Properties

Label 2312.2.b.l.577.6
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-24,0,0,0,12,0,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.6
Root \(1.87939i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.l.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.22668i q^{3} +3.87939i q^{5} -0.467911i q^{7} -7.41147 q^{9} -1.30541i q^{11} -2.94356 q^{13} -12.5175 q^{15} +3.18479 q^{19} +1.50980 q^{21} +3.17024i q^{23} -10.0496 q^{25} -14.2344i q^{27} -8.80066i q^{29} -0.857097i q^{31} +4.21213 q^{33} +1.81521 q^{35} -3.49020i q^{37} -9.49794i q^{39} +8.12061i q^{41} -7.00774 q^{43} -28.7520i q^{45} -2.41147 q^{47} +6.78106 q^{49} -1.30541 q^{53} +5.06418 q^{55} +10.2763i q^{57} -9.96585 q^{59} +3.35504i q^{61} +3.46791i q^{63} -11.4192i q^{65} -12.7811 q^{67} -10.2294 q^{69} +12.6236i q^{71} -5.10607i q^{73} -32.4270i q^{75} -0.610815 q^{77} +4.06418i q^{79} +23.6955 q^{81} +8.51754 q^{83} +28.3969 q^{87} -4.31315 q^{89} +1.37733i q^{91} +2.76558 q^{93} +12.3550i q^{95} +6.93582i q^{97} +9.67499i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{9} + 12 q^{13} - 30 q^{15} + 12 q^{19} + 12 q^{21} - 6 q^{25} - 24 q^{33} + 18 q^{35} + 6 q^{43} + 6 q^{47} + 6 q^{49} - 12 q^{53} + 12 q^{55} - 18 q^{59} - 42 q^{67} - 30 q^{69} - 12 q^{77}+ \cdots + 78 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.22668i 1.86293i 0.363837 + 0.931463i \(0.381467\pi\)
−0.363837 + 0.931463i \(0.618533\pi\)
\(4\) 0 0
\(5\) 3.87939i 1.73491i 0.497512 + 0.867457i \(0.334247\pi\)
−0.497512 + 0.867457i \(0.665753\pi\)
\(6\) 0 0
\(7\) − 0.467911i − 0.176854i −0.996083 0.0884269i \(-0.971816\pi\)
0.996083 0.0884269i \(-0.0281840\pi\)
\(8\) 0 0
\(9\) −7.41147 −2.47049
\(10\) 0 0
\(11\) − 1.30541i − 0.393595i −0.980444 0.196798i \(-0.936946\pi\)
0.980444 0.196798i \(-0.0630542\pi\)
\(12\) 0 0
\(13\) −2.94356 −0.816397 −0.408199 0.912893i \(-0.633843\pi\)
−0.408199 + 0.912893i \(0.633843\pi\)
\(14\) 0 0
\(15\) −12.5175 −3.23202
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.18479 0.730642 0.365321 0.930882i \(-0.380959\pi\)
0.365321 + 0.930882i \(0.380959\pi\)
\(20\) 0 0
\(21\) 1.50980 0.329465
\(22\) 0 0
\(23\) 3.17024i 0.661042i 0.943799 + 0.330521i \(0.107224\pi\)
−0.943799 + 0.330521i \(0.892776\pi\)
\(24\) 0 0
\(25\) −10.0496 −2.00993
\(26\) 0 0
\(27\) − 14.2344i − 2.73942i
\(28\) 0 0
\(29\) − 8.80066i − 1.63424i −0.576467 0.817121i \(-0.695569\pi\)
0.576467 0.817121i \(-0.304431\pi\)
\(30\) 0 0
\(31\) − 0.857097i − 0.153939i −0.997033 0.0769695i \(-0.975476\pi\)
0.997033 0.0769695i \(-0.0245244\pi\)
\(32\) 0 0
\(33\) 4.21213 0.733238
\(34\) 0 0
\(35\) 1.81521 0.306826
\(36\) 0 0
\(37\) − 3.49020i − 0.573785i −0.957963 0.286893i \(-0.907378\pi\)
0.957963 0.286893i \(-0.0926223\pi\)
\(38\) 0 0
\(39\) − 9.49794i − 1.52089i
\(40\) 0 0
\(41\) 8.12061i 1.26823i 0.773240 + 0.634113i \(0.218635\pi\)
−0.773240 + 0.634113i \(0.781365\pi\)
\(42\) 0 0
\(43\) −7.00774 −1.06867 −0.534335 0.845273i \(-0.679438\pi\)
−0.534335 + 0.845273i \(0.679438\pi\)
\(44\) 0 0
\(45\) − 28.7520i − 4.28609i
\(46\) 0 0
\(47\) −2.41147 −0.351750 −0.175875 0.984413i \(-0.556275\pi\)
−0.175875 + 0.984413i \(0.556275\pi\)
\(48\) 0 0
\(49\) 6.78106 0.968723
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.30541 −0.179311 −0.0896557 0.995973i \(-0.528577\pi\)
−0.0896557 + 0.995973i \(0.528577\pi\)
\(54\) 0 0
\(55\) 5.06418 0.682854
\(56\) 0 0
\(57\) 10.2763i 1.36113i
\(58\) 0 0
\(59\) −9.96585 −1.29744 −0.648722 0.761026i \(-0.724696\pi\)
−0.648722 + 0.761026i \(0.724696\pi\)
\(60\) 0 0
\(61\) 3.35504i 0.429568i 0.976662 + 0.214784i \(0.0689048\pi\)
−0.976662 + 0.214784i \(0.931095\pi\)
\(62\) 0 0
\(63\) 3.46791i 0.436916i
\(64\) 0 0
\(65\) − 11.4192i − 1.41638i
\(66\) 0 0
\(67\) −12.7811 −1.56145 −0.780727 0.624872i \(-0.785151\pi\)
−0.780727 + 0.624872i \(0.785151\pi\)
\(68\) 0 0
\(69\) −10.2294 −1.23147
\(70\) 0 0
\(71\) 12.6236i 1.49815i 0.662487 + 0.749073i \(0.269501\pi\)
−0.662487 + 0.749073i \(0.730499\pi\)
\(72\) 0 0
\(73\) − 5.10607i − 0.597620i −0.954313 0.298810i \(-0.903410\pi\)
0.954313 0.298810i \(-0.0965897\pi\)
\(74\) 0 0
\(75\) − 32.4270i − 3.74434i
\(76\) 0 0
\(77\) −0.610815 −0.0696088
\(78\) 0 0
\(79\) 4.06418i 0.457256i 0.973514 + 0.228628i \(0.0734239\pi\)
−0.973514 + 0.228628i \(0.926576\pi\)
\(80\) 0 0
\(81\) 23.6955 2.63284
\(82\) 0 0
\(83\) 8.51754 0.934922 0.467461 0.884014i \(-0.345169\pi\)
0.467461 + 0.884014i \(0.345169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 28.3969 3.04447
\(88\) 0 0
\(89\) −4.31315 −0.457193 −0.228596 0.973521i \(-0.573414\pi\)
−0.228596 + 0.973521i \(0.573414\pi\)
\(90\) 0 0
\(91\) 1.37733i 0.144383i
\(92\) 0 0
\(93\) 2.76558 0.286777
\(94\) 0 0
\(95\) 12.3550i 1.26760i
\(96\) 0 0
\(97\) 6.93582i 0.704226i 0.935957 + 0.352113i \(0.114537\pi\)
−0.935957 + 0.352113i \(0.885463\pi\)
\(98\) 0 0
\(99\) 9.67499i 0.972373i
\(100\) 0 0
\(101\) 13.9094 1.38404 0.692019 0.721879i \(-0.256721\pi\)
0.692019 + 0.721879i \(0.256721\pi\)
\(102\) 0 0
\(103\) −13.7219 −1.35206 −0.676031 0.736873i \(-0.736302\pi\)
−0.676031 + 0.736873i \(0.736302\pi\)
\(104\) 0 0
\(105\) 5.85710i 0.571594i
\(106\) 0 0
\(107\) 15.9290i 1.53992i 0.638095 + 0.769958i \(0.279723\pi\)
−0.638095 + 0.769958i \(0.720277\pi\)
\(108\) 0 0
\(109\) − 1.22163i − 0.117011i −0.998287 0.0585054i \(-0.981367\pi\)
0.998287 0.0585054i \(-0.0186335\pi\)
\(110\) 0 0
\(111\) 11.2618 1.06892
\(112\) 0 0
\(113\) − 2.47565i − 0.232890i −0.993197 0.116445i \(-0.962850\pi\)
0.993197 0.116445i \(-0.0371498\pi\)
\(114\) 0 0
\(115\) −12.2986 −1.14685
\(116\) 0 0
\(117\) 21.8161 2.01690
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.29591 0.845083
\(122\) 0 0
\(123\) −26.2026 −2.36261
\(124\) 0 0
\(125\) − 19.5895i − 1.75213i
\(126\) 0 0
\(127\) −2.36184 −0.209580 −0.104790 0.994494i \(-0.533417\pi\)
−0.104790 + 0.994494i \(0.533417\pi\)
\(128\) 0 0
\(129\) − 22.6117i − 1.99085i
\(130\) 0 0
\(131\) 1.07098i 0.0935724i 0.998905 + 0.0467862i \(0.0148979\pi\)
−0.998905 + 0.0467862i \(0.985102\pi\)
\(132\) 0 0
\(133\) − 1.49020i − 0.129217i
\(134\) 0 0
\(135\) 55.2208 4.75265
\(136\) 0 0
\(137\) 19.5749 1.67240 0.836199 0.548426i \(-0.184773\pi\)
0.836199 + 0.548426i \(0.184773\pi\)
\(138\) 0 0
\(139\) 7.95811i 0.674998i 0.941326 + 0.337499i \(0.109581\pi\)
−0.941326 + 0.337499i \(0.890419\pi\)
\(140\) 0 0
\(141\) − 7.78106i − 0.655283i
\(142\) 0 0
\(143\) 3.84255i 0.321330i
\(144\) 0 0
\(145\) 34.1411 2.83527
\(146\) 0 0
\(147\) 21.8803i 1.80466i
\(148\) 0 0
\(149\) 1.65270 0.135395 0.0676974 0.997706i \(-0.478435\pi\)
0.0676974 + 0.997706i \(0.478435\pi\)
\(150\) 0 0
\(151\) −15.8280 −1.28806 −0.644032 0.764998i \(-0.722740\pi\)
−0.644032 + 0.764998i \(0.722740\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.32501 0.267071
\(156\) 0 0
\(157\) −6.80840 −0.543370 −0.271685 0.962386i \(-0.587581\pi\)
−0.271685 + 0.962386i \(0.587581\pi\)
\(158\) 0 0
\(159\) − 4.21213i − 0.334044i
\(160\) 0 0
\(161\) 1.48339 0.116908
\(162\) 0 0
\(163\) − 3.81521i − 0.298830i −0.988775 0.149415i \(-0.952261\pi\)
0.988775 0.149415i \(-0.0477391\pi\)
\(164\) 0 0
\(165\) 16.3405i 1.27211i
\(166\) 0 0
\(167\) − 11.7023i − 0.905554i −0.891624 0.452777i \(-0.850433\pi\)
0.891624 0.452777i \(-0.149567\pi\)
\(168\) 0 0
\(169\) −4.33544 −0.333495
\(170\) 0 0
\(171\) −23.6040 −1.80504
\(172\) 0 0
\(173\) − 15.1361i − 1.15078i −0.817881 0.575388i \(-0.804851\pi\)
0.817881 0.575388i \(-0.195149\pi\)
\(174\) 0 0
\(175\) 4.70233i 0.355463i
\(176\) 0 0
\(177\) − 32.1566i − 2.41704i
\(178\) 0 0
\(179\) −6.10607 −0.456389 −0.228194 0.973616i \(-0.573282\pi\)
−0.228194 + 0.973616i \(0.573282\pi\)
\(180\) 0 0
\(181\) 7.28581i 0.541550i 0.962643 + 0.270775i \(0.0872799\pi\)
−0.962643 + 0.270775i \(0.912720\pi\)
\(182\) 0 0
\(183\) −10.8256 −0.800254
\(184\) 0 0
\(185\) 13.5398 0.995468
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −6.66044 −0.484476
\(190\) 0 0
\(191\) −16.5253 −1.19573 −0.597864 0.801598i \(-0.703984\pi\)
−0.597864 + 0.801598i \(0.703984\pi\)
\(192\) 0 0
\(193\) − 5.65270i − 0.406891i −0.979086 0.203445i \(-0.934786\pi\)
0.979086 0.203445i \(-0.0652139\pi\)
\(194\) 0 0
\(195\) 36.8462 2.63861
\(196\) 0 0
\(197\) 0.834808i 0.0594776i 0.999558 + 0.0297388i \(0.00946755\pi\)
−0.999558 + 0.0297388i \(0.990532\pi\)
\(198\) 0 0
\(199\) 23.0719i 1.63552i 0.575556 + 0.817762i \(0.304786\pi\)
−0.575556 + 0.817762i \(0.695214\pi\)
\(200\) 0 0
\(201\) − 41.2404i − 2.90887i
\(202\) 0 0
\(203\) −4.11793 −0.289022
\(204\) 0 0
\(205\) −31.5030 −2.20026
\(206\) 0 0
\(207\) − 23.4962i − 1.63310i
\(208\) 0 0
\(209\) − 4.15745i − 0.287577i
\(210\) 0 0
\(211\) 17.8530i 1.22905i 0.788897 + 0.614525i \(0.210652\pi\)
−0.788897 + 0.614525i \(0.789348\pi\)
\(212\) 0 0
\(213\) −40.7324 −2.79094
\(214\) 0 0
\(215\) − 27.1857i − 1.85405i
\(216\) 0 0
\(217\) −0.401045 −0.0272247
\(218\) 0 0
\(219\) 16.4757 1.11332
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.6750 −0.982710 −0.491355 0.870959i \(-0.663498\pi\)
−0.491355 + 0.870959i \(0.663498\pi\)
\(224\) 0 0
\(225\) 74.4826 4.96550
\(226\) 0 0
\(227\) − 18.6013i − 1.23461i −0.786723 0.617306i \(-0.788224\pi\)
0.786723 0.617306i \(-0.211776\pi\)
\(228\) 0 0
\(229\) −7.78880 −0.514698 −0.257349 0.966318i \(-0.582849\pi\)
−0.257349 + 0.966318i \(0.582849\pi\)
\(230\) 0 0
\(231\) − 1.97090i − 0.129676i
\(232\) 0 0
\(233\) 15.4466i 1.01194i 0.862552 + 0.505969i \(0.168865\pi\)
−0.862552 + 0.505969i \(0.831135\pi\)
\(234\) 0 0
\(235\) − 9.35504i − 0.610255i
\(236\) 0 0
\(237\) −13.1138 −0.851833
\(238\) 0 0
\(239\) 26.9368 1.74239 0.871197 0.490934i \(-0.163344\pi\)
0.871197 + 0.490934i \(0.163344\pi\)
\(240\) 0 0
\(241\) 19.7246i 1.27057i 0.772276 + 0.635287i \(0.219118\pi\)
−0.772276 + 0.635287i \(0.780882\pi\)
\(242\) 0 0
\(243\) 33.7547i 2.16536i
\(244\) 0 0
\(245\) 26.3063i 1.68065i
\(246\) 0 0
\(247\) −9.37464 −0.596494
\(248\) 0 0
\(249\) 27.4834i 1.74169i
\(250\) 0 0
\(251\) 26.9864 1.70337 0.851683 0.524058i \(-0.175582\pi\)
0.851683 + 0.524058i \(0.175582\pi\)
\(252\) 0 0
\(253\) 4.13846 0.260183
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.2422 −1.76170 −0.880849 0.473398i \(-0.843027\pi\)
−0.880849 + 0.473398i \(0.843027\pi\)
\(258\) 0 0
\(259\) −1.63310 −0.101476
\(260\) 0 0
\(261\) 65.2259i 4.03738i
\(262\) 0 0
\(263\) −5.96585 −0.367870 −0.183935 0.982938i \(-0.558884\pi\)
−0.183935 + 0.982938i \(0.558884\pi\)
\(264\) 0 0
\(265\) − 5.06418i − 0.311090i
\(266\) 0 0
\(267\) − 13.9172i − 0.851716i
\(268\) 0 0
\(269\) − 23.7392i − 1.44740i −0.690113 0.723701i \(-0.742439\pi\)
0.690113 0.723701i \(-0.257561\pi\)
\(270\) 0 0
\(271\) −6.56212 −0.398620 −0.199310 0.979936i \(-0.563870\pi\)
−0.199310 + 0.979936i \(0.563870\pi\)
\(272\) 0 0
\(273\) −4.44419 −0.268975
\(274\) 0 0
\(275\) 13.1189i 0.791097i
\(276\) 0 0
\(277\) − 13.7638i − 0.826988i −0.910507 0.413494i \(-0.864308\pi\)
0.910507 0.413494i \(-0.135692\pi\)
\(278\) 0 0
\(279\) 6.35235i 0.380305i
\(280\) 0 0
\(281\) 23.0446 1.37472 0.687362 0.726315i \(-0.258769\pi\)
0.687362 + 0.726315i \(0.258769\pi\)
\(282\) 0 0
\(283\) − 24.0077i − 1.42711i −0.700598 0.713556i \(-0.747083\pi\)
0.700598 0.713556i \(-0.252917\pi\)
\(284\) 0 0
\(285\) −39.8658 −2.36144
\(286\) 0 0
\(287\) 3.79973 0.224291
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −22.3797 −1.31192
\(292\) 0 0
\(293\) −21.2472 −1.24128 −0.620638 0.784097i \(-0.713126\pi\)
−0.620638 + 0.784097i \(0.713126\pi\)
\(294\) 0 0
\(295\) − 38.6614i − 2.25095i
\(296\) 0 0
\(297\) −18.5817 −1.07822
\(298\) 0 0
\(299\) − 9.33181i − 0.539673i
\(300\) 0 0
\(301\) 3.27900i 0.188998i
\(302\) 0 0
\(303\) 44.8813i 2.57836i
\(304\) 0 0
\(305\) −13.0155 −0.745264
\(306\) 0 0
\(307\) 13.3277 0.760652 0.380326 0.924853i \(-0.375812\pi\)
0.380326 + 0.924853i \(0.375812\pi\)
\(308\) 0 0
\(309\) − 44.2763i − 2.51879i
\(310\) 0 0
\(311\) − 10.5895i − 0.600473i −0.953865 0.300237i \(-0.902934\pi\)
0.953865 0.300237i \(-0.0970656\pi\)
\(312\) 0 0
\(313\) − 4.38919i − 0.248091i −0.992277 0.124046i \(-0.960413\pi\)
0.992277 0.124046i \(-0.0395869\pi\)
\(314\) 0 0
\(315\) −13.4534 −0.758011
\(316\) 0 0
\(317\) − 1.36184i − 0.0764888i −0.999268 0.0382444i \(-0.987823\pi\)
0.999268 0.0382444i \(-0.0121765\pi\)
\(318\) 0 0
\(319\) −11.4884 −0.643229
\(320\) 0 0
\(321\) −51.3979 −2.86875
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 29.5817 1.64090
\(326\) 0 0
\(327\) 3.94181 0.217982
\(328\) 0 0
\(329\) 1.12836i 0.0622083i
\(330\) 0 0
\(331\) −17.9418 −0.986171 −0.493085 0.869981i \(-0.664131\pi\)
−0.493085 + 0.869981i \(0.664131\pi\)
\(332\) 0 0
\(333\) 25.8675i 1.41753i
\(334\) 0 0
\(335\) − 49.5827i − 2.70899i
\(336\) 0 0
\(337\) 32.6091i 1.77633i 0.459526 + 0.888164i \(0.348019\pi\)
−0.459526 + 0.888164i \(0.651981\pi\)
\(338\) 0 0
\(339\) 7.98814 0.433856
\(340\) 0 0
\(341\) −1.11886 −0.0605897
\(342\) 0 0
\(343\) − 6.44831i − 0.348176i
\(344\) 0 0
\(345\) − 39.6837i − 2.13650i
\(346\) 0 0
\(347\) 11.3696i 0.610351i 0.952296 + 0.305176i \(0.0987152\pi\)
−0.952296 + 0.305176i \(0.901285\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 41.8999i 2.23645i
\(352\) 0 0
\(353\) −11.1506 −0.593489 −0.296744 0.954957i \(-0.595901\pi\)
−0.296744 + 0.954957i \(0.595901\pi\)
\(354\) 0 0
\(355\) −48.9718 −2.59916
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.4442 1.02623 0.513113 0.858321i \(-0.328492\pi\)
0.513113 + 0.858321i \(0.328492\pi\)
\(360\) 0 0
\(361\) −8.85710 −0.466163
\(362\) 0 0
\(363\) 29.9949i 1.57433i
\(364\) 0 0
\(365\) 19.8084 1.03682
\(366\) 0 0
\(367\) − 29.4662i − 1.53812i −0.639176 0.769060i \(-0.720724\pi\)
0.639176 0.769060i \(-0.279276\pi\)
\(368\) 0 0
\(369\) − 60.1857i − 3.13314i
\(370\) 0 0
\(371\) 0.610815i 0.0317119i
\(372\) 0 0
\(373\) −31.2891 −1.62009 −0.810044 0.586369i \(-0.800557\pi\)
−0.810044 + 0.586369i \(0.800557\pi\)
\(374\) 0 0
\(375\) 63.2089 3.26410
\(376\) 0 0
\(377\) 25.9053i 1.33419i
\(378\) 0 0
\(379\) 31.9932i 1.64338i 0.569935 + 0.821690i \(0.306968\pi\)
−0.569935 + 0.821690i \(0.693032\pi\)
\(380\) 0 0
\(381\) − 7.62092i − 0.390432i
\(382\) 0 0
\(383\) 4.00505 0.204649 0.102324 0.994751i \(-0.467372\pi\)
0.102324 + 0.994751i \(0.467372\pi\)
\(384\) 0 0
\(385\) − 2.36959i − 0.120765i
\(386\) 0 0
\(387\) 51.9377 2.64014
\(388\) 0 0
\(389\) −13.0155 −0.659911 −0.329956 0.943996i \(-0.607034\pi\)
−0.329956 + 0.943996i \(0.607034\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −3.45573 −0.174318
\(394\) 0 0
\(395\) −15.7665 −0.793299
\(396\) 0 0
\(397\) − 37.0523i − 1.85960i −0.368062 0.929801i \(-0.619979\pi\)
0.368062 0.929801i \(-0.380021\pi\)
\(398\) 0 0
\(399\) 4.80840 0.240721
\(400\) 0 0
\(401\) 8.84255i 0.441576i 0.975322 + 0.220788i \(0.0708629\pi\)
−0.975322 + 0.220788i \(0.929137\pi\)
\(402\) 0 0
\(403\) 2.52292i 0.125675i
\(404\) 0 0
\(405\) 91.9241i 4.56774i
\(406\) 0 0
\(407\) −4.55613 −0.225839
\(408\) 0 0
\(409\) 10.0942 0.499126 0.249563 0.968359i \(-0.419713\pi\)
0.249563 + 0.968359i \(0.419713\pi\)
\(410\) 0 0
\(411\) 63.1620i 3.11555i
\(412\) 0 0
\(413\) 4.66313i 0.229458i
\(414\) 0 0
\(415\) 33.0428i 1.62201i
\(416\) 0 0
\(417\) −25.6783 −1.25747
\(418\) 0 0
\(419\) − 19.2226i − 0.939084i −0.882910 0.469542i \(-0.844419\pi\)
0.882910 0.469542i \(-0.155581\pi\)
\(420\) 0 0
\(421\) 13.1925 0.642965 0.321482 0.946916i \(-0.395819\pi\)
0.321482 + 0.946916i \(0.395819\pi\)
\(422\) 0 0
\(423\) 17.8726 0.868994
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.56986 0.0759708
\(428\) 0 0
\(429\) −12.3987 −0.598614
\(430\) 0 0
\(431\) 18.8307i 0.907042i 0.891245 + 0.453521i \(0.149832\pi\)
−0.891245 + 0.453521i \(0.850168\pi\)
\(432\) 0 0
\(433\) 4.19665 0.201678 0.100839 0.994903i \(-0.467847\pi\)
0.100839 + 0.994903i \(0.467847\pi\)
\(434\) 0 0
\(435\) 110.163i 5.28189i
\(436\) 0 0
\(437\) 10.0966i 0.482985i
\(438\) 0 0
\(439\) 32.8708i 1.56884i 0.620231 + 0.784419i \(0.287039\pi\)
−0.620231 + 0.784419i \(0.712961\pi\)
\(440\) 0 0
\(441\) −50.2576 −2.39322
\(442\) 0 0
\(443\) −13.3979 −0.636552 −0.318276 0.947998i \(-0.603104\pi\)
−0.318276 + 0.947998i \(0.603104\pi\)
\(444\) 0 0
\(445\) − 16.7324i − 0.793190i
\(446\) 0 0
\(447\) 5.33275i 0.252230i
\(448\) 0 0
\(449\) − 10.3446i − 0.488192i −0.969751 0.244096i \(-0.921509\pi\)
0.969751 0.244096i \(-0.0784912\pi\)
\(450\) 0 0
\(451\) 10.6007 0.499168
\(452\) 0 0
\(453\) − 51.0719i − 2.39957i
\(454\) 0 0
\(455\) −5.34318 −0.250492
\(456\) 0 0
\(457\) 20.4929 0.958617 0.479308 0.877647i \(-0.340888\pi\)
0.479308 + 0.877647i \(0.340888\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.9017 −0.600891 −0.300445 0.953799i \(-0.597135\pi\)
−0.300445 + 0.953799i \(0.597135\pi\)
\(462\) 0 0
\(463\) 9.54488 0.443588 0.221794 0.975094i \(-0.428809\pi\)
0.221794 + 0.975094i \(0.428809\pi\)
\(464\) 0 0
\(465\) 10.7287i 0.497533i
\(466\) 0 0
\(467\) −16.5790 −0.767186 −0.383593 0.923502i \(-0.625313\pi\)
−0.383593 + 0.923502i \(0.625313\pi\)
\(468\) 0 0
\(469\) 5.98040i 0.276149i
\(470\) 0 0
\(471\) − 21.9685i − 1.01226i
\(472\) 0 0
\(473\) 9.14796i 0.420623i
\(474\) 0 0
\(475\) −32.0060 −1.46854
\(476\) 0 0
\(477\) 9.67499 0.442987
\(478\) 0 0
\(479\) − 1.13247i − 0.0517441i −0.999665 0.0258720i \(-0.991764\pi\)
0.999665 0.0258720i \(-0.00823624\pi\)
\(480\) 0 0
\(481\) 10.2736i 0.468437i
\(482\) 0 0
\(483\) 4.78644i 0.217790i
\(484\) 0 0
\(485\) −26.9067 −1.22177
\(486\) 0 0
\(487\) 26.2267i 1.18844i 0.804301 + 0.594222i \(0.202540\pi\)
−0.804301 + 0.594222i \(0.797460\pi\)
\(488\) 0 0
\(489\) 12.3105 0.556698
\(490\) 0 0
\(491\) −3.40104 −0.153487 −0.0767435 0.997051i \(-0.524452\pi\)
−0.0767435 + 0.997051i \(0.524452\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −37.5330 −1.68698
\(496\) 0 0
\(497\) 5.90673 0.264953
\(498\) 0 0
\(499\) 29.6587i 1.32771i 0.747863 + 0.663853i \(0.231080\pi\)
−0.747863 + 0.663853i \(0.768920\pi\)
\(500\) 0 0
\(501\) 37.7597 1.68698
\(502\) 0 0
\(503\) 12.7861i 0.570105i 0.958512 + 0.285052i \(0.0920110\pi\)
−0.958512 + 0.285052i \(0.907989\pi\)
\(504\) 0 0
\(505\) 53.9600i 2.40119i
\(506\) 0 0
\(507\) − 13.9891i − 0.621277i
\(508\) 0 0
\(509\) −29.3337 −1.30019 −0.650096 0.759852i \(-0.725271\pi\)
−0.650096 + 0.759852i \(0.725271\pi\)
\(510\) 0 0
\(511\) −2.38919 −0.105691
\(512\) 0 0
\(513\) − 45.3337i − 2.00153i
\(514\) 0 0
\(515\) − 53.2327i − 2.34571i
\(516\) 0 0
\(517\) 3.14796i 0.138447i
\(518\) 0 0
\(519\) 48.8394 2.14381
\(520\) 0 0
\(521\) 22.8075i 0.999213i 0.866252 + 0.499607i \(0.166522\pi\)
−0.866252 + 0.499607i \(0.833478\pi\)
\(522\) 0 0
\(523\) −14.5422 −0.635886 −0.317943 0.948110i \(-0.602992\pi\)
−0.317943 + 0.948110i \(0.602992\pi\)
\(524\) 0 0
\(525\) −15.1729 −0.662201
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12.9495 0.563024
\(530\) 0 0
\(531\) 73.8617 3.20532
\(532\) 0 0
\(533\) − 23.9035i − 1.03538i
\(534\) 0 0
\(535\) −61.7948 −2.67162
\(536\) 0 0
\(537\) − 19.7023i − 0.850218i
\(538\) 0 0
\(539\) − 8.85204i − 0.381285i
\(540\) 0 0
\(541\) − 20.0651i − 0.862667i −0.902193 0.431333i \(-0.858043\pi\)
0.902193 0.431333i \(-0.141957\pi\)
\(542\) 0 0
\(543\) −23.5090 −1.00887
\(544\) 0 0
\(545\) 4.73917 0.203004
\(546\) 0 0
\(547\) − 14.1019i − 0.602956i −0.953473 0.301478i \(-0.902520\pi\)
0.953473 0.301478i \(-0.0974799\pi\)
\(548\) 0 0
\(549\) − 24.8658i − 1.06125i
\(550\) 0 0
\(551\) − 28.0283i − 1.19404i
\(552\) 0 0
\(553\) 1.90167 0.0808674
\(554\) 0 0
\(555\) 43.6887i 1.85448i
\(556\) 0 0
\(557\) −27.2344 −1.15396 −0.576980 0.816758i \(-0.695769\pi\)
−0.576980 + 0.816758i \(0.695769\pi\)
\(558\) 0 0
\(559\) 20.6277 0.872460
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.6869 0.492542 0.246271 0.969201i \(-0.420795\pi\)
0.246271 + 0.969201i \(0.420795\pi\)
\(564\) 0 0
\(565\) 9.60401 0.404044
\(566\) 0 0
\(567\) − 11.0874i − 0.465627i
\(568\) 0 0
\(569\) 10.7297 0.449811 0.224906 0.974381i \(-0.427793\pi\)
0.224906 + 0.974381i \(0.427793\pi\)
\(570\) 0 0
\(571\) − 8.86484i − 0.370982i −0.982646 0.185491i \(-0.940612\pi\)
0.982646 0.185491i \(-0.0593875\pi\)
\(572\) 0 0
\(573\) − 53.3218i − 2.22755i
\(574\) 0 0
\(575\) − 31.8598i − 1.32864i
\(576\) 0 0
\(577\) 28.8307 1.20024 0.600119 0.799911i \(-0.295120\pi\)
0.600119 + 0.799911i \(0.295120\pi\)
\(578\) 0 0
\(579\) 18.2395 0.758007
\(580\) 0 0
\(581\) − 3.98545i − 0.165344i
\(582\) 0 0
\(583\) 1.70409i 0.0705761i
\(584\) 0 0
\(585\) 84.6332i 3.49915i
\(586\) 0 0
\(587\) 4.58584 0.189278 0.0946389 0.995512i \(-0.469830\pi\)
0.0946389 + 0.995512i \(0.469830\pi\)
\(588\) 0 0
\(589\) − 2.72967i − 0.112474i
\(590\) 0 0
\(591\) −2.69366 −0.110802
\(592\) 0 0
\(593\) 21.8108 0.895661 0.447830 0.894119i \(-0.352197\pi\)
0.447830 + 0.894119i \(0.352197\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −74.4457 −3.04686
\(598\) 0 0
\(599\) −5.33544 −0.218000 −0.109000 0.994042i \(-0.534765\pi\)
−0.109000 + 0.994042i \(0.534765\pi\)
\(600\) 0 0
\(601\) 16.7273i 0.682321i 0.940005 + 0.341161i \(0.110820\pi\)
−0.940005 + 0.341161i \(0.889180\pi\)
\(602\) 0 0
\(603\) 94.7265 3.85756
\(604\) 0 0
\(605\) 36.0624i 1.46615i
\(606\) 0 0
\(607\) − 30.8794i − 1.25336i −0.779278 0.626678i \(-0.784414\pi\)
0.779278 0.626678i \(-0.215586\pi\)
\(608\) 0 0
\(609\) − 13.2872i − 0.538426i
\(610\) 0 0
\(611\) 7.09833 0.287168
\(612\) 0 0
\(613\) −46.6432 −1.88390 −0.941951 0.335751i \(-0.891010\pi\)
−0.941951 + 0.335751i \(0.891010\pi\)
\(614\) 0 0
\(615\) − 101.650i − 4.09893i
\(616\) 0 0
\(617\) − 2.08109i − 0.0837815i −0.999122 0.0418908i \(-0.986662\pi\)
0.999122 0.0418908i \(-0.0133381\pi\)
\(618\) 0 0
\(619\) 35.6168i 1.43156i 0.698326 + 0.715780i \(0.253929\pi\)
−0.698326 + 0.715780i \(0.746071\pi\)
\(620\) 0 0
\(621\) 45.1266 1.81087
\(622\) 0 0
\(623\) 2.01817i 0.0808563i
\(624\) 0 0
\(625\) 25.7469 1.02988
\(626\) 0 0
\(627\) 13.4148 0.535734
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −23.7939 −0.947218 −0.473609 0.880735i \(-0.657049\pi\)
−0.473609 + 0.880735i \(0.657049\pi\)
\(632\) 0 0
\(633\) −57.6059 −2.28963
\(634\) 0 0
\(635\) − 9.16250i − 0.363603i
\(636\) 0 0
\(637\) −19.9605 −0.790863
\(638\) 0 0
\(639\) − 93.5595i − 3.70116i
\(640\) 0 0
\(641\) 9.01455i 0.356053i 0.984026 + 0.178027i \(0.0569713\pi\)
−0.984026 + 0.178027i \(0.943029\pi\)
\(642\) 0 0
\(643\) 3.71419i 0.146473i 0.997315 + 0.0732367i \(0.0233329\pi\)
−0.997315 + 0.0732367i \(0.976667\pi\)
\(644\) 0 0
\(645\) 87.7197 3.45396
\(646\) 0 0
\(647\) 4.28405 0.168423 0.0842117 0.996448i \(-0.473163\pi\)
0.0842117 + 0.996448i \(0.473163\pi\)
\(648\) 0 0
\(649\) 13.0095i 0.510667i
\(650\) 0 0
\(651\) − 1.29404i − 0.0507176i
\(652\) 0 0
\(653\) − 4.64765i − 0.181877i −0.995857 0.0909383i \(-0.971013\pi\)
0.995857 0.0909383i \(-0.0289866\pi\)
\(654\) 0 0
\(655\) −4.15476 −0.162340
\(656\) 0 0
\(657\) 37.8435i 1.47641i
\(658\) 0 0
\(659\) −45.0259 −1.75396 −0.876980 0.480526i \(-0.840446\pi\)
−0.876980 + 0.480526i \(0.840446\pi\)
\(660\) 0 0
\(661\) 17.7537 0.690540 0.345270 0.938503i \(-0.387787\pi\)
0.345270 + 0.938503i \(0.387787\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.78106 0.224180
\(666\) 0 0
\(667\) 27.9002 1.08030
\(668\) 0 0
\(669\) − 47.3515i − 1.83072i
\(670\) 0 0
\(671\) 4.37969 0.169076
\(672\) 0 0
\(673\) 34.5357i 1.33125i 0.746285 + 0.665627i \(0.231836\pi\)
−0.746285 + 0.665627i \(0.768164\pi\)
\(674\) 0 0
\(675\) 143.051i 5.50602i
\(676\) 0 0
\(677\) − 29.1138i − 1.11893i −0.828852 0.559467i \(-0.811006\pi\)
0.828852 0.559467i \(-0.188994\pi\)
\(678\) 0 0
\(679\) 3.24535 0.124545
\(680\) 0 0
\(681\) 60.0205 2.29999
\(682\) 0 0
\(683\) 5.03508i 0.192662i 0.995349 + 0.0963310i \(0.0307107\pi\)
−0.995349 + 0.0963310i \(0.969289\pi\)
\(684\) 0 0
\(685\) 75.9386i 2.90147i
\(686\) 0 0
\(687\) − 25.1320i − 0.958845i
\(688\) 0 0
\(689\) 3.84255 0.146389
\(690\) 0 0
\(691\) 11.4270i 0.434702i 0.976094 + 0.217351i \(0.0697416\pi\)
−0.976094 + 0.217351i \(0.930258\pi\)
\(692\) 0 0
\(693\) 4.52704 0.171968
\(694\) 0 0
\(695\) −30.8726 −1.17106
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −49.8411 −1.88516
\(700\) 0 0
\(701\) 38.0806 1.43828 0.719142 0.694863i \(-0.244535\pi\)
0.719142 + 0.694863i \(0.244535\pi\)
\(702\) 0 0
\(703\) − 11.1156i − 0.419231i
\(704\) 0 0
\(705\) 30.1857 1.13686
\(706\) 0 0
\(707\) − 6.50837i − 0.244772i
\(708\) 0 0
\(709\) 13.7382i 0.515950i 0.966152 + 0.257975i \(0.0830553\pi\)
−0.966152 + 0.257975i \(0.916945\pi\)
\(710\) 0 0
\(711\) − 30.1215i − 1.12965i
\(712\) 0 0
\(713\) 2.71721 0.101760
\(714\) 0 0
\(715\) −14.9067 −0.557480
\(716\) 0 0
\(717\) 86.9163i 3.24595i
\(718\) 0 0
\(719\) − 8.36722i − 0.312045i −0.987754 0.156022i \(-0.950133\pi\)
0.987754 0.156022i \(-0.0498672\pi\)
\(720\) 0 0
\(721\) 6.42065i 0.239117i
\(722\) 0 0
\(723\) −63.6451 −2.36699
\(724\) 0 0
\(725\) 88.4434i 3.28470i
\(726\) 0 0
\(727\) −2.78518 −0.103297 −0.0516483 0.998665i \(-0.516447\pi\)
−0.0516483 + 0.998665i \(0.516447\pi\)
\(728\) 0 0
\(729\) −37.8289 −1.40107
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −5.34730 −0.197507 −0.0987534 0.995112i \(-0.531486\pi\)
−0.0987534 + 0.995112i \(0.531486\pi\)
\(734\) 0 0
\(735\) −84.8822 −3.13093
\(736\) 0 0
\(737\) 16.6845i 0.614581i
\(738\) 0 0
\(739\) 21.7374 0.799624 0.399812 0.916597i \(-0.369075\pi\)
0.399812 + 0.916597i \(0.369075\pi\)
\(740\) 0 0
\(741\) − 30.2490i − 1.11122i
\(742\) 0 0
\(743\) 31.2371i 1.14598i 0.819563 + 0.572989i \(0.194216\pi\)
−0.819563 + 0.572989i \(0.805784\pi\)
\(744\) 0 0
\(745\) 6.41147i 0.234898i
\(746\) 0 0
\(747\) −63.1275 −2.30972
\(748\) 0 0
\(749\) 7.45336 0.272340
\(750\) 0 0
\(751\) 22.9608i 0.837851i 0.908021 + 0.418926i \(0.137593\pi\)
−0.908021 + 0.418926i \(0.862407\pi\)
\(752\) 0 0
\(753\) 87.0765i 3.17324i
\(754\) 0 0
\(755\) − 61.4029i − 2.23468i
\(756\) 0 0
\(757\) 32.1756 1.16944 0.584721 0.811234i \(-0.301204\pi\)
0.584721 + 0.811234i \(0.301204\pi\)
\(758\) 0 0
\(759\) 13.3535i 0.484701i
\(760\) 0 0
\(761\) −24.8348 −0.900261 −0.450131 0.892963i \(-0.648623\pi\)
−0.450131 + 0.892963i \(0.648623\pi\)
\(762\) 0 0
\(763\) −0.571614 −0.0206938
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.3351 1.05923
\(768\) 0 0
\(769\) −2.52671 −0.0911156 −0.0455578 0.998962i \(-0.514507\pi\)
−0.0455578 + 0.998962i \(0.514507\pi\)
\(770\) 0 0
\(771\) − 91.1285i − 3.28191i
\(772\) 0 0
\(773\) 35.9968 1.29472 0.647358 0.762186i \(-0.275874\pi\)
0.647358 + 0.762186i \(0.275874\pi\)
\(774\) 0 0
\(775\) 8.61350i 0.309406i
\(776\) 0 0
\(777\) − 5.26950i − 0.189042i
\(778\) 0 0
\(779\) 25.8625i 0.926619i
\(780\) 0 0
\(781\) 16.4789 0.589663
\(782\) 0 0
\(783\) −125.272 −4.47687
\(784\) 0 0
\(785\) − 26.4124i − 0.942699i
\(786\) 0 0
\(787\) 24.4338i 0.870970i 0.900196 + 0.435485i \(0.143423\pi\)
−0.900196 + 0.435485i \(0.856577\pi\)
\(788\) 0 0
\(789\) − 19.2499i − 0.685315i
\(790\) 0 0
\(791\) −1.15839 −0.0411874
\(792\) 0 0
\(793\) − 9.87576i − 0.350699i
\(794\) 0 0
\(795\) 16.3405 0.579537
\(796\) 0 0
\(797\) −6.45161 −0.228528 −0.114264 0.993450i \(-0.536451\pi\)
−0.114264 + 0.993450i \(0.536451\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 31.9668 1.12949
\(802\) 0 0
\(803\) −6.66550 −0.235220
\(804\) 0 0
\(805\) 5.75465i 0.202825i
\(806\) 0 0
\(807\) 76.5987 2.69640
\(808\) 0 0
\(809\) 22.6777i 0.797305i 0.917102 + 0.398652i \(0.130522\pi\)
−0.917102 + 0.398652i \(0.869478\pi\)
\(810\) 0 0
\(811\) 20.7989i 0.730348i 0.930939 + 0.365174i \(0.118991\pi\)
−0.930939 + 0.365174i \(0.881009\pi\)
\(812\) 0 0
\(813\) − 21.1739i − 0.742600i
\(814\) 0 0
\(815\) 14.8007 0.518444
\(816\) 0 0
\(817\) −22.3182 −0.780815
\(818\) 0 0
\(819\) − 10.2080i − 0.356697i
\(820\) 0 0
\(821\) 42.5381i 1.48459i 0.670074 + 0.742295i \(0.266262\pi\)
−0.670074 + 0.742295i \(0.733738\pi\)
\(822\) 0 0
\(823\) 49.3474i 1.72014i 0.510174 + 0.860071i \(0.329581\pi\)
−0.510174 + 0.860071i \(0.670419\pi\)
\(824\) 0 0
\(825\) −42.3304 −1.47375
\(826\) 0 0
\(827\) − 20.3577i − 0.707907i −0.935263 0.353954i \(-0.884837\pi\)
0.935263 0.353954i \(-0.115163\pi\)
\(828\) 0 0
\(829\) 24.0820 0.836403 0.418202 0.908354i \(-0.362661\pi\)
0.418202 + 0.908354i \(0.362661\pi\)
\(830\) 0 0
\(831\) 44.4115 1.54062
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 45.3979 1.57106
\(836\) 0 0
\(837\) −12.2003 −0.421703
\(838\) 0 0
\(839\) 51.1513i 1.76594i 0.469432 + 0.882969i \(0.344459\pi\)
−0.469432 + 0.882969i \(0.655541\pi\)
\(840\) 0 0
\(841\) −48.4516 −1.67075
\(842\) 0 0
\(843\) 74.3575i 2.56101i
\(844\) 0 0
\(845\) − 16.8188i − 0.578585i
\(846\) 0 0
\(847\) − 4.34966i − 0.149456i
\(848\) 0 0
\(849\) 77.4653 2.65860
\(850\) 0 0
\(851\) 11.0648 0.379296
\(852\) 0 0
\(853\) − 0.737415i − 0.0252486i −0.999920 0.0126243i \(-0.995981\pi\)
0.999920 0.0126243i \(-0.00401855\pi\)
\(854\) 0 0
\(855\) − 91.5690i − 3.13160i
\(856\) 0 0
\(857\) − 18.2932i − 0.624885i −0.949937 0.312442i \(-0.898853\pi\)
0.949937 0.312442i \(-0.101147\pi\)
\(858\) 0 0
\(859\) 37.9077 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(860\) 0 0
\(861\) 12.2605i 0.417837i
\(862\) 0 0
\(863\) −38.2719 −1.30279 −0.651395 0.758739i \(-0.725816\pi\)
−0.651395 + 0.758739i \(0.725816\pi\)
\(864\) 0 0
\(865\) 58.7187 1.99650
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.30541 0.179974
\(870\) 0 0
\(871\) 37.6219 1.27477
\(872\) 0 0
\(873\) − 51.4047i − 1.73978i
\(874\) 0 0
\(875\) −9.16613 −0.309872
\(876\) 0 0
\(877\) − 38.2249i − 1.29076i −0.763860 0.645382i \(-0.776698\pi\)
0.763860 0.645382i \(-0.223302\pi\)
\(878\) 0 0
\(879\) − 68.5580i − 2.31240i
\(880\) 0 0
\(881\) 6.38144i 0.214996i 0.994205 + 0.107498i \(0.0342840\pi\)
−0.994205 + 0.107498i \(0.965716\pi\)
\(882\) 0 0
\(883\) 26.8266 0.902786 0.451393 0.892325i \(-0.350927\pi\)
0.451393 + 0.892325i \(0.350927\pi\)
\(884\) 0 0
\(885\) 124.748 4.19336
\(886\) 0 0
\(887\) − 8.87433i − 0.297971i −0.988839 0.148985i \(-0.952399\pi\)
0.988839 0.148985i \(-0.0476008\pi\)
\(888\) 0 0
\(889\) 1.10513i 0.0370650i
\(890\) 0 0
\(891\) − 30.9323i − 1.03627i
\(892\) 0 0
\(893\) −7.68004 −0.257003
\(894\) 0 0
\(895\) − 23.6878i − 0.791795i
\(896\) 0 0
\(897\) 30.1108 1.00537
\(898\) 0 0
\(899\) −7.54301 −0.251574
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −10.5803 −0.352090
\(904\) 0 0
\(905\) −28.2645 −0.939542
\(906\) 0 0
\(907\) 37.5827i 1.24791i 0.781460 + 0.623956i \(0.214475\pi\)
−0.781460 + 0.623956i \(0.785525\pi\)
\(908\) 0 0
\(909\) −103.089 −3.41926
\(910\) 0 0
\(911\) − 36.5289i − 1.21026i −0.796128 0.605128i \(-0.793122\pi\)
0.796128 0.605128i \(-0.206878\pi\)
\(912\) 0 0
\(913\) − 11.1189i − 0.367981i
\(914\) 0 0
\(915\) − 41.9968i − 1.38837i
\(916\) 0 0
\(917\) 0.501126 0.0165486
\(918\) 0 0
\(919\) −37.8108 −1.24726 −0.623631 0.781719i \(-0.714343\pi\)
−0.623631 + 0.781719i \(0.714343\pi\)
\(920\) 0 0
\(921\) 43.0042i 1.41704i
\(922\) 0 0
\(923\) − 37.1584i − 1.22308i
\(924\) 0 0
\(925\) 35.0752i 1.15327i
\(926\) 0 0
\(927\) 101.700 3.34026
\(928\) 0 0
\(929\) 10.5645i 0.346609i 0.984868 + 0.173305i \(0.0554445\pi\)
−0.984868 + 0.173305i \(0.944555\pi\)
\(930\) 0 0
\(931\) 21.5963 0.707789
\(932\) 0 0
\(933\) 34.1688 1.11864
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −28.0378 −0.915954 −0.457977 0.888964i \(-0.651426\pi\)
−0.457977 + 0.888964i \(0.651426\pi\)
\(938\) 0 0
\(939\) 14.1625 0.462176
\(940\) 0 0
\(941\) 26.5871i 0.866715i 0.901222 + 0.433357i \(0.142671\pi\)
−0.901222 + 0.433357i \(0.857329\pi\)
\(942\) 0 0
\(943\) −25.7443 −0.838351
\(944\) 0 0
\(945\) − 25.8384i − 0.840524i
\(946\) 0 0
\(947\) 17.7888i 0.578058i 0.957320 + 0.289029i \(0.0933325\pi\)
−0.957320 + 0.289029i \(0.906668\pi\)
\(948\) 0 0
\(949\) 15.0300i 0.487895i
\(950\) 0 0
\(951\) 4.39424 0.142493
\(952\) 0 0
\(953\) −20.1061 −0.651299 −0.325650 0.945490i \(-0.605583\pi\)
−0.325650 + 0.945490i \(0.605583\pi\)
\(954\) 0 0
\(955\) − 64.1079i − 2.07448i
\(956\) 0 0
\(957\) − 37.0696i − 1.19829i
\(958\) 0 0
\(959\) − 9.15932i − 0.295770i
\(960\) 0 0
\(961\) 30.2654 0.976303
\(962\) 0 0
\(963\) − 118.057i − 3.80435i
\(964\) 0 0
\(965\) 21.9290 0.705920
\(966\) 0 0
\(967\) −37.0068 −1.19006 −0.595029 0.803704i \(-0.702860\pi\)
−0.595029 + 0.803704i \(0.702860\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.3618 −0.428802 −0.214401 0.976746i \(-0.568780\pi\)
−0.214401 + 0.976746i \(0.568780\pi\)
\(972\) 0 0
\(973\) 3.72369 0.119376
\(974\) 0 0
\(975\) 95.4508i 3.05687i
\(976\) 0 0
\(977\) 20.6304 0.660025 0.330013 0.943976i \(-0.392947\pi\)
0.330013 + 0.943976i \(0.392947\pi\)
\(978\) 0 0
\(979\) 5.63041i 0.179949i
\(980\) 0 0
\(981\) 9.05407i 0.289074i
\(982\) 0 0
\(983\) 16.8452i 0.537280i 0.963241 + 0.268640i \(0.0865741\pi\)
−0.963241 + 0.268640i \(0.913426\pi\)
\(984\) 0 0
\(985\) −3.23854 −0.103189
\(986\) 0 0
\(987\) −3.64084 −0.115889
\(988\) 0 0
\(989\) − 22.2163i − 0.706436i
\(990\) 0 0
\(991\) − 42.3432i − 1.34508i −0.740063 0.672538i \(-0.765204\pi\)
0.740063 0.672538i \(-0.234796\pi\)
\(992\) 0 0
\(993\) − 57.8925i − 1.83716i
\(994\) 0 0
\(995\) −89.5049 −2.83749
\(996\) 0 0
\(997\) − 24.4097i − 0.773064i −0.922276 0.386532i \(-0.873673\pi\)
0.922276 0.386532i \(-0.126327\pi\)
\(998\) 0 0
\(999\) −49.6810 −1.57184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.l.577.6 6
17.4 even 4 2312.2.a.r.1.3 yes 3
17.13 even 4 2312.2.a.o.1.1 3
17.16 even 2 inner 2312.2.b.l.577.1 6
68.47 odd 4 4624.2.a.bi.1.3 3
68.55 odd 4 4624.2.a.bb.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.o.1.1 3 17.13 even 4
2312.2.a.r.1.3 yes 3 17.4 even 4
2312.2.b.l.577.1 6 17.16 even 2 inner
2312.2.b.l.577.6 6 1.1 even 1 trivial
4624.2.a.bb.1.1 3 68.55 odd 4
4624.2.a.bi.1.3 3 68.47 odd 4