L(s) = 1 | + 3.16·3-s + (−0.0171 + 2.23i)5-s + 7-s + 6.98·9-s + 2.27i·11-s + 1.38i·13-s + (−0.0543 + 7.06i)15-s + (−2.92 − 2.90i)17-s + 6.80·19-s + 3.16·21-s + 3.58·23-s + (−4.99 − 0.0768i)25-s + 12.6·27-s − 9.18i·29-s − 6.18i·31-s + ⋯ |
L(s) = 1 | + 1.82·3-s + (−0.00768 + 0.999i)5-s + 0.377·7-s + 2.32·9-s + 0.685i·11-s + 0.383i·13-s + (−0.0140 + 1.82i)15-s + (−0.709 − 0.704i)17-s + 1.56·19-s + 0.689·21-s + 0.748·23-s + (−0.999 − 0.0153i)25-s + 2.42·27-s − 1.70i·29-s − 1.11i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.833850201\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.833850201\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.0171 - 2.23i)T \) |
| 7 | \( 1 - T \) |
| 17 | \( 1 + (2.92 + 2.90i)T \) |
good | 3 | \( 1 - 3.16T + 3T^{2} \) |
| 11 | \( 1 - 2.27iT - 11T^{2} \) |
| 13 | \( 1 - 1.38iT - 13T^{2} \) |
| 19 | \( 1 - 6.80T + 19T^{2} \) |
| 23 | \( 1 - 3.58T + 23T^{2} \) |
| 29 | \( 1 + 9.18iT - 29T^{2} \) |
| 31 | \( 1 + 6.18iT - 31T^{2} \) |
| 37 | \( 1 + 7.25T + 37T^{2} \) |
| 41 | \( 1 - 10.0iT - 41T^{2} \) |
| 43 | \( 1 - 9.12iT - 43T^{2} \) |
| 47 | \( 1 - 2.98iT - 47T^{2} \) |
| 53 | \( 1 - 0.939iT - 53T^{2} \) |
| 59 | \( 1 + 1.35T + 59T^{2} \) |
| 61 | \( 1 - 2.45iT - 61T^{2} \) |
| 67 | \( 1 - 4.66iT - 67T^{2} \) |
| 71 | \( 1 - 4.19iT - 71T^{2} \) |
| 73 | \( 1 + 13.7T + 73T^{2} \) |
| 79 | \( 1 + 10.6iT - 79T^{2} \) |
| 83 | \( 1 - 2.49iT - 83T^{2} \) |
| 89 | \( 1 - 4.18T + 89T^{2} \) |
| 97 | \( 1 + 6.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.169113444740872832844626624535, −8.205898989803696472283664479539, −7.48441972755269945164321908658, −7.21237159880005066799294594396, −6.19739119969916255616721072816, −4.76336030638374365650802534559, −4.07369939336778342588545882282, −3.03372989182924626786223109513, −2.56262481044086142710299903759, −1.57452597491718194959758797246,
1.16192033516430025963079976738, 2.00299360135010452154003823846, 3.25841417891197253432324532754, 3.67989947488483337596403169579, 4.85766548714969669972077817524, 5.46128077778768398239547428723, 6.95908149261277111498406839783, 7.51309800861057386590290040960, 8.445750983768608210812982028940, 8.784184491275957627594138569910