Properties

 Label 2320.2.a.o Level $2320$ Weight $2$ Character orbit 2320.a Self dual yes Analytic conductor $18.525$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2320,2,Mod(1,2320)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2320, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2320.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2320 = 2^{4} \cdot 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2320.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.5252932689$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 580) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta_1 - 1) q^{3} + q^{5} + (\beta_{2} - 1) q^{7} + (\beta_{2} - \beta_1 + 1) q^{9}+O(q^{10})$$ q + (b1 - 1) * q^3 + q^5 + (b2 - 1) * q^7 + (b2 - b1 + 1) * q^9 $$q + (\beta_1 - 1) q^{3} + q^{5} + (\beta_{2} - 1) q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + (\beta_{2} - 1) q^{11} + (\beta_{2} + \beta_1) q^{13} + (\beta_1 - 1) q^{15} + (\beta_{2} + 3) q^{17} + (\beta_1 - 1) q^{19} + ( - \beta_{2} + \beta_1) q^{21} + ( - \beta_1 + 1) q^{23} + q^{25} + ( - 2 \beta_{2} - 2) q^{27} + q^{29} + ( - \beta_1 + 1) q^{31} + ( - \beta_{2} + \beta_1) q^{33} + (\beta_{2} - 1) q^{35} + ( - \beta_{2} + 5) q^{37} + (2 \beta_1 + 2) q^{39} + ( - \beta_{2} + 3 \beta_1) q^{41} + ( - 2 \beta_{2} - 3 \beta_1 + 5) q^{43} + (\beta_{2} - \beta_1 + 1) q^{45} + ( - 3 \beta_1 - 1) q^{47} + ( - 3 \beta_{2} - \beta_1 + 1) q^{49} + ( - \beta_{2} + 5 \beta_1 - 4) q^{51} + ( - 3 \beta_{2} + 3 \beta_1 + 2) q^{53} + (\beta_{2} - 1) q^{55} + (\beta_{2} - \beta_1 + 4) q^{57} + ( - \beta_{2} + 3 \beta_1 - 2) q^{59} + (3 \beta_{2} + 5 \beta_1 - 6) q^{61} + ( - \beta_{2} - 2 \beta_1 + 7) q^{63} + (\beta_{2} + \beta_1) q^{65} + ( - \beta_1 + 1) q^{67} + ( - \beta_{2} + \beta_1 - 4) q^{69} + ( - 3 \beta_{2} + \beta_1 + 2) q^{71} + ( - \beta_1 + 1) q^{73} + (\beta_1 - 1) q^{75} + ( - 3 \beta_{2} - \beta_1 + 8) q^{77} + (3 \beta_{2} + 9) q^{79} + ( - \beta_{2} - 3 \beta_1 + 1) q^{81} + (3 \beta_{2} + 2 \beta_1 + 3) q^{83} + (\beta_{2} + 3) q^{85} + (\beta_1 - 1) q^{87} + (4 \beta_{2} - 2 \beta_1) q^{89} + ( - 2 \beta_{2} + 6) q^{91} + ( - \beta_{2} + \beta_1 - 4) q^{93} + (\beta_1 - 1) q^{95} + (2 \beta_{2} - 5 \beta_1 + 3) q^{97} + ( - \beta_{2} - 2 \beta_1 + 7) q^{99}+O(q^{100})$$ q + (b1 - 1) * q^3 + q^5 + (b2 - 1) * q^7 + (b2 - b1 + 1) * q^9 + (b2 - 1) * q^11 + (b2 + b1) * q^13 + (b1 - 1) * q^15 + (b2 + 3) * q^17 + (b1 - 1) * q^19 + (-b2 + b1) * q^21 + (-b1 + 1) * q^23 + q^25 + (-2*b2 - 2) * q^27 + q^29 + (-b1 + 1) * q^31 + (-b2 + b1) * q^33 + (b2 - 1) * q^35 + (-b2 + 5) * q^37 + (2*b1 + 2) * q^39 + (-b2 + 3*b1) * q^41 + (-2*b2 - 3*b1 + 5) * q^43 + (b2 - b1 + 1) * q^45 + (-3*b1 - 1) * q^47 + (-3*b2 - b1 + 1) * q^49 + (-b2 + 5*b1 - 4) * q^51 + (-3*b2 + 3*b1 + 2) * q^53 + (b2 - 1) * q^55 + (b2 - b1 + 4) * q^57 + (-b2 + 3*b1 - 2) * q^59 + (3*b2 + 5*b1 - 6) * q^61 + (-b2 - 2*b1 + 7) * q^63 + (b2 + b1) * q^65 + (-b1 + 1) * q^67 + (-b2 + b1 - 4) * q^69 + (-3*b2 + b1 + 2) * q^71 + (-b1 + 1) * q^73 + (b1 - 1) * q^75 + (-3*b2 - b1 + 8) * q^77 + (3*b2 + 9) * q^79 + (-b2 - 3*b1 + 1) * q^81 + (3*b2 + 2*b1 + 3) * q^83 + (b2 + 3) * q^85 + (b1 - 1) * q^87 + (4*b2 - 2*b1) * q^89 + (-2*b2 + 6) * q^91 + (-b2 + b1 - 4) * q^93 + (b1 - 1) * q^95 + (2*b2 - 5*b1 + 3) * q^97 + (-b2 - 2*b1 + 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 2 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9}+O(q^{10})$$ 3 * q - 2 * q^3 + 3 * q^5 - 2 * q^7 + 3 * q^9 $$3 q - 2 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} + 2 q^{13} - 2 q^{15} + 10 q^{17} - 2 q^{19} + 2 q^{23} + 3 q^{25} - 8 q^{27} + 3 q^{29} + 2 q^{31} - 2 q^{35} + 14 q^{37} + 8 q^{39} + 2 q^{41} + 10 q^{43} + 3 q^{45} - 6 q^{47} - q^{49} - 8 q^{51} + 6 q^{53} - 2 q^{55} + 12 q^{57} - 4 q^{59} - 10 q^{61} + 18 q^{63} + 2 q^{65} + 2 q^{67} - 12 q^{69} + 4 q^{71} + 2 q^{73} - 2 q^{75} + 20 q^{77} + 30 q^{79} - q^{81} + 14 q^{83} + 10 q^{85} - 2 q^{87} + 2 q^{89} + 16 q^{91} - 12 q^{93} - 2 q^{95} + 6 q^{97} + 18 q^{99}+O(q^{100})$$ 3 * q - 2 * q^3 + 3 * q^5 - 2 * q^7 + 3 * q^9 - 2 * q^11 + 2 * q^13 - 2 * q^15 + 10 * q^17 - 2 * q^19 + 2 * q^23 + 3 * q^25 - 8 * q^27 + 3 * q^29 + 2 * q^31 - 2 * q^35 + 14 * q^37 + 8 * q^39 + 2 * q^41 + 10 * q^43 + 3 * q^45 - 6 * q^47 - q^49 - 8 * q^51 + 6 * q^53 - 2 * q^55 + 12 * q^57 - 4 * q^59 - 10 * q^61 + 18 * q^63 + 2 * q^65 + 2 * q^67 - 12 * q^69 + 4 * q^71 + 2 * q^73 - 2 * q^75 + 20 * q^77 + 30 * q^79 - q^81 + 14 * q^83 + 10 * q^85 - 2 * q^87 + 2 * q^89 + 16 * q^91 - 12 * q^93 - 2 * q^95 + 6 * q^97 + 18 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu^{2} - 2$$ v^2 - 2 $$\beta_{2}$$ $$=$$ $$-\nu^{2} + 2\nu + 2$$ -v^2 + 2*v + 2
 $$\nu$$ $$=$$ $$( \beta_{2} + \beta_1 ) / 2$$ (b2 + b1) / 2 $$\nu^{2}$$ $$=$$ $$\beta _1 + 2$$ b1 + 2

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0.311108 −1.48119 2.17009
0 −2.90321 0 1.00000 0 1.52543 0 5.42864 0
1.2 0 −0.806063 0 1.00000 0 −4.15633 0 −2.35026 0
1.3 0 1.70928 0 1.00000 0 0.630898 0 −0.0783777 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$29$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.2.a.o 3
4.b odd 2 1 580.2.a.d 3
8.b even 2 1 9280.2.a.bt 3
8.d odd 2 1 9280.2.a.bh 3
12.b even 2 1 5220.2.a.w 3
20.d odd 2 1 2900.2.a.f 3
20.e even 4 2 2900.2.c.g 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.a.d 3 4.b odd 2 1
2320.2.a.o 3 1.a even 1 1 trivial
2900.2.a.f 3 20.d odd 2 1
2900.2.c.g 6 20.e even 4 2
5220.2.a.w 3 12.b even 2 1
9280.2.a.bh 3 8.d odd 2 1
9280.2.a.bt 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2320))$$:

 $$T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 4$$ T3^3 + 2*T3^2 - 4*T3 - 4 $$T_{7}^{3} + 2T_{7}^{2} - 8T_{7} + 4$$ T7^3 + 2*T7^2 - 8*T7 + 4 $$T_{11}^{3} + 2T_{11}^{2} - 8T_{11} + 4$$ T11^3 + 2*T11^2 - 8*T11 + 4

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3} + 2 T^{2} + \cdots - 4$$
$5$ $$(T - 1)^{3}$$
$7$ $$T^{3} + 2 T^{2} + \cdots + 4$$
$11$ $$T^{3} + 2 T^{2} + \cdots + 4$$
$13$ $$T^{3} - 2 T^{2} + \cdots + 8$$
$17$ $$T^{3} - 10 T^{2} + \cdots + 4$$
$19$ $$T^{3} + 2 T^{2} + \cdots - 4$$
$23$ $$T^{3} - 2 T^{2} + \cdots + 4$$
$29$ $$(T - 1)^{3}$$
$31$ $$T^{3} - 2 T^{2} + \cdots + 4$$
$37$ $$T^{3} - 14 T^{2} + \cdots - 68$$
$41$ $$T^{3} - 2 T^{2} + \cdots + 200$$
$43$ $$T^{3} - 10 T^{2} + \cdots + 388$$
$47$ $$T^{3} + 6 T^{2} + \cdots - 68$$
$53$ $$T^{3} - 6 T^{2} + \cdots + 712$$
$59$ $$T^{3} + 4 T^{2} + \cdots + 80$$
$61$ $$T^{3} + 10 T^{2} + \cdots - 1432$$
$67$ $$T^{3} - 2 T^{2} + \cdots + 4$$
$71$ $$T^{3} - 4 T^{2} + \cdots - 16$$
$73$ $$T^{3} - 2 T^{2} + \cdots + 4$$
$79$ $$T^{3} - 30 T^{2} + \cdots + 108$$
$83$ $$T^{3} - 14 T^{2} + \cdots + 548$$
$89$ $$T^{3} - 2 T^{2} + \cdots + 200$$
$97$ $$T^{3} - 6 T^{2} + \cdots - 548$$