Properties

Label 2320.2.a.o
Level $2320$
Weight $2$
Character orbit 2320.a
Self dual yes
Analytic conductor $18.525$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(1,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-2,0,3,0,-2,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + q^{5} + (\beta_{2} - 1) q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + (\beta_{2} - 1) q^{11} + (\beta_{2} + \beta_1) q^{13} + (\beta_1 - 1) q^{15} + (\beta_{2} + 3) q^{17} + (\beta_1 - 1) q^{19}+ \cdots + ( - \beta_{2} - 2 \beta_1 + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} + 2 q^{13} - 2 q^{15} + 10 q^{17} - 2 q^{19} + 2 q^{23} + 3 q^{25} - 8 q^{27} + 3 q^{29} + 2 q^{31} - 2 q^{35} + 14 q^{37} + 8 q^{39} + 2 q^{41} + 10 q^{43}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
−1.48119
2.17009
0 −2.90321 0 1.00000 0 1.52543 0 5.42864 0
1.2 0 −0.806063 0 1.00000 0 −4.15633 0 −2.35026 0
1.3 0 1.70928 0 1.00000 0 0.630898 0 −0.0783777 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.2.a.o 3
4.b odd 2 1 580.2.a.d 3
8.b even 2 1 9280.2.a.bt 3
8.d odd 2 1 9280.2.a.bh 3
12.b even 2 1 5220.2.a.w 3
20.d odd 2 1 2900.2.a.f 3
20.e even 4 2 2900.2.c.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.a.d 3 4.b odd 2 1
2320.2.a.o 3 1.a even 1 1 trivial
2900.2.a.f 3 20.d odd 2 1
2900.2.c.g 6 20.e even 4 2
5220.2.a.w 3 12.b even 2 1
9280.2.a.bh 3 8.d odd 2 1
9280.2.a.bt 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2320))\):

\( T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 8T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} + 2T_{11}^{2} - 8T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 10 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{3} - 14 T^{2} + \cdots - 68 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 200 \) Copy content Toggle raw display
$43$ \( T^{3} - 10 T^{2} + \cdots + 388 \) Copy content Toggle raw display
$47$ \( T^{3} + 6 T^{2} + \cdots - 68 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 712 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$61$ \( T^{3} + 10 T^{2} + \cdots - 1432 \) Copy content Toggle raw display
$67$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$71$ \( T^{3} - 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$73$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$79$ \( T^{3} - 30 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$83$ \( T^{3} - 14 T^{2} + \cdots + 548 \) Copy content Toggle raw display
$89$ \( T^{3} - 2 T^{2} + \cdots + 200 \) Copy content Toggle raw display
$97$ \( T^{3} - 6 T^{2} + \cdots - 548 \) Copy content Toggle raw display
show more
show less