Newspace parameters
Level: | \( N \) | \(=\) | \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2380.m (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(19.0043956811\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
169.1 | 0 | −3.24912 | 0 | −1.49895 | − | 1.65926i | 0 | 1.00000 | 0 | 7.55679 | 0 | ||||||||||||||||
169.2 | 0 | −3.24912 | 0 | −1.49895 | + | 1.65926i | 0 | 1.00000 | 0 | 7.55679 | 0 | ||||||||||||||||
169.3 | 0 | −2.69877 | 0 | 1.83179 | + | 1.28240i | 0 | 1.00000 | 0 | 4.28335 | 0 | ||||||||||||||||
169.4 | 0 | −2.69877 | 0 | 1.83179 | − | 1.28240i | 0 | 1.00000 | 0 | 4.28335 | 0 | ||||||||||||||||
169.5 | 0 | −1.69804 | 0 | −2.03720 | + | 0.921846i | 0 | 1.00000 | 0 | −0.116652 | 0 | ||||||||||||||||
169.6 | 0 | −1.69804 | 0 | −2.03720 | − | 0.921846i | 0 | 1.00000 | 0 | −0.116652 | 0 | ||||||||||||||||
169.7 | 0 | −1.20796 | 0 | −1.45998 | + | 1.69366i | 0 | 1.00000 | 0 | −1.54083 | 0 | ||||||||||||||||
169.8 | 0 | −1.20796 | 0 | −1.45998 | − | 1.69366i | 0 | 1.00000 | 0 | −1.54083 | 0 | ||||||||||||||||
169.9 | 0 | −1.20753 | 0 | −0.390259 | + | 2.20175i | 0 | 1.00000 | 0 | −1.54186 | 0 | ||||||||||||||||
169.10 | 0 | −1.20753 | 0 | −0.390259 | − | 2.20175i | 0 | 1.00000 | 0 | −1.54186 | 0 | ||||||||||||||||
169.11 | 0 | −0.0401658 | 0 | 1.78015 | + | 1.35317i | 0 | 1.00000 | 0 | −2.99839 | 0 | ||||||||||||||||
169.12 | 0 | −0.0401658 | 0 | 1.78015 | − | 1.35317i | 0 | 1.00000 | 0 | −2.99839 | 0 | ||||||||||||||||
169.13 | 0 | 0.355118 | 0 | 0.778855 | − | 2.09604i | 0 | 1.00000 | 0 | −2.87389 | 0 | ||||||||||||||||
169.14 | 0 | 0.355118 | 0 | 0.778855 | + | 2.09604i | 0 | 1.00000 | 0 | −2.87389 | 0 | ||||||||||||||||
169.15 | 0 | 0.807362 | 0 | −2.19195 | + | 0.442004i | 0 | 1.00000 | 0 | −2.34817 | 0 | ||||||||||||||||
169.16 | 0 | 0.807362 | 0 | −2.19195 | − | 0.442004i | 0 | 1.00000 | 0 | −2.34817 | 0 | ||||||||||||||||
169.17 | 0 | 1.60963 | 0 | −0.593519 | − | 2.15586i | 0 | 1.00000 | 0 | −0.409099 | 0 | ||||||||||||||||
169.18 | 0 | 1.60963 | 0 | −0.593519 | + | 2.15586i | 0 | 1.00000 | 0 | −0.409099 | 0 | ||||||||||||||||
169.19 | 0 | 1.69521 | 0 | 1.71782 | + | 1.43146i | 0 | 1.00000 | 0 | −0.126273 | 0 | ||||||||||||||||
169.20 | 0 | 1.69521 | 0 | 1.71782 | − | 1.43146i | 0 | 1.00000 | 0 | −0.126273 | 0 | ||||||||||||||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2380.2.m.d | yes | 26 |
5.b | even | 2 | 1 | 2380.2.m.c | ✓ | 26 | |
17.b | even | 2 | 1 | 2380.2.m.c | ✓ | 26 | |
85.c | even | 2 | 1 | inner | 2380.2.m.d | yes | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2380.2.m.c | ✓ | 26 | 5.b | even | 2 | 1 | |
2380.2.m.c | ✓ | 26 | 17.b | even | 2 | 1 | |
2380.2.m.d | yes | 26 | 1.a | even | 1 | 1 | trivial |
2380.2.m.d | yes | 26 | 85.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{13} - 3 T_{3}^{12} - 23 T_{3}^{11} + 71 T_{3}^{10} + 176 T_{3}^{9} - 574 T_{3}^{8} - 522 T_{3}^{7} + \cdots - 16 \)
acting on \(S_{2}^{\mathrm{new}}(2380, [\chi])\).