L(s) = 1 | + 1.60·3-s + (−0.593 + 2.15i)5-s + 7-s − 0.409·9-s + 1.11i·11-s − 0.620i·13-s + (−0.955 + 3.47i)15-s + (−2.60 + 3.19i)17-s + 2.31·19-s + 1.60·21-s − 5.06·23-s + (−4.29 − 2.55i)25-s − 5.48·27-s + 8.48i·29-s + 7.02i·31-s + ⋯ |
L(s) = 1 | + 0.929·3-s + (−0.265 + 0.964i)5-s + 0.377·7-s − 0.136·9-s + 0.337i·11-s − 0.172i·13-s + (−0.246 + 0.895i)15-s + (−0.632 + 0.774i)17-s + 0.530·19-s + 0.351·21-s − 1.05·23-s + (−0.859 − 0.511i)25-s − 1.05·27-s + 1.57i·29-s + 1.26i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.578 - 0.815i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.634523982\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.634523982\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.593 - 2.15i)T \) |
| 7 | \( 1 - T \) |
| 17 | \( 1 + (2.60 - 3.19i)T \) |
good | 3 | \( 1 - 1.60T + 3T^{2} \) |
| 11 | \( 1 - 1.11iT - 11T^{2} \) |
| 13 | \( 1 + 0.620iT - 13T^{2} \) |
| 19 | \( 1 - 2.31T + 19T^{2} \) |
| 23 | \( 1 + 5.06T + 23T^{2} \) |
| 29 | \( 1 - 8.48iT - 29T^{2} \) |
| 31 | \( 1 - 7.02iT - 31T^{2} \) |
| 37 | \( 1 - 5.36T + 37T^{2} \) |
| 41 | \( 1 + 3.80iT - 41T^{2} \) |
| 43 | \( 1 - 1.63iT - 43T^{2} \) |
| 47 | \( 1 - 0.311iT - 47T^{2} \) |
| 53 | \( 1 + 7.23iT - 53T^{2} \) |
| 59 | \( 1 + 7.16T + 59T^{2} \) |
| 61 | \( 1 - 11.9iT - 61T^{2} \) |
| 67 | \( 1 - 8.09iT - 67T^{2} \) |
| 71 | \( 1 + 6.35iT - 71T^{2} \) |
| 73 | \( 1 - 9.07T + 73T^{2} \) |
| 79 | \( 1 + 6.96iT - 79T^{2} \) |
| 83 | \( 1 - 8.78iT - 83T^{2} \) |
| 89 | \( 1 + 18.0T + 89T^{2} \) |
| 97 | \( 1 - 18.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.075013802500636701130490165728, −8.428825445271719641477246199136, −7.77309031003751208770165285459, −7.09479009330013290417267053707, −6.26624233990063617629214018754, −5.31923781920615110455364685800, −4.17492779818593791848462767737, −3.41679515411724482920488564384, −2.63567409213374621078168544632, −1.70992973998060481203100276542,
0.45481199400094583191186051555, 1.90171078482946323171056928280, 2.77081914877863778537497492238, 3.91542750174290701417157371901, 4.51546465111722515806762592889, 5.52919367207064474071405908553, 6.28210921106110307170286519414, 7.66057800574994109048298589808, 7.936651902008088742441722288310, 8.633274188822789993089333416395