Defining parameters
Level: | \( N \) | \(=\) | \( 2320 = 2^{4} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2320.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2320))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 372 | 56 | 316 |
Cusp forms | 349 | 56 | 293 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(40\) | \(6\) | \(34\) | \(38\) | \(6\) | \(32\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(50\) | \(8\) | \(42\) | \(47\) | \(8\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(46\) | \(8\) | \(38\) | \(43\) | \(8\) | \(35\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(48\) | \(6\) | \(42\) | \(45\) | \(6\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(53\) | \(8\) | \(45\) | \(50\) | \(8\) | \(42\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(43\) | \(6\) | \(37\) | \(40\) | \(6\) | \(34\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(47\) | \(6\) | \(41\) | \(44\) | \(6\) | \(38\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(45\) | \(8\) | \(37\) | \(42\) | \(8\) | \(34\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(178\) | \(24\) | \(154\) | \(167\) | \(24\) | \(143\) | \(11\) | \(0\) | \(11\) | |||||
Minus space | \(-\) | \(194\) | \(32\) | \(162\) | \(182\) | \(32\) | \(150\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2320))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2320))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2320)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1160))\)\(^{\oplus 2}\)