Properties

Label 2320.2.a.k
Level $2320$
Weight $2$
Character orbit 2320.a
Self dual yes
Analytic conductor $18.525$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{3} + q^{5} + ( - \beta + 2) q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{3} + q^{5} + ( - \beta + 2) q^{7} + q^{9} + (\beta + 2) q^{11} - 2 q^{13} + 2 q^{15} - \beta q^{17} + ( - \beta + 2) q^{19} + ( - 2 \beta + 4) q^{21} + (\beta + 6) q^{23} + q^{25} - 4 q^{27} + q^{29} + (3 \beta + 2) q^{31} + (2 \beta + 4) q^{33} + ( - \beta + 2) q^{35} + 3 \beta q^{37} - 4 q^{39} - 6 q^{41} + 6 q^{43} + q^{45} + ( - 2 \beta + 6) q^{47} + ( - 4 \beta + 5) q^{49} - 2 \beta q^{51} + (2 \beta + 2) q^{53} + (\beta + 2) q^{55} + ( - 2 \beta + 4) q^{57} + (2 \beta + 2) q^{61} + ( - \beta + 2) q^{63} - 2 q^{65} + (3 \beta + 2) q^{67} + (2 \beta + 12) q^{69} + ( - 4 \beta + 4) q^{71} - 3 \beta q^{73} + 2 q^{75} - 4 q^{77} + ( - 3 \beta - 6) q^{79} - 11 q^{81} + ( - \beta - 10) q^{83} - \beta q^{85} + 2 q^{87} + (2 \beta - 2) q^{89} + (2 \beta - 4) q^{91} + (6 \beta + 4) q^{93} + ( - \beta + 2) q^{95} + (3 \beta - 4) q^{97} + (\beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} + 4 q^{19} + 8 q^{21} + 12 q^{23} + 2 q^{25} - 8 q^{27} + 2 q^{29} + 4 q^{31} + 8 q^{33} + 4 q^{35} - 8 q^{39} - 12 q^{41} + 12 q^{43} + 2 q^{45} + 12 q^{47} + 10 q^{49} + 4 q^{53} + 4 q^{55} + 8 q^{57} + 4 q^{61} + 4 q^{63} - 4 q^{65} + 4 q^{67} + 24 q^{69} + 8 q^{71} + 4 q^{75} - 8 q^{77} - 12 q^{79} - 22 q^{81} - 20 q^{83} + 4 q^{87} - 4 q^{89} - 8 q^{91} + 8 q^{93} + 4 q^{95} - 8 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.41421
−1.41421
0 2.00000 0 1.00000 0 −0.828427 0 1.00000 0
1.2 0 2.00000 0 1.00000 0 4.82843 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(29\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.2.a.k 2
4.b odd 2 1 145.2.a.b 2
8.b even 2 1 9280.2.a.w 2
8.d odd 2 1 9280.2.a.be 2
12.b even 2 1 1305.2.a.n 2
20.d odd 2 1 725.2.a.c 2
20.e even 4 2 725.2.b.c 4
28.d even 2 1 7105.2.a.e 2
60.h even 2 1 6525.2.a.p 2
116.d odd 2 1 4205.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.a.b 2 4.b odd 2 1
725.2.a.c 2 20.d odd 2 1
725.2.b.c 4 20.e even 4 2
1305.2.a.n 2 12.b even 2 1
2320.2.a.k 2 1.a even 1 1 trivial
4205.2.a.d 2 116.d odd 2 1
6525.2.a.p 2 60.h even 2 1
7105.2.a.e 2 28.d even 2 1
9280.2.a.w 2 8.b even 2 1
9280.2.a.be 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2320))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 2)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 8 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 68 \) Copy content Toggle raw display
$37$ \( T^{2} - 72 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 68 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 112 \) Copy content Toggle raw display
$73$ \( T^{2} - 72 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T - 36 \) Copy content Toggle raw display
$83$ \( T^{2} + 20T + 92 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
show more
show less