# Properties

 Label 2320.2.a.g Level $2320$ Weight $2$ Character orbit 2320.a Self dual yes Analytic conductor $18.525$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2320,2,Mod(1,2320)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2320, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2320.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2320 = 2^{4} \cdot 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2320.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.5252932689$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 580) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{5} + 2 q^{7} - 3 q^{9}+O(q^{10})$$ q + q^5 + 2 * q^7 - 3 * q^9 $$q + q^{5} + 2 q^{7} - 3 q^{9} + 4 q^{11} - 6 q^{13} - 4 q^{17} - 4 q^{19} - 6 q^{23} + q^{25} - q^{29} + 2 q^{35} - 8 q^{37} - 2 q^{41} - 4 q^{43} - 3 q^{45} + 4 q^{47} - 3 q^{49} - 2 q^{53} + 4 q^{55} - 8 q^{59} + 10 q^{61} - 6 q^{63} - 6 q^{65} + 10 q^{67} + 8 q^{71} + 8 q^{77} - 8 q^{79} + 9 q^{81} + 6 q^{83} - 4 q^{85} + 6 q^{89} - 12 q^{91} - 4 q^{95} - 12 q^{97} - 12 q^{99}+O(q^{100})$$ q + q^5 + 2 * q^7 - 3 * q^9 + 4 * q^11 - 6 * q^13 - 4 * q^17 - 4 * q^19 - 6 * q^23 + q^25 - q^29 + 2 * q^35 - 8 * q^37 - 2 * q^41 - 4 * q^43 - 3 * q^45 + 4 * q^47 - 3 * q^49 - 2 * q^53 + 4 * q^55 - 8 * q^59 + 10 * q^61 - 6 * q^63 - 6 * q^65 + 10 * q^67 + 8 * q^71 + 8 * q^77 - 8 * q^79 + 9 * q^81 + 6 * q^83 - 4 * q^85 + 6 * q^89 - 12 * q^91 - 4 * q^95 - 12 * q^97 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 1.00000 0 2.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$29$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.2.a.g 1
4.b odd 2 1 580.2.a.b 1
8.b even 2 1 9280.2.a.i 1
8.d odd 2 1 9280.2.a.f 1
12.b even 2 1 5220.2.a.e 1
20.d odd 2 1 2900.2.a.d 1
20.e even 4 2 2900.2.c.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.a.b 1 4.b odd 2 1
2320.2.a.g 1 1.a even 1 1 trivial
2900.2.a.d 1 20.d odd 2 1
2900.2.c.d 2 20.e even 4 2
5220.2.a.e 1 12.b even 2 1
9280.2.a.f 1 8.d odd 2 1
9280.2.a.i 1 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2320))$$:

 $$T_{3}$$ T3 $$T_{7} - 2$$ T7 - 2 $$T_{11} - 4$$ T11 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 1$$
$7$ $$T - 2$$
$11$ $$T - 4$$
$13$ $$T + 6$$
$17$ $$T + 4$$
$19$ $$T + 4$$
$23$ $$T + 6$$
$29$ $$T + 1$$
$31$ $$T$$
$37$ $$T + 8$$
$41$ $$T + 2$$
$43$ $$T + 4$$
$47$ $$T - 4$$
$53$ $$T + 2$$
$59$ $$T + 8$$
$61$ $$T - 10$$
$67$ $$T - 10$$
$71$ $$T - 8$$
$73$ $$T$$
$79$ $$T + 8$$
$83$ $$T - 6$$
$89$ $$T - 6$$
$97$ $$T + 12$$