Properties

Label 2-2380-85.84-c1-0-9
Degree $2$
Conductor $2380$
Sign $0.753 - 0.657i$
Analytic cond. $19.0043$
Root an. cond. $4.35940$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.24·3-s + (−1.49 − 1.65i)5-s + 7-s + 7.55·9-s − 0.886i·11-s − 0.479i·13-s + (4.87 + 5.39i)15-s + (−0.0707 + 4.12i)17-s − 3.23·19-s − 3.24·21-s − 0.245·23-s + (−0.506 + 4.97i)25-s − 14.8·27-s + 2.80i·29-s − 9.97i·31-s + ⋯
L(s)  = 1  − 1.87·3-s + (−0.670 − 0.742i)5-s + 0.377·7-s + 2.51·9-s − 0.267i·11-s − 0.132i·13-s + (1.25 + 1.39i)15-s + (−0.0171 + 0.999i)17-s − 0.742·19-s − 0.709·21-s − 0.0511·23-s + (−0.101 + 0.994i)25-s − 2.84·27-s + 0.520i·29-s − 1.79i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.753 - 0.657i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.753 - 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2380\)    =    \(2^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $0.753 - 0.657i$
Analytic conductor: \(19.0043\)
Root analytic conductor: \(4.35940\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2380} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2380,\ (\ :1/2),\ 0.753 - 0.657i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4941458583\)
\(L(\frac12)\) \(\approx\) \(0.4941458583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (1.49 + 1.65i)T \)
7 \( 1 - T \)
17 \( 1 + (0.0707 - 4.12i)T \)
good3 \( 1 + 3.24T + 3T^{2} \)
11 \( 1 + 0.886iT - 11T^{2} \)
13 \( 1 + 0.479iT - 13T^{2} \)
19 \( 1 + 3.23T + 19T^{2} \)
23 \( 1 + 0.245T + 23T^{2} \)
29 \( 1 - 2.80iT - 29T^{2} \)
31 \( 1 + 9.97iT - 31T^{2} \)
37 \( 1 + 5.26T + 37T^{2} \)
41 \( 1 - 0.773iT - 41T^{2} \)
43 \( 1 + 0.972iT - 43T^{2} \)
47 \( 1 + 10.8iT - 47T^{2} \)
53 \( 1 - 2.66iT - 53T^{2} \)
59 \( 1 + 5.87T + 59T^{2} \)
61 \( 1 - 11.2iT - 61T^{2} \)
67 \( 1 + 12.5iT - 67T^{2} \)
71 \( 1 - 9.47iT - 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 - 13.0iT - 79T^{2} \)
83 \( 1 - 13.8iT - 83T^{2} \)
89 \( 1 - 14.9T + 89T^{2} \)
97 \( 1 - 0.686T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.027776233544505787745181815554, −8.199525084563913491364590272007, −7.43083167109003280137250296516, −6.58068136909177960002948780521, −5.79552599736653185148399098160, −5.22972170048111677909513447410, −4.37959487585892545971480211700, −3.82243773212055388199311385744, −1.81764019696532324754654566889, −0.74000151642753262351819086353, 0.34216866878517421396281089301, 1.73724359746768941678641681152, 3.22600293057710224245831016156, 4.46212153541102130633040562135, 4.80725668699350487587005849058, 5.84057110177238979264476452180, 6.56390152865669475991024173537, 7.13402305094997321047501748405, 7.77971529130909262134935687220, 8.941779491497800682737255567810

Graph of the $Z$-function along the critical line