Properties

Label 2380.2
Level 2380
Weight 2
Dimension 83516
Nonzero newspaces 72
Sturm bound 663552
Trace bound 33

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 72 \)
Sturm bound: \(663552\)
Trace bound: \(33\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2380))\).

Total New Old
Modular forms 169728 85324 84404
Cusp forms 162049 83516 78533
Eisenstein series 7679 1808 5871

Trace form

\( 83516 q - 60 q^{2} - 12 q^{3} - 52 q^{4} - 182 q^{5} - 144 q^{6} - 12 q^{7} - 108 q^{8} - 92 q^{9} - 36 q^{10} - 20 q^{11} + 8 q^{12} - 96 q^{13} - 20 q^{14} - 28 q^{15} - 108 q^{16} - 154 q^{17} - 116 q^{18}+ \cdots + 816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2380))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2380.2.a \(\chi_{2380}(1, \cdot)\) 2380.2.a.a 1 1
2380.2.a.b 3
2380.2.a.c 3
2380.2.a.d 4
2380.2.a.e 4
2380.2.a.f 4
2380.2.a.g 4
2380.2.a.h 4
2380.2.a.i 5
2380.2.d \(\chi_{2380}(1121, \cdot)\) 2380.2.d.a 2 1
2380.2.d.b 2
2380.2.d.c 2
2380.2.d.d 12
2380.2.d.e 18
2380.2.e \(\chi_{2380}(1259, \cdot)\) n/a 384 1
2380.2.h \(\chi_{2380}(1429, \cdot)\) 2380.2.h.a 2 1
2380.2.h.b 2
2380.2.h.c 20
2380.2.h.d 24
2380.2.i \(\chi_{2380}(951, \cdot)\) n/a 288 1
2380.2.l \(\chi_{2380}(2211, \cdot)\) n/a 256 1
2380.2.m \(\chi_{2380}(169, \cdot)\) 2380.2.m.a 2 1
2380.2.m.b 2
2380.2.m.c 26
2380.2.m.d 26
2380.2.p \(\chi_{2380}(2379, \cdot)\) n/a 424 1
2380.2.q \(\chi_{2380}(681, \cdot)\) 2380.2.q.a 2 2
2380.2.q.b 2
2380.2.q.c 4
2380.2.q.d 4
2380.2.q.e 6
2380.2.q.f 18
2380.2.q.g 24
2380.2.q.h 28
2380.2.r \(\chi_{2380}(293, \cdot)\) n/a 144 2
2380.2.s \(\chi_{2380}(463, \cdot)\) n/a 648 2
2380.2.x \(\chi_{2380}(1667, \cdot)\) n/a 576 2
2380.2.y \(\chi_{2380}(237, \cdot)\) n/a 144 2
2380.2.z \(\chi_{2380}(1849, \cdot)\) n/a 112 2
2380.2.ba \(\chi_{2380}(251, \cdot)\) n/a 576 2
2380.2.bd \(\chi_{2380}(1679, \cdot)\) n/a 848 2
2380.2.be \(\chi_{2380}(421, \cdot)\) 2380.2.be.a 4 2
2380.2.be.b 32
2380.2.be.c 36
2380.2.bj \(\chi_{2380}(1497, \cdot)\) n/a 128 2
2380.2.bk \(\chi_{2380}(407, \cdot)\) n/a 648 2
2380.2.bl \(\chi_{2380}(183, \cdot)\) n/a 648 2
2380.2.bm \(\chi_{2380}(13, \cdot)\) n/a 144 2
2380.2.bp \(\chi_{2380}(339, \cdot)\) n/a 848 2
2380.2.bs \(\chi_{2380}(849, \cdot)\) n/a 144 2
2380.2.bt \(\chi_{2380}(171, \cdot)\) n/a 512 2
2380.2.bw \(\chi_{2380}(271, \cdot)\) n/a 576 2
2380.2.bx \(\chi_{2380}(1089, \cdot)\) n/a 128 2
2380.2.ca \(\chi_{2380}(579, \cdot)\) n/a 768 2
2380.2.cb \(\chi_{2380}(781, \cdot)\) 2380.2.cb.a 4 2
2380.2.cb.b 92
2380.2.cf \(\chi_{2380}(281, \cdot)\) n/a 144 4
2380.2.ch \(\chi_{2380}(559, \cdot)\) n/a 1696 4
2380.2.ci \(\chi_{2380}(127, \cdot)\) n/a 1296 4
2380.2.cl \(\chi_{2380}(433, \cdot)\) n/a 288 4
2380.2.cn \(\chi_{2380}(1273, \cdot)\) n/a 288 4
2380.2.co \(\chi_{2380}(43, \cdot)\) n/a 1296 4
2380.2.cq \(\chi_{2380}(111, \cdot)\) n/a 1152 4
2380.2.cs \(\chi_{2380}(729, \cdot)\) n/a 208 4
2380.2.cw \(\chi_{2380}(157, \cdot)\) n/a 288 4
2380.2.cx \(\chi_{2380}(667, \cdot)\) n/a 1696 4
2380.2.cy \(\chi_{2380}(817, \cdot)\) n/a 256 4
2380.2.cz \(\chi_{2380}(67, \cdot)\) n/a 1696 4
2380.2.de \(\chi_{2380}(591, \cdot)\) n/a 1152 4
2380.2.df \(\chi_{2380}(149, \cdot)\) n/a 288 4
2380.2.di \(\chi_{2380}(81, \cdot)\) n/a 192 4
2380.2.dj \(\chi_{2380}(999, \cdot)\) n/a 1696 4
2380.2.dk \(\chi_{2380}(443, \cdot)\) n/a 1536 4
2380.2.dl \(\chi_{2380}(33, \cdot)\) n/a 288 4
2380.2.dq \(\chi_{2380}(123, \cdot)\) n/a 1696 4
2380.2.dr \(\chi_{2380}(633, \cdot)\) n/a 288 4
2380.2.dt \(\chi_{2380}(167, \cdot)\) n/a 3392 8
2380.2.du \(\chi_{2380}(57, \cdot)\) n/a 432 8
2380.2.dy \(\chi_{2380}(209, \cdot)\) n/a 576 8
2380.2.dz \(\chi_{2380}(71, \cdot)\) n/a 1728 8
2380.2.ea \(\chi_{2380}(41, \cdot)\) n/a 384 8
2380.2.eb \(\chi_{2380}(99, \cdot)\) n/a 2592 8
2380.2.ee \(\chi_{2380}(113, \cdot)\) n/a 432 8
2380.2.eh \(\chi_{2380}(27, \cdot)\) n/a 3392 8
2380.2.ei \(\chi_{2380}(19, \cdot)\) n/a 3392 8
2380.2.ek \(\chi_{2380}(121, \cdot)\) n/a 384 8
2380.2.en \(\chi_{2380}(117, \cdot)\) n/a 576 8
2380.2.eo \(\chi_{2380}(247, \cdot)\) n/a 3392 8
2380.2.eq \(\chi_{2380}(263, \cdot)\) n/a 3392 8
2380.2.et \(\chi_{2380}(297, \cdot)\) n/a 576 8
2380.2.ev \(\chi_{2380}(9, \cdot)\) n/a 576 8
2380.2.ex \(\chi_{2380}(451, \cdot)\) n/a 2304 8
2380.2.ey \(\chi_{2380}(177, \cdot)\) n/a 1152 16
2380.2.fb \(\chi_{2380}(143, \cdot)\) n/a 6784 16
2380.2.fe \(\chi_{2380}(61, \cdot)\) n/a 768 16
2380.2.ff \(\chi_{2380}(39, \cdot)\) n/a 6784 16
2380.2.fg \(\chi_{2380}(129, \cdot)\) n/a 1152 16
2380.2.fh \(\chi_{2380}(11, \cdot)\) n/a 4608 16
2380.2.fl \(\chi_{2380}(3, \cdot)\) n/a 6784 16
2380.2.fm \(\chi_{2380}(37, \cdot)\) n/a 1152 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2380))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2380)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(595))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1190))\)\(^{\oplus 2}\)