\) 352.613 66.8845i 1.07833 0.204540i
\(328\) 36.3914 30.5360i 0.110949 0.0930976i
\(329\) −105.286 + 18.5648i −0.320019 + 0.0564280i
\(330\) 204.389 + 343.678i 0.619361 + 1.04145i
\(331\) −259.951 218.125i −0.785350 0.658987i 0.159240 0.987240i \(-0.449096\pi\)
−0.944590 + 0.328253i \(0.893540\pi\)
\(332\) 44.2634 + 25.5555i 0.133324 + 0.0769744i
\(333\) −222.650 177.226i −0.668619 0.532209i
\(334\) −208.390 360.941i −0.623921 1.08066i
\(335\) −49.8920 8.79731i −0.148931 0.0262606i
\(336\) −295.585 + 361.654i −0.879716 + 1.07635i
\(337\) 64.1227 + 23.3388i 0.190275 + 0.0692545i 0.435400 0.900237i \(-0.356607\pi\)
−0.245125 + 0.969491i \(0.578829\pi\)
\(338\) 67.1609 184.523i 0.198701 0.545926i
\(339\) −348.913 + 132.124i −1.02924 + 0.389748i
\(340\) 47.3991 268.814i 0.139409 0.790629i
\(341\) −230.013 + 132.798i −0.674526 + 0.389438i
\(342\) 414.057 84.0966i 1.21069 0.245896i
\(343\) −130.305 + 225.695i −0.379897 + 0.658002i
\(344\) −154.942 + 184.653i −0.450414 + 0.536782i
\(345\) −430.833 241.373i −1.24879 0.699632i
\(346\) −136.022 771.419i −0.393127 2.22954i
\(347\) −111.265 132.600i −0.320648 0.382134i 0.581510 0.813539i \(-0.302462\pi\)
−0.902158 + 0.431406i \(0.858018\pi\)
\(348\) 124.853 + 43.6241i 0.358773 + 0.125357i
\(349\) −431.866 + 157.186i −1.23744 + 0.450390i −0.876138 0.482060i \(-0.839889\pi\)
−0.361299 + 0.932450i \(0.617667\pi\)
\(350\) 300.278i 0.857939i
\(351\) 256.218 55.4956i 0.729965 0.158107i
\(352\) 315.623 0.896655
\(353\) −137.578 377.991i −0.389738 1.07080i −0.967119 0.254322i \(-0.918148\pi\)
0.577381 0.816475i \(-0.304075\pi\)
\(354\) 116.851 + 135.658i 0.330087 + 0.383214i
\(355\) 197.709 165.897i 0.556926 0.467316i
\(356\) −80.9497 + 14.2736i −0.227387 + 0.0400944i
\(357\) −365.935 + 4.72908i −1.02503 + 0.0132467i
\(358\) 59.0414 + 49.5416i 0.164920 + 0.138384i
\(359\) −197.249 113.882i −0.549439 0.317219i 0.199457 0.979907i \(-0.436082\pi\)
−0.748896 + 0.662688i \(0.769416\pi\)
\(360\) 161.729 4.18084i 0.449248 0.0116134i
\(361\) 20.9294 + 36.2507i 0.0579761 + 0.100418i
\(362\) −215.845 38.0593i −0.596257 0.105136i
\(363\) 163.339 + 26.6296i 0.449971 + 0.0733597i
\(364\) −215.213 78.3312i −0.591245 0.215195i
\(365\) 172.770 474.683i 0.473343 1.30050i
\(366\) 43.2422 265.237i 0.118148 0.724692i
\(367\) −40.8884 + 231.890i −0.111413 + 0.631852i 0.877052 + 0.480396i \(0.159507\pi\)
−0.988464 + 0.151456i \(0.951604\pi\)
\(368\) −437.401 + 252.534i −1.18859 + 0.686233i
\(369\) −3.84223 148.631i −0.0104126 0.402793i
\(370\) 259.707 449.825i 0.701910 1.21574i
\(371\) 134.173 159.901i 0.361653 0.431001i
\(372\) −3.68728 285.321i −0.00991204 0.766991i
\(373\) 113.349 + 642.835i 0.303885 + 1.72342i 0.628707 + 0.777642i \(0.283585\pi\)
−0.324822 + 0.945775i \(0.605304\pi\)
\(374\) 205.963 + 245.457i 0.550703 + 0.656302i
\(375\) 155.213 133.695i 0.413901 0.356519i
\(376\) 35.5886 12.9532i 0.0946506 0.0344500i
\(377\) 147.312i 0.390748i
\(378\) 121.924 + 562.914i 0.322552 + 1.48919i
\(379\) 625.053 1.64922 0.824608 0.565705i \(-0.191396\pi\)
0.824608 + 0.565705i \(0.191396\pi\)
\(380\) 110.982 + 304.921i 0.292059 + 0.802425i
\(381\) −116.232 + 332.659i −0.305071 + 0.873119i
\(382\) −315.949 + 265.113i −0.827091 + 0.694012i
\(383\) 104.921 18.5004i 0.273945 0.0483039i −0.0349879 0.999388i \(-0.511139\pi\)
0.308933 + 0.951084i \(0.400028\pi\)
\(384\) 129.880 231.827i 0.338230 0.603717i
\(385\) 315.404 + 264.656i 0.819232 + 0.687417i
\(386\) −94.3760 54.4880i −0.244497 0.141161i
\(387\) 150.159 + 739.321i 0.388007 + 1.91039i
\(388\) 244.997 + 424.347i 0.631436 + 1.09368i
\(389\) −584.613 103.083i −1.50286 0.264995i −0.639190 0.769049i \(-0.720730\pi\)
−0.863672 + 0.504054i \(0.831841\pi\)
\(390\) 169.454 + 447.492i 0.434497 + 1.14742i
\(391\) −371.864 135.347i −0.951058 0.346157i
\(392\) −16.6175 + 45.6561i −0.0423915 + 0.116470i
\(393\) −10.9472 8.94729i −0.0278555 0.0227666i
\(394\) 96.1293 545.177i 0.243983 1.38370i
\(395\) 149.587 86.3642i 0.378702 0.218643i
\(396\) 132.146 166.017i 0.333703 0.419234i
\(397\) −187.410 + 324.603i −0.472064 + 0.817640i −0.999489 0.0319623i \(-0.989824\pi\)
0.527425 + 0.849602i \(0.323158\pi\)
\(398\) −296.500 + 353.355i −0.744976 + 0.887828i
\(399\) 373.924 222.377i 0.937153 0.557335i
\(400\) 46.8816 + 265.879i 0.117204 + 0.664697i
\(401\) −176.385 210.207i −0.439862 0.524207i 0.499879 0.866095i \(-0.333378\pi\)
−0.939741 + 0.341889i \(0.888933\pi\)
\(402\) 11.9069 + 62.7729i 0.0296192 + 0.156152i
\(403\) −298.663 + 108.704i −0.741099 + 0.269738i
\(404\) 202.901i 0.502231i
\(405\) 304.994 404.177i 0.753071 0.997968i
\(406\) 323.646 0.797158
\(407\) 87.7467 + 241.082i 0.215594 + 0.592339i
\(408\) 127.371 24.1600i 0.312183 0.0592156i
\(409\) −422.454 + 354.481i −1.03289 + 0.866701i −0.991193 0.132429i \(-0.957722\pi\)
−0.0417017 + 0.999130i \(0.513278\pi\)
\(410\) 267.254 47.1241i 0.651839 0.114937i
\(411\) −338.570 569.302i −0.823772 1.38516i
\(412\) −155.508 130.487i −0.377447 0.316715i
\(413\) 159.660 + 92.1798i 0.386586 + 0.223196i
\(414\) −92.2633 + 615.937i −0.222858 + 1.48777i
\(415\) −54.9779 95.2245i −0.132477 0.229457i
\(416\) 371.957 + 65.5861i 0.894128 + 0.157659i
\(417\) 67.9010 83.0783i 0.162832 0.199228i
\(418\) −357.939 130.279i −0.856314 0.311673i
\(419\) −29.9567 + 82.3055i −0.0714958 + 0.196433i −0.970294 0.241930i \(-0.922219\pi\)
0.898798 + 0.438363i \(0.144442\pi\)
\(420\) −413.678 + 156.649i −0.984948 + 0.372975i
\(421\) 51.4449 291.759i 0.122197 0.693013i −0.860736 0.509051i \(-0.829996\pi\)
0.982933 0.183962i \(-0.0588924\pi\)
\(422\) 593.653 342.746i 1.40676 0.812194i
\(423\) 37.6482 112.394i 0.0890029 0.265706i
\(424\) −36.9720 + 64.0374i −0.0871981 + 0.151032i
\(425\) −135.972 + 162.045i −0.319933 + 0.381281i
\(426\) −283.964 159.090i −0.666581 0.373450i
\(427\) −48.0512 272.512i −0.112532 0.638201i
\(428\) 226.805 + 270.296i 0.529918 + 0.631532i
\(429\) −223.119 77.9586i −0.520091 0.181722i
\(430\) −1293.95 + 470.957i −3.00917 + 1.09525i
\(431\) 586.175i 1.36003i 0.733196 + 0.680017i \(0.238028\pi\)
−0.733196 + 0.680017i \(0.761972\pi\)
\(432\) −195.843 479.391i −0.453340 1.10970i
\(433\) 415.367 0.959277 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(434\) −238.825 656.167i −0.550288 1.51190i
\(435\) −185.688 215.575i −0.426870 0.495575i
\(436\) 266.293 223.446i 0.610764 0.512492i
\(437\) 463.288 81.6902i 1.06016 0.186934i
\(438\) −637.015 + 8.23232i −1.45437 + 0.0187953i
\(439\) 256.133 + 214.921i 0.583447 + 0.489570i 0.886077 0.463538i \(-0.153420\pi\)
−0.302630 + 0.953108i \(0.597865\pi\)
\(440\) −126.313 72.9270i −0.287076 0.165743i
\(441\) 79.4090 + 129.681i 0.180066 + 0.294062i
\(442\) 191.719 + 332.067i 0.433753 + 0.751282i
\(443\) 444.780 + 78.4268i 1.00402 + 0.177036i 0.651402 0.758732i \(-0.274181\pi\)
0.352616 + 0.935768i \(0.385292\pi\)
\(444\) −272.038 44.3510i −0.612699 0.0998896i
\(445\) 166.170 + 60.4810i 0.373416 + 0.135912i
\(446\) 349.823 961.129i 0.784355 2.15500i
\(447\) 80.9702 496.651i 0.181141 1.11108i
\(448\) −35.9500 + 203.883i −0.0802455 + 0.455095i
\(449\) −165.422 + 95.5067i −0.368424 + 0.212710i −0.672770 0.739852i \(-0.734896\pi\)
0.304346 + 0.952562i \(0.401562\pi\)
\(450\) 292.521 + 158.953i 0.650047 + 0.353229i
\(451\) −67.0206 + 116.083i −0.148604 + 0.257390i
\(452\) −232.281 + 276.822i −0.513897 + 0.612438i
\(453\) −3.24547 251.133i −0.00716438 0.554378i
\(454\) −158.998 901.725i −0.350217 1.98618i
\(455\) 316.704 + 377.434i 0.696054 + 0.829525i
\(456\) −116.769 + 100.581i −0.256073 + 0.220572i
\(457\) 362.489 131.935i 0.793192 0.288698i 0.0865297 0.996249i \(-0.472422\pi\)
0.706662 + 0.707551i \(0.250200\pi\)
\(458\) 957.923i 2.09153i
\(459\) 189.101 358.985i 0.411985 0.782102i
\(460\) −478.320 −1.03983
\(461\) 148.113 + 406.937i 0.321286 + 0.882727i 0.990234 + 0.139417i \(0.0445229\pi\)
−0.668947 + 0.743310i \(0.733255\pi\)
\(462\) 171.276 490.196i 0.370727 1.06103i
\(463\) 423.513 355.369i 0.914714 0.767536i −0.0582960 0.998299i \(-0.518567\pi\)
0.973010 + 0.230763i \(0.0741223\pi\)
\(464\) −286.570 + 50.5299i −0.617607 + 0.108901i
\(465\) −300.038 + 535.545i −0.645242 + 1.15171i
\(466\) 381.820 + 320.385i 0.819355 + 0.687521i
\(467\) −186.467 107.657i −0.399286 0.230528i 0.286890 0.957964i \(-0.407379\pi\)
−0.686176 + 0.727436i \(0.740712\pi\)
\(468\) 190.231 168.189i 0.406476 0.359377i
\(469\) 32.8943 + 56.9747i 0.0701372 + 0.121481i
\(470\) 213.061 + 37.5684i 0.453322 + 0.0799329i
\(471\) 79.0898 + 208.860i 0.167919 + 0.443439i
\(472\) −61.3700 22.3369i −0.130021 0.0473239i
\(473\) 232.620 639.119i 0.491798 1.35120i
\(474\) −168.668 137.855i −0.355841 0.290833i
\(475\) 43.6669 247.647i 0.0919304 0.521363i
\(476\) −306.975 + 177.232i −0.644905 + 0.372336i
\(477\) 84.7457 + 215.351i 0.177664 + 0.451469i
\(478\) 402.194 696.621i 0.841411 1.45737i
\(479\) −145.585 + 173.501i −0.303935 + 0.362216i −0.896295 0.443457i \(-0.853752\pi\)
0.592360 + 0.805673i \(0.298196\pi\)
\(480\) 626.991 372.878i 1.30623 0.776829i
\(481\) 53.3117 + 302.346i 0.110835 + 0.628577i
\(482\) 498.144 + 593.664i 1.03349 + 1.23167i
\(483\) 119.512 + 630.061i 0.247436 + 1.30447i
\(484\) 150.628 54.8241i 0.311215 0.113273i
\(485\) 1054.13i 2.17347i
\(486\) −612.912 179.204i −1.26114 0.368733i
\(487\) −443.130 −0.909919 −0.454959 0.890512i \(-0.650346\pi\)
−0.454959 + 0.890512i \(0.650346\pi\)
\(488\) 33.5267 + 92.1138i 0.0687023 + 0.188758i
\(489\) −751.098 + 142.470i −1.53599 + 0.291350i
\(490\) −212.615 + 178.406i −0.433909 + 0.364093i
\(491\) −657.316 + 115.902i −1.33873 + 0.236054i −0.796735 0.604329i \(-0.793441\pi\)
−0.541993 + 0.840383i \(0.682330\pi\)
\(492\) −73.6094 123.773i −0.149613 0.251572i
\(493\) −174.655 146.553i −0.354270 0.297268i
\(494\) −394.754 227.912i −0.799098 0.461360i
\(495\) −424.778 + 167.160i −0.858138 + 0.337698i
\(496\) 313.911 + 543.710i 0.632885 + 1.09619i
\(497\) −330.061 58.1987i −0.664108 0.117100i
\(498\) −87.7560 + 107.371i −0.176217 + 0.215605i
\(499\) 54.0177 + 19.6608i 0.108252 + 0.0394005i 0.395578 0.918432i \(-0.370544\pi\)
−0.287326 + 0.957833i \(0.592766\pi\)
\(500\) 67.8624 186.450i 0.135725 0.372901i
\(501\) 444.964 168.497i 0.888152 0.336321i
\(502\) −83.4662 + 473.360i −0.166267 + 0.942949i
\(503\) 423.202 244.336i 0.841356 0.485757i −0.0163686 0.999866i \(-0.505211\pi\)
0.857725 + 0.514109i \(0.171877\pi\)
\(504\) −139.157 157.395i −0.276105 0.312291i
\(505\) −218.252 + 378.024i −0.432182 + 0.748562i
\(506\) 360.917 430.124i 0.713275 0.850048i
\(507\) 195.571 + 109.568i 0.385741 + 0.216110i
\(508\) 59.2671 + 336.120i 0.116667 + 0.661654i
\(509\) 182.714 + 217.750i 0.358966 + 0.427799i 0.915058 0.403322i \(-0.132144\pi\)
−0.556093 + 0.831120i \(0.687700\pi\)
\(510\) 699.133 + 244.280i 1.37085 + 0.478980i
\(511\) −616.418 + 224.358i −1.20630 + 0.439056i
\(512\) 525.459i 1.02629i
\(513\) 18.6946 + 481.980i 0.0364417 + 0.939532i
\(514\) −705.227 −1.37204
\(515\) 149.367 + 410.382i 0.290033 + 0.796859i
\(516\) 476.883 + 553.638i 0.924192 + 1.07294i
\(517\) −81.8602 + 68.6889i −0.158337 + 0.132860i
\(518\) −664.258 + 117.127i −1.28235 + 0.226113i
\(519\) 894.169 11.5556i 1.72287 0.0222651i
\(520\) −133.704 112.191i −0.257124 0.215752i
\(521\) 35.1966 + 20.3207i 0.0675558 + 0.0390033i 0.533397 0.845865i \(-0.320915\pi\)
−0.465842 + 0.884868i \(0.654248\pi\)
\(522\) −171.323 + 315.285i −0.328204 + 0.603995i
\(523\) −174.951 303.024i −0.334514 0.579395i 0.648877 0.760893i \(-0.275239\pi\)
−0.983391 + 0.181498i \(0.941905\pi\)
\(524\) −13.4860 2.37795i −0.0257367 0.00453808i
\(525\) 338.333 + 55.1592i 0.644444 + 0.105065i
\(526\) 869.167 + 316.351i 1.65241 + 0.601428i
\(527\) −168.243 + 462.243i −0.319246 + 0.877122i
\(528\) −75.1220 + 460.780i −0.142276 + 0.872689i
\(529\) −28.5567 + 161.953i −0.0539825 + 0.306150i
\(530\) −365.815 + 211.203i −0.690216 + 0.398497i
\(531\) −174.315 + 106.740i −0.328276 + 0.201017i
\(532\) 210.690 364.926i 0.396034 0.685951i
\(533\) −103.105 + 122.876i −0.193442 + 0.230536i
\(534\) −2.88186 222.997i −0.00539673 0.417598i
\(535\) −131.813 747.550i −0.246380 1.39729i
\(536\) −14.9804 17.8530i −0.0279485 0.0333078i
\(537\) −66.6656 + 57.4233i −0.124145 + 0.106934i
\(538\) 405.582 147.620i 0.753869 0.274386i
\(539\) 137.090i 0.254342i
\(540\) 66.3786 485.914i 0.122923 0.899841i
\(541\) 145.531 0.269003 0.134501 0.990913i \(-0.457057\pi\)
0.134501 + 0.990913i \(0.457057\pi\)
\(542\) −115.809 318.182i −0.213669 0.587051i
\(543\) 82.5320 236.208i 0.151993 0.435006i
\(544\) 447.800 375.749i 0.823163 0.690715i
\(545\) −736.481 + 129.861i −1.35134 + 0.238278i
\(546\) 303.709 542.098i 0.556243 0.992854i
\(547\) 372.320 + 312.413i 0.680657 + 0.571139i 0.916198 0.400725i \(-0.131242\pi\)
−0.235541 + 0.971864i \(0.575686\pi\)
\(548\) −555.602 320.777i −1.01387 0.585359i
\(549\) 290.908 + 97.4448i 0.529887 + 0.177495i
\(550\) −150.070 259.928i −0.272854 0.472597i
\(551\) 266.919 + 47.0651i 0.484427 + 0.0854176i
\(552\) −80.4510 212.454i −0.145745 0.384881i
\(553\) −210.776 76.7162i −0.381150 0.138727i
\(554\) −135.014 + 370.947i −0.243707 + 0.669580i
\(555\) 459.126 + 375.250i 0.827254 + 0.676126i
\(556\) 18.0463 102.346i 0.0324574 0.184075i
\(557\) 2.82805 1.63278i 0.00507730 0.00293138i −0.497459 0.867487i \(-0.665734\pi\)
0.502537 + 0.864556i \(0.332400\pi\)
\(558\) 765.638 + 114.687i 1.37211 + 0.205533i
\(559\) 406.948 704.855i 0.727993 1.26092i
\(560\) 625.597 745.558i 1.11714 1.33135i
\(561\) −314.398 + 186.976i −0.560425 + 0.333291i
\(562\) 210.365 + 1193.04i 0.374316 + 2.12285i
\(563\) −427.292 509.227i −0.758956 0.904489i 0.238825 0.971063i \(-0.423238\pi\)
−0.997781 + 0.0665739i \(0.978793\pi\)
\(564\) −21.3953 112.795i −0.0379349 0.199991i
\(565\) 730.527 265.890i 1.29297 0.470602i
\(566\) 180.949i 0.319697i
\(567\) −656.649 + 33.9726i −1.15811 + 0.0599164i
\(568\) 118.727 0.209026
\(569\) 25.9713 + 71.3556i 0.0456438 + 0.125405i 0.960420 0.278555i \(-0.0898555\pi\)
−0.914776 + 0.403960i \(0.867633\pi\)
\(570\) −864.965 + 164.069i −1.51748 + 0.287840i
\(571\) −225.287 + 189.038i −0.394548 + 0.331065i −0.818382 0.574675i \(-0.805129\pi\)
0.423834 + 0.905740i \(0.360684\pi\)
\(572\) −225.441 + 39.7513i −0.394128 + 0.0694953i
\(573\) −240.673 404.689i −0.420023 0.706264i
\(574\) −269.959 226.523i −0.470312 0.394639i
\(575\) 321.018 + 185.340i 0.558292 + 0.322330i
\(576\) −179.585 142.947i −0.311780 0.248172i
\(577\) −529.296 916.768i −0.917325 1.58885i −0.803461 0.595357i \(-0.797011\pi\)
−0.113864 0.993496i \(-0.536323\pi\)
\(578\) −163.484 28.8266i −0.282844 0.0498730i
\(579\) 78.7297 96.3274i 0.135975 0.166369i
\(580\) −258.961 94.2539i −0.446484 0.162507i
\(581\) −48.8362 + 134.176i −0.0840554 + 0.230940i
\(582\) −1243.27 + 470.794i −2.13620 + 0.808925i
\(583\) 36.2299 205.470i 0.0621438 0.352435i
\(584\) 201.245 116.189i 0.344597 0.198953i
\(585\) −535.331 + 108.728i −0.915096 + 0.185859i
\(586\) −671.115 + 1162.40i −1.14525 + 1.98363i
\(587\) 89.2844 106.405i 0.152103 0.181269i −0.684612 0.728907i \(-0.740029\pi\)
0.836715 + 0.547638i \(0.184473\pi\)
\(588\) 128.492 + 71.9873i 0.218524 + 0.122427i
\(589\) −101.545 575.888i −0.172402 0.977738i
\(590\) −239.809 285.793i −0.406456 0.484396i
\(591\) 596.609 + 208.457i 1.00949 + 0.352720i
\(592\) 569.874 207.417i 0.962625 0.350367i
\(593\) 145.309i 0.245040i 0.992466 + 0.122520i \(0.0390975\pi\)
−0.992466 + 0.122520i \(0.960902\pi\)
\(594\) 386.867 + 426.337i 0.651291 + 0.717740i
\(595\) 762.563 1.28162
\(596\) −166.698 458.000i −0.279695 0.768457i
\(597\) −343.672 398.986i −0.575664 0.668318i
\(598\) 514.715 431.897i 0.860728 0.722236i
\(599\) −22.6235 + 3.98914i −0.0377688 + 0.00665966i −0.192501 0.981297i \(-0.561660\pi\)
0.154732 + 0.987957i \(0.450549\pi\)
\(600\) −121.425 + 1.56921i −0.202376 + 0.00261536i
\(601\) −710.406 596.102i −1.18204 0.991849i −0.999963 0.00856516i \(-0.997274\pi\)
−0.182077 0.983284i \(-0.558282\pi\)
\(602\) 1548.58 + 894.071i 2.57238 + 1.48517i
\(603\) −72.9155 + 1.88493i −0.120921 + 0.00312592i
\(604\) −121.631 210.670i −0.201375 0.348792i
\(605\) −339.605 59.8816i −0.561331 0.0989779i
\(606\) 543.326 + 88.5797i 0.896578 + 0.146171i
\(607\) −492.373 179.209i −0.811158 0.295237i −0.0970557 0.995279i \(-0.530943\pi\)
−0.714102 + 0.700042i \(0.753165\pi\)
\(608\) −237.675 + 653.007i −0.390913 + 1.07403i
\(609\) −59.4517 + 364.663i −0.0976219 + 0.598789i
\(610\) −97.2382 + 551.465i −0.159407 + 0.904041i
\(611\) −110.745 + 63.9384i −0.181251 + 0.104646i
\(612\) −10.1558 392.862i −0.0165945 0.641932i
\(613\) −35.0848 + 60.7687i −0.0572346 + 0.0991333i −0.893223 0.449614i \(-0.851562\pi\)
0.835988 + 0.548747i \(0.184895\pi\)
\(614\) 88.8559 105.894i 0.144716 0.172466i
\(615\) 4.00337 + 309.780i 0.00650954 + 0.503707i
\(616\) 32.8897 + 186.527i 0.0533924 + 0.302804i
\(617\) 427.172 + 509.083i 0.692337 + 0.825095i 0.991636 0.129064i \(-0.0411974\pi\)
−0.299299 + 0.954159i \(0.596753\pi\)
\(618\) 417.305 359.451i 0.675251 0.581637i
\(619\) 912.210 332.017i 1.47368 0.536377i 0.524585 0.851358i \(-0.324220\pi\)
0.949098 + 0.314981i \(0.101998\pi\)
\(620\) 594.574i 0.958990i
\(621\) −677.048 217.100i −1.09025 0.349597i
\(622\) −932.436 −1.49909
\(623\) −78.5400 215.787i −0.126067 0.346367i
\(624\) −184.280 + 527.413i −0.295320 + 0.845213i
\(625\) −596.569 + 500.581i −0.954510 + 0.800929i
\(626\) 435.419 76.7761i 0.695558 0.122646i
\(627\) 212.541 379.370i 0.338981 0.605056i
\(628\) 165.706 + 139.044i 0.263863 + 0.221408i
\(629\) 411.502 + 237.581i 0.654216 + 0.377712i
\(630\) −238.876 1176.13i −0.379169 1.86687i
\(631\) 94.6588 + 163.954i 0.150014 + 0.259832i 0.931232 0.364426i \(-0.118735\pi\)
−0.781218 + 0.624258i \(0.785401\pi\)
\(632\) 78.2513 + 13.7978i 0.123815 + 0.0218320i
\(633\) 277.132 + 731.848i 0.437808 + 1.15616i
\(634\) 1259.36 + 458.370i 1.98637 + 0.722981i
\(635\) 251.130 689.974i 0.395480 1.08657i
\(636\) 173.558 + 141.852i 0.272890 + 0.223037i
\(637\) 28.4872 161.559i 0.0447209 0.253625i
\(638\) 280.156 161.748i 0.439116 0.253524i
\(639\) 231.414 290.727i 0.362150 0.454972i
\(640\) −276.852 + 479.522i −0.432581 + 0.749253i
\(641\) −445.262 + 530.643i −0.694637 + 0.827836i −0.991908 0.126957i \(-0.959479\pi\)
0.297271 + 0.954793i \(0.403923\pi\)
\(642\) −822.810 + 489.334i −1.28163 + 0.762202i
\(643\) 184.867 + 1048.43i 0.287506 + 1.63053i 0.696193 + 0.717854i \(0.254876\pi\)
−0.408687 + 0.912675i \(0.634013\pi\)
\(644\) 399.262 + 475.822i 0.619972 + 0.738854i
\(645\) −292.953 1544.44i −0.454191 2.39448i
\(646\) −662.936 + 241.289i −1.02622 + 0.373512i
\(647\) 352.755i 0.545217i 0.962125 + 0.272608i \(0.0878863\pi\)
−0.962125 + 0.272608i \(0.912114\pi\)
\(648\) 226.992 52.2451i 0.350296 0.0806251i
\(649\) 184.274 0.283935
\(650\) −122.842 337.506i −0.188988 0.519240i
\(651\) 783.195 148.558i 1.20306 0.228200i
\(652\) −567.229 + 475.961i −0.869982 + 0.730002i
\(653\) 461.316 81.3425i 0.706457 0.124567i 0.191135 0.981564i \(-0.438783\pi\)
0.515322 + 0.856996i \(0.327672\pi\)
\(654\) 482.088 + 810.625i 0.737137 + 1.23949i
\(655\) 22.5679 + 18.9367i 0.0344548 + 0.0289110i
\(656\) 274.399 + 158.424i 0.418291 + 0.241501i
\(657\) 107.740 719.257i 0.163988 1.09476i
\(658\) −140.474 243.307i −0.213486 0.369768i
\(659\) −84.6349 14.9234i −0.128429 0.0226455i 0.109064 0.994035i \(-0.465215\pi\)
−0.237493 + 0.971389i \(0.576326\pi\)
\(660\) −279.801 + 342.343i −0.423941 + 0.518701i
\(661\) −115.687 42.1068i −0.175019 0.0637016i 0.253024 0.967460i \(-0.418575\pi\)
−0.428043 + 0.903758i \(0.640797\pi\)
\(662\) 304.996 837.968i 0.460718 1.26581i
\(663\) −409.368 + 155.017i −0.617447 + 0.233812i
\(664\) 8.78345 49.8134i 0.0132281 0.0750202i
\(665\) −785.070 + 453.260i −1.18056 + 0.681594i
\(666\) 237.525 709.098i 0.356644 1.06471i
\(667\) −199.763 + 346.000i −0.299495 + 0.518741i
\(668\) 296.226 353.028i 0.443452 0.528485i
\(669\) 1018.67 + 570.709i 1.52268 + 0.853078i
\(670\) −23.1182 131.110i −0.0345048 0.195686i
\(671\) −177.787 211.878i −0.264958 0.315765i
\(672\) −894.290 312.468i −1.33079 0.464982i
\(673\) 598.221 217.735i 0.888887 0.323528i 0.143096 0.989709i \(-0.454294\pi\)
0.745791 + 0.666180i \(0.232072\pi\)
\(674\) 179.321i 0.266054i
\(675\) −232.832 + 300.394i −0.344936 + 0.445029i
\(676\) 217.127 0.321194
\(677\) 56.5391 + 155.340i 0.0835141 + 0.229453i 0.974420 0.224735i \(-0.0721516\pi\)
−0.890906 + 0.454188i \(0.849929\pi\)
\(678\) −639.865 742.851i −0.943753 1.09565i
\(679\) −1048.63 + 879.901i −1.54437 + 1.29588i
\(680\) −266.031 + 46.9084i −0.391222 + 0.0689830i
\(681\) 1045.21 13.5075i 1.53481 0.0198348i
\(682\) −534.664 448.636i −0.783965 0.657824i
\(683\) −1129.58 652.163i −1.65385 0.954851i −0.975468 0.220142i \(-0.929348\pi\)
−0.678383 0.734709i \(-0.737319\pi\)
\(684\) 243.969 + 398.421i 0.356680 + 0.582487i
\(685\) 690.092 + 1195.27i 1.00743 + 1.74493i
\(686\) −674.445 118.923i −0.983155 0.173357i
\(687\) −1079.32 175.964i −1.57107 0.256134i
\(688\) −1510.76 549.872i −2.19587 0.799232i
\(689\) 85.3928 234.615i 0.123937 0.340515i
\(690\) 208.818 1280.84i 0.302635 1.85629i
\(691\) −62.8288 + 356.320i −0.0909245 + 0.515658i 0.904996 + 0.425421i \(0.139874\pi\)
−0.995920 + 0.0902378i \(0.971237\pi\)
\(692\) 750.099 433.070i 1.08396 0.625824i
\(693\) 520.857 + 283.028i 0.751597 + 0.408410i
\(694\) 227.439 393.936i 0.327722 0.567632i
\(695\) −143.711 + 171.268i −0.206778 + 0.246428i
\(696\) −1.69133 130.875i −0.00243007 0.188039i
\(697\) 43.1093 + 244.485i 0.0618498 + 0.350767i
\(698\) −776.309 925.169i −1.11219 1.32546i
\(699\) −431.125 + 371.356i −0.616775 + 0.531267i
\(700\) 312.003 113.560i 0.445719 0.162228i
\(701\) 893.344i 1.27438i −0.770705 0.637192i \(-0.780096\pi\)
0.770705 0.637192i \(-0.219904\pi\)
\(702\) 367.325 + 582.823i 0.523255 + 0.830233i
\(703\) −564.863 −0.803504
\(704\) 70.7748 + 194.452i 0.100532 + 0.276210i
\(705\) −81.4675 + 233.162i −0.115557 + 0.330726i
\(706\) 809.756 679.466i 1.14696 0.962417i
\(707\) 558.228 98.4307i 0.789573 0.139223i
\(708\) −96.7639 + 172.717i −0.136672 + 0.243950i
\(709\) −529.040 443.917i −0.746178 0.626118i 0.188311 0.982109i \(-0.439699\pi\)
−0.934489 + 0.355992i \(0.884143\pi\)
\(710\) 587.363 + 339.114i 0.827272 + 0.477626i
\(711\) 186.309 164.721i 0.262038 0.231675i
\(712\) 40.6737 + 70.4490i 0.0571260 + 0.0989452i
\(713\) 848.896 + 149.683i 1.19060 + 0.209935i
\(714\) −340.575 899.386i −0.476996 1.25964i
\(715\) 462.776 + 168.437i 0.647239 + 0.235576i
\(716\) −29.1476 + 80.0825i −0.0407090 + 0.111847i
\(717\) 711.025 + 581.130i 0.991666 + 0.810502i
\(718\) 103.934 589.439i 0.144755 0.820946i
\(719\) 417.508 241.049i 0.580679 0.335255i −0.180724 0.983534i \(-0.557844\pi\)
0.761403 + 0.648279i \(0.224511\pi\)
\(720\) 395.136 + 1004.10i 0.548801 + 1.39458i
\(721\) 283.560 491.140i 0.393287 0.681192i
\(722\) −70.7063 + 84.2645i −0.0979312 + 0.116710i
\(723\) −760.406 + 452.222i −1.05174 + 0.625480i
\(724\) −42.0833 238.666i −0.0581261 0.329650i
\(725\) 137.276 + 163.600i 0.189347 + 0.225655i
\(726\) 81.0482 + 427.284i 0.111637 + 0.588545i
\(727\) −324.225 + 118.008i −0.445977 + 0.162322i −0.555239 0.831691i \(-0.687373\pi\)
0.109263 + 0.994013i \(0.465151\pi\)
\(728\) 226.654i 0.311338i
\(729\) 314.503 657.669i 0.431418 0.902152i
\(730\) 1327.46 1.81844
\(731\) −430.834 1183.71i −0.589376 1.61930i
\(732\) 291.947 55.3773i 0.398835 0.0756520i
\(733\) 413.108 346.639i 0.563585 0.472904i −0.315925 0.948784i \(-0.602315\pi\)
0.879510 + 0.475880i \(0.157870\pi\)
\(734\) −609.376 + 107.450i −0.830213 + 0.146389i
\(735\) −161.959 272.333i −0.220353 0.370521i
\(736\) −784.699 658.440i −1.06617 0.894620i
\(737\) 56.9482 + 32.8791i 0.0772704 + 0.0446121i
\(738\) 363.574 143.075i 0.492648 0.193869i
\(739\) −368.737 638.671i −0.498968 0.864237i 0.501032 0.865429i \(-0.332954\pi\)
−0.999999 + 0.00119161i \(0.999621\pi\)
\(740\) 565.606 + 99.7315i 0.764332 + 0.134772i
\(741\) 329.309 402.917i 0.444412 0.543747i
\(742\) 515.452 + 187.609i 0.694679 + 0.252842i
\(743\) −356.128 + 978.454i −0.479311 + 1.31690i 0.430768 + 0.902463i \(0.358243\pi\)
−0.910079 + 0.414434i \(0.863980\pi\)
\(744\) −264.090 + 100.004i −0.354960 + 0.134414i
\(745\) −182.077 + 1032.61i −0.244398 + 1.38605i
\(746\) −1485.54 + 857.674i −1.99133 + 1.14970i
\(747\) −104.858 118.601i −0.140373 0.158770i
\(748\) −177.150 + 306.832i −0.236831 + 0.410204i
\(749\) −633.619 + 755.118i −0.845953 + 1.00817i
\(750\) 469.648 + 263.119i 0.626197 + 0.350825i
\(751\) 41.8554 + 237.374i 0.0557329 + 0.316077i 0.999911 0.0133592i \(-0.00425248\pi\)
−0.944178 + 0.329436i \(0.893141\pi\)
\(752\) 162.368 + 193.503i 0.215915 + 0.257317i
\(753\) −518.018 180.997i −0.687939 0.240368i
\(754\) 363.771 132.402i 0.482455 0.175599i
\(755\) 523.331i 0.693154i
\(756\) −538.783 + 339.569i −0.712677 + 0.449165i
\(757\) 32.7615 0.0432781 0.0216391 0.999766i \(-0.493112\pi\)
0.0216391 + 0.999766i \(0.493112\pi\)
\(758\) 561.788 + 1543.50i 0.741145 + 2.03628i
\(759\) 418.336 + 485.668i 0.551168 + 0.639879i
\(760\) 246.001 206.419i 0.323685 0.271604i
\(761\) 314.502 55.4551i 0.413274 0.0728714i 0.0368545 0.999321i \(-0.488266\pi\)
0.376420 + 0.926449i \(0.377155\pi\)
\(762\) −925.932 + 11.9661i −1.21513 + 0.0157035i
\(763\) 743.936 + 624.236i 0.975014 + 0.818134i
\(764\) −394.950 228.025i −0.516951 0.298462i
\(765\) −403.664 + 742.863i −0.527665 + 0.971063i
\(766\) 139.986 + 242.463i 0.182750 + 0.316531i
\(767\) 217.164 + 38.2920i 0.283135 + 0.0499243i
\(768\) 991.261 + 161.608i 1.29070 + 0.210426i
\(769\) 447.488 + 162.872i 0.581910 + 0.211798i 0.616167 0.787615i \(-0.288685\pi\)
−0.0342578 + 0.999413i \(0.510907\pi\)
\(770\) −370.058 + 1016.73i −0.480595 + 1.32042i
\(771\) 129.546 794.601i 0.168023 1.03061i
\(772\) 20.9243 118.667i 0.0271040 0.153714i
\(773\) 1122.62 648.147i 1.45229 0.838482i 0.453682 0.891164i \(-0.350110\pi\)
0.998611 + 0.0526817i \(0.0167769\pi\)
\(774\) −1690.71 + 1035.29i −2.18439 + 1.33759i
\(775\) 230.386 399.040i 0.297272 0.514890i
\(776\) 311.701 371.471i 0.401677 0.478700i
\(777\) −9.95035 769.955i −0.0128061 0.990934i
\(778\) −270.889 1536.29i −0.348187 1.97467i
\(779\) −189.701 226.077i −0.243519 0.290214i
\(780\) −400.880 + 345.304i −0.513949 + 0.442697i
\(781\) −314.795 + 114.576i −0.403066 + 0.146704i
\(782\) 1039.93i 1.32983i
\(783\) −323.771 250.951i −0.413501 0.320499i
\(784\) −324.056 −0.413337
\(785\) −159.162 437.295i −0.202754 0.557063i
\(786\) 12.2552 35.0746i 0.0155918 0.0446242i
\(787\) 659.528 553.410i 0.838028 0.703189i −0.119091 0.992883i \(-0.537998\pi\)
0.957119 + 0.289694i \(0.0935535\pi\)
\(788\) 602.818 106.293i 0.764997 0.134890i
\(789\) −516.103 + 921.207i −0.654123 + 1.16756i
\(790\) 347.714 + 291.766i 0.440144 + 0.369325i
\(791\) −874.285 504.769i −1.10529 0.638140i
\(792\) −199.119 66.6983i −0.251412 0.0842150i
\(793\) −165.492 286.640i −0.208690 0.361462i
\(794\) −970.013 171.039i −1.22168 0.215415i
\(795\) −170.772 450.972i −0.214807 0.567260i
\(796\) −479.284 174.445i −0.602115 0.219152i
\(797\) −198.415 + 545.140i −0.248952 + 0.683990i 0.750774 + 0.660560i \(0.229681\pi\)
−0.999725 + 0.0234300i \(0.992541\pi\)
\(798\) 885.213 + 723.497i 1.10929 + 0.906637i
\(799\) −34.3678 + 194.909i −0.0430135 + 0.243942i
\(800\) −474.201 + 273.780i −0.592751 + 0.342225i
\(801\) 251.788 + 37.7161i 0.314342 + 0.0470863i
\(802\) 360.552 624.494i 0.449566 0.778671i
\(803\) −421.459 + 502.275i −0.524855 + 0.625498i
\(804\) −60.7210 + 36.1114i −0.0755236 + 0.0449147i
\(805\) −232.041 1315.97i −0.288249 1.63474i
\(806\) −536.868 639.814i −0.666089 0.793814i
\(807\) 91.8250 + 484.098i 0.113786 + 0.599874i
\(808\) −188.691 + 68.6779i −0.233528 + 0.0849974i
\(809\) 661.323i 0.817457i 0.912656 + 0.408729i \(0.134028\pi\)
−0.912656 + 0.408729i \(0.865972\pi\)
\(810\) 1272.20 + 389.881i 1.57061 + 0.481335i
\(811\) −168.725 −0.208045 −0.104023 0.994575i \(-0.533171\pi\)
−0.104023 + 0.994575i \(0.533171\pi\)
\(812\) 122.397 + 336.283i 0.150735 + 0.414142i
\(813\) 379.779 72.0374i 0.467133 0.0886069i
\(814\) −516.461 + 433.362i −0.634473 + 0.532386i
\(815\) 1568.77 276.617i 1.92487 0.339407i
\(816\) 441.977 + 743.180i 0.541639 + 0.910760i
\(817\) 1147.13 + 962.559i 1.40408 + 1.17816i
\(818\) −1255.05 724.602i −1.53429 0.885822i
\(819\) 555.010 + 441.778i 0.677668 + 0.539412i
\(820\) 150.035 + 259.868i 0.182969 + 0.316912i
\(821\) 149.275 + 26.3213i 0.181822 + 0.0320600i 0.263817 0.964573i \(-0.415018\pi\)
−0.0819959 + 0.996633i \(0.526129\pi\)
\(822\) 1101.53 1347.74i 1.34006 1.63959i
\(823\) −211.263 76.8935i −0.256699 0.0934307i 0.210465 0.977601i \(-0.432502\pi\)
−0.467164 + 0.884171i \(0.654724\pi\)
\(824\) −68.7118 + 188.784i −0.0833881 + 0.229107i
\(825\) 320.436 121.341i 0.388407 0.147080i
\(826\) −84.1280 + 477.113i −0.101850 + 0.577619i
\(827\) 292.855 169.080i 0.354117 0.204449i −0.312380 0.949957i \(-0.601126\pi\)
0.666497 + 0.745508i \(0.267793\pi\)
\(828\) −674.880 + 137.070i −0.815072 + 0.165544i
\(829\) 401.806 695.949i 0.484688 0.839504i −0.515157 0.857096i \(-0.672267\pi\)
0.999845 + 0.0175917i \(0.00559990\pi\)
\(830\) 185.733 221.348i 0.223775 0.266685i
\(831\) −393.157 220.265i −0.473113 0.265060i
\(832\) 43.0002 + 243.866i 0.0516829 + 0.293108i
\(833\) −163.206 194.502i −0.195926 0.233495i
\(834\) 266.181 + 93.0047i 0.319162 + 0.111516i
\(835\) −931.633 + 339.087i −1.11573 + 0.406092i
\(836\) 421.184i 0.503809i
\(837\) −269.865 + 841.601i −0.322419 + 1.00550i
\(838\) −230.169 −0.274665
\(839\) 292.066 + 802.443i 0.348111 + 0.956428i 0.982965 + 0.183795i \(0.0588384\pi\)
−0.634853 + 0.772633i \(0.718939\pi\)
\(840\) 285.700 + 331.683i 0.340119 + 0.394861i
\(841\) 467.912 392.625i 0.556376 0.466855i
\(842\) 766.705 135.191i 0.910576 0.160559i
\(843\) −1382.88 + 17.8714i −1.64043 + 0.0211997i
\(844\) 580.637 + 487.213i 0.687959 + 0.577266i
\(845\) −404.527 233.554i −0.478731 0.276395i
\(846\) 311.382 8.04949i 0.368064 0.00951476i
\(847\) 223.906 + 387.816i 0.264351 + 0.457870i
\(848\) −485.693 85.6407i −0.572751 0.100991i
\(849\) −203.881 33.2391i −0.240142 0.0391509i
\(850\) −522.361 190.124i −0.614542 0.223675i
\(851\) 284.781 782.430i 0.334643 0.919424i
\(852\) 57.9117 355.216i 0.0679714 0.416920i
\(853\) −138.765 + 786.975i −0.162679 + 0.922596i 0.788747 + 0.614718i \(0.210730\pi\)
−0.951426 + 0.307878i \(0.900381\pi\)
\(854\) 629.751 363.587i 0.737414 0.425746i
\(855\) −25.9729 1004.72i −0.0303777 1.17511i
\(856\) 174.597 302.410i 0.203968 0.353283i
\(857\) 998.416 1189.87i 1.16501 1.38841i 0.258616 0.965980i \(-0.416734\pi\)
0.906397 0.422427i \(-0.138822\pi\)
\(858\) −8.02583 621.037i −0.00935411 0.723819i
\(859\) −4.90592 27.8228i −0.00571119 0.0323898i 0.981819 0.189820i \(-0.0607903\pi\)
−0.987530 + 0.157430i \(0.949679\pi\)
\(860\) −978.693 1166.36i −1.13802 1.35623i
\(861\) 304.820 262.561i 0.354030 0.304949i
\(862\) −1447.50 + 526.846i −1.67923 + 0.611190i
\(863\) 951.550i 1.10261i −0.834305 0.551304i \(-0.814131\pi\)
0.834305 0.551304i \(-0.185869\pi\)
\(864\) 777.790 705.782i 0.900220 0.816877i
\(865\) −1863.34 −2.15415
\(866\) 373.326 + 1025.70i 0.431092 + 1.18442i
\(867\) 62.5107 178.907i 0.0721000 0.206352i
\(868\) 591.468 496.301i 0.681415 0.571775i
\(869\) −220.793 + 38.9318i −0.254077 + 0.0448006i
\(870\) 365.445 652.293i 0.420052 0.749762i
\(871\) 60.2805 + 50.5813i 0.0692084 + 0.0580727i
\(872\) −297.932 172.011i −0.341665 0.197260i
\(873\) −302.079 1487.31i −0.346024 1.70368i
\(874\) 618.122 + 1070.62i 0.707233 + 1.22496i
\(875\) 545.889 + 96.2549i 0.623873 + 0.110006i
\(876\) −249.461 658.775i −0.284773 0.752026i
\(877\) 214.431 + 78.0465i 0.244505 + 0.0889926i 0.461366 0.887210i \(-0.347360\pi\)
−0.216861 + 0.976203i \(0.569582\pi\)
\(878\) −300.516 + 825.662i −0.342274 + 0.940390i
\(879\) −1186.44 969.692i −1.34976 1.10318i
\(880\) 168.926 958.026i 0.191961 1.08867i
\(881\) −1343.36 + 775.592i −1.52482 + 0.880354i −0.525250 + 0.850948i \(0.676028\pi\)
−0.999568 + 0.0294054i \(0.990639\pi\)
\(882\) −248.862 + 312.648i −0.282156 + 0.354476i
\(883\) −781.794 + 1354.11i −0.885384 + 1.53353i −0.0401121 + 0.999195i \(0.512772\pi\)
−0.845272 + 0.534336i \(0.820562\pi\)
\(884\) −272.528 + 324.786i −0.308290 + 0.367405i
\(885\) 366.064 217.702i 0.413632 0.245991i
\(886\) 206.096 + 1168.83i 0.232614 + 1.31922i
\(887\) 451.340 + 537.886i 0.508839 + 0.606411i 0.957904 0.287088i \(-0.0926873\pi\)
−0.449065 + 0.893499i \(0.648243\pi\)
\(888\) 50.8345 + 267.998i 0.0572461 + 0.301799i
\(889\) −895.993 + 326.115i −1.00787 + 0.366833i
\(890\) 464.699i 0.522134i
\(891\) −551.433 + 357.580i −0.618892 + 0.401324i
\(892\) 1130.95 1.26789
\(893\) −80.4701 221.090i −0.0901121 0.247581i
\(894\) 1299.20 246.436i 1.45325 0.275655i
\(895\) 140.446 117.848i 0.156923 0.131674i
\(896\) 708.110 124.859i 0.790302 0.139352i
\(897\) 392.083 + 659.283i 0.437104 + 0.734986i
\(898\) −384.523 322.653i −0.428199 0.359302i
\(899\) 430.094 + 248.315i 0.478413 + 0.276212i
\(900\) −54.5332 + 364.056i −0.0605924 + 0.404507i
\(901\) −193.210 334.649i −0.214439 0.371419i
\(902\) −346.892 61.1664i −0.384581 0.0678120i
\(903\) −1291.84 + 1580.59i −1.43061 + 1.75038i
\(904\) 336.057 + 122.315i 0.371745 + 0.135304i
\(905\) −178.318 + 489.924i −0.197036 + 0.541353i
\(906\) 617.230 233.729i 0.681269 0.257979i
\(907\) 280.357 1589.99i 0.309104 1.75302i −0.294424 0.955675i \(-0.595128\pi\)
0.603528 0.797341i \(-0.293761\pi\)
\(908\) 876.803 506.222i 0.965642 0.557514i
\(909\) −199.611 + 595.911i −0.219594 + 0.655568i
\(910\) −647.383 + 1121.30i −0.711410 + 1.23220i
\(911\) −394.005 + 469.556i −0.432497 + 0.515430i −0.937641 0.347605i \(-0.886995\pi\)
0.505144 + 0.863035i \(0.331439\pi\)
\(912\) −896.761 502.408i −0.983291 0.550885i
\(913\) 24.7833 + 140.553i 0.0271449 + 0.153946i
\(914\) 651.599 + 776.546i 0.712910 + 0.849613i
\(915\) −603.491 210.862i −0.659554 0.230450i
\(916\) −995.326 + 362.269i −1.08660 + 0.395490i
\(917\) 38.2568i 0.0417195i
\(918\) 1056.44 + 144.315i 1.15080 + 0.157206i
\(919\) 628.091 0.683451 0.341725 0.939800i \(-0.388989\pi\)
0.341725 + 0.939800i \(0.388989\pi\)
\(920\) 161.901 + 444.821i 0.175980 + 0.483501i
\(921\) 102.992 + 119.569i 0.111827 + 0.129825i
\(922\) −871.766 + 731.499i −0.945516 + 0.793382i
\(923\) −394.790 + 69.6122i −0.427725 + 0.0754195i
\(924\) 574.109 7.41937i 0.621331 0.00802963i
\(925\) −340.955 286.095i −0.368600 0.309292i
\(926\) 1258.19 + 726.418i 1.35874 + 0.784469i
\(927\) 328.349 + 536.220i 0.354206 + 0.578446i
\(928\) −295.086 511.103i −0.317980 0.550758i
\(929\) 1234.51 + 217.678i 1.32886 + 0.234314i 0.792603 0.609738i \(-0.208726\pi\)
0.536260 + 0.844053i \(0.319837\pi\)
\(930\) −1592.14 259.570i −1.71198 0.279108i
\(931\) 283.633 + 103.234i 0.304654 + 0.110885i
\(932\) −188.497 + 517.892i −0.202250 + 0.555678i
\(933\) 171.282 1050.61i 0.183583 1.12605i
\(934\) 98.2529 557.220i 0.105196 0.596595i
\(935\) 660.093 381.105i 0.705981 0.407599i
\(936\) −220.799 119.980i −0.235896 0.128183i
\(937\) 460.132 796.972i 0.491070 0.850557i −0.508878 0.860839i \(-0.669939\pi\)
0.999947 + 0.0102815i \(0.00327275\pi\)
\(938\) −111.128 + 132.437i −0.118473 + 0.141191i
\(939\) 6.52243 + 504.704i 0.00694614 + 0.537491i
\(940\) 41.5405 + 235.588i 0.0441921 + 0.250626i
\(941\) −439.314 523.554i −0.466859 0.556381i 0.480317 0.877095i \(-0.340522\pi\)
−0.947176 + 0.320714i \(0.896077\pi\)
\(942\) −444.672 + 383.024i −0.472050 + 0.406607i
\(943\) 408.794 148.789i 0.433504 0.157783i
\(944\) 435.590i 0.461430i
\(945\) 1369.06 53.1020i 1.44874 0.0561926i
\(946\) 1787.31 1.88934
\(947\) −287.907 791.018i −0.304020 0.835288i −0.993791 0.111261i \(-0.964511\pi\)
0.689771 0.724027i \(-0.257711\pi\)
\(948\) 79.4503 227.389i 0.0838084 0.239861i
\(949\) −601.056 + 504.346i −0.633357 + 0.531450i
\(950\) 650.786 114.751i 0.685038 0.120791i
\(951\) −747.797 + 1334.76i −0.786327 + 1.40354i
\(952\) 268.724 + 225.486i 0.282273 + 0.236855i
\(953\) 1277.52 + 737.576i 1.34052 + 0.773952i 0.986884 0.161430i \(-0.0516105\pi\)
0.353640 + 0.935382i \(0.384944\pi\)
\(954\) −455.618 + 402.825i −0.477587 + 0.422248i
\(955\) 490.553 + 849.662i 0.513668 + 0.889698i
\(956\) 875.924 + 154.449i 0.916238 + 0.161558i
\(957\) 130.784 + 345.373i 0.136660 + 0.360891i
\(958\) −559.293 203.566i −0.583813 0.212490i
\(959\) 613.000 1684.20i 0.639207 1.75621i
\(960\) 370.322 + 302.669i 0.385752 + 0.315281i
\(961\) 19.1872 108.816i 0.0199659 0.113232i
\(962\) −698.694 + 403.391i −0.726294 + 0.419326i
\(963\) −400.203 1016.97i −0.415580 1.05605i
\(964\) −428.456 + 742.107i −0.444456 + 0.769821i
\(965\) −166.629 + 198.581i −0.172673 + 0.205783i
\(966\) −1448.45 + 861.411i −1.49943 + 0.891730i
\(967\) 56.3919 + 319.814i 0.0583163 + 0.330728i 0.999983 0.00581841i \(-0.00185207\pi\)
−0.941667 + 0.336547i \(0.890741\pi\)
\(968\) −101.969 121.522i −0.105340 0.125539i
\(969\) −150.091 791.274i −0.154892 0.816588i
\(970\) 2603.06 947.438i 2.68357 0.976740i
\(971\) 1203.37i 1.23931i 0.784873 + 0.619657i \(0.212728\pi\)
−0.784873 + 0.619657i \(0.787272\pi\)
\(972\) −45.5907 704.616i −0.0469040 0.724914i
\(973\) 290.331 0.298387
\(974\) −398.279 1094.26i −0.408911 1.12347i
\(975\) 402.844 76.4125i 0.413174 0.0783718i
\(976\) −500.842 + 420.256i −0.513157 + 0.430590i
\(977\) 186.452 32.8765i 0.190841 0.0336505i −0.0774104 0.996999i \(-0.524665\pi\)
0.268252 + 0.963349i \(0.413554\pi\)
\(978\) −1026.89 1726.71i −1.04999 1.76555i
\(979\) −175.829 147.538i −0.179601 0.150703i
\(980\) −265.779 153.448i −0.271203 0.156579i
\(981\) −1001.91 + 394.277i −1.02132 + 0.401913i
\(982\) −876.994 1519.00i −0.893070 1.54684i
\(983\) −1245.48 219.613i −1.26702 0.223411i −0.500562 0.865701i \(-0.666873\pi\)
−0.766462 + 0.642290i \(0.777984\pi\)
\(984\) −90.1896 + 110.349i −0.0916561 + 0.112143i
\(985\) −1237.44 450.391i −1.25628 0.457250i
\(986\) 204.919 563.012i 0.207829 0.571006i
\(987\) 299.946 113.582i 0.303897 0.115078i
\(988\) 87.5217 496.360i 0.0885847 0.502389i
\(989\) −1911.64 + 1103.69i −1.93291 + 1.11596i
\(990\) −794.569 898.703i −0.802595 0.907781i
\(991\) 697.271 1207.71i 0.703604 1.21868i −0.263589 0.964635i \(-0.584906\pi\)
0.967193 0.254043i \(-0.0817603\pi\)
\(992\) −818.471 + 975.416i −0.825072 + 0.983282i
\(993\) 888.140 + 497.578i 0.894401 + 0.501085i
\(994\) −152.939 867.360i −0.153862 0.872595i
\(995\) 705.307 + 840.552i 0.708851 + 0.844776i
\(996\) −144.751 50.5767i −0.145333 0.0507798i
\(997\) −947.882 + 345.001i −0.950734 + 0.346039i −0.770396 0.637566i \(-0.779941\pi\)
−0.180338 + 0.983605i \(0.557719\pi\)
\(998\) 151.062i 0.151365i
\(999\) 755.332 + 397.884i 0.756088 + 0.398282i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.3.f.a.20.5 30
3.2 odd 2 81.3.f.a.62.1 30
4.3 odd 2 432.3.bc.a.209.5 30
9.2 odd 6 243.3.f.b.107.1 30
9.4 even 3 243.3.f.d.26.1 30
9.5 odd 6 243.3.f.a.26.5 30
9.7 even 3 243.3.f.c.107.5 30
27.2 odd 18 729.3.b.a.728.26 30
27.4 even 9 81.3.f.a.17.1 30
27.5 odd 18 243.3.f.d.215.1 30
27.13 even 9 243.3.f.b.134.1 30
27.14 odd 18 243.3.f.c.134.5 30
27.22 even 9 243.3.f.a.215.5 30
27.23 odd 18 inner 27.3.f.a.23.5 yes 30
27.25 even 9 729.3.b.a.728.5 30
108.23 even 18 432.3.bc.a.401.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.5 30 1.1 even 1 trivial
27.3.f.a.23.5 yes 30 27.23 odd 18 inner
81.3.f.a.17.1 30 27.4 even 9
81.3.f.a.62.1 30 3.2 odd 2
243.3.f.a.26.5 30 9.5 odd 6
243.3.f.a.215.5 30 27.22 even 9
243.3.f.b.107.1 30 9.2 odd 6
243.3.f.b.134.1 30 27.13 even 9
243.3.f.c.107.5 30 9.7 even 3
243.3.f.c.134.5 30 27.14 odd 18
243.3.f.d.26.1 30 9.4 even 3
243.3.f.d.215.1 30 27.5 odd 18
432.3.bc.a.209.5 30 4.3 odd 2
432.3.bc.a.401.5 30 108.23 even 18
729.3.b.a.728.5 30 27.25 even 9
729.3.b.a.728.26 30 27.2 odd 18