Properties

Label 4624.2.a.bi.1.3
Level $4624$
Weight $2$
Character 4624.1
Self dual yes
Analytic conductor $36.923$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4624,2,Mod(1,4624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4624.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4624 = 2^{4} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,-6,0,6,0,12,0,6,0,6,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.9228258946\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 4624.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.22668 q^{3} -3.87939 q^{5} +0.467911 q^{7} +7.41147 q^{9} +1.30541 q^{11} -2.94356 q^{13} -12.5175 q^{15} +3.18479 q^{19} +1.50980 q^{21} -3.17024 q^{23} +10.0496 q^{25} +14.2344 q^{27} +8.80066 q^{29} -0.857097 q^{31} +4.21213 q^{33} -1.81521 q^{35} +3.49020 q^{37} -9.49794 q^{39} +8.12061 q^{41} -7.00774 q^{43} -28.7520 q^{45} +2.41147 q^{47} -6.78106 q^{49} +1.30541 q^{53} -5.06418 q^{55} +10.2763 q^{57} -9.96585 q^{59} +3.35504 q^{61} +3.46791 q^{63} +11.4192 q^{65} +12.7811 q^{67} -10.2294 q^{69} +12.6236 q^{71} +5.10607 q^{73} +32.4270 q^{75} +0.610815 q^{77} -4.06418 q^{79} +23.6955 q^{81} +8.51754 q^{83} +28.3969 q^{87} -4.31315 q^{89} -1.37733 q^{91} -2.76558 q^{93} -12.3550 q^{95} -6.93582 q^{97} +9.67499 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 6 q^{5} + 6 q^{7} + 12 q^{9} + 6 q^{11} + 6 q^{13} - 15 q^{15} + 6 q^{19} + 6 q^{21} + 12 q^{23} + 3 q^{25} + 12 q^{27} + 12 q^{29} - 3 q^{31} - 12 q^{33} - 9 q^{35} + 9 q^{37} - 3 q^{39}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.22668 1.86293 0.931463 0.363837i \(-0.118533\pi\)
0.931463 + 0.363837i \(0.118533\pi\)
\(4\) 0 0
\(5\) −3.87939 −1.73491 −0.867457 0.497512i \(-0.834247\pi\)
−0.867457 + 0.497512i \(0.834247\pi\)
\(6\) 0 0
\(7\) 0.467911 0.176854 0.0884269 0.996083i \(-0.471816\pi\)
0.0884269 + 0.996083i \(0.471816\pi\)
\(8\) 0 0
\(9\) 7.41147 2.47049
\(10\) 0 0
\(11\) 1.30541 0.393595 0.196798 0.980444i \(-0.436946\pi\)
0.196798 + 0.980444i \(0.436946\pi\)
\(12\) 0 0
\(13\) −2.94356 −0.816397 −0.408199 0.912893i \(-0.633843\pi\)
−0.408199 + 0.912893i \(0.633843\pi\)
\(14\) 0 0
\(15\) −12.5175 −3.23202
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.18479 0.730642 0.365321 0.930882i \(-0.380959\pi\)
0.365321 + 0.930882i \(0.380959\pi\)
\(20\) 0 0
\(21\) 1.50980 0.329465
\(22\) 0 0
\(23\) −3.17024 −0.661042 −0.330521 0.943799i \(-0.607224\pi\)
−0.330521 + 0.943799i \(0.607224\pi\)
\(24\) 0 0
\(25\) 10.0496 2.00993
\(26\) 0 0
\(27\) 14.2344 2.73942
\(28\) 0 0
\(29\) 8.80066 1.63424 0.817121 0.576467i \(-0.195569\pi\)
0.817121 + 0.576467i \(0.195569\pi\)
\(30\) 0 0
\(31\) −0.857097 −0.153939 −0.0769695 0.997033i \(-0.524524\pi\)
−0.0769695 + 0.997033i \(0.524524\pi\)
\(32\) 0 0
\(33\) 4.21213 0.733238
\(34\) 0 0
\(35\) −1.81521 −0.306826
\(36\) 0 0
\(37\) 3.49020 0.573785 0.286893 0.957963i \(-0.407378\pi\)
0.286893 + 0.957963i \(0.407378\pi\)
\(38\) 0 0
\(39\) −9.49794 −1.52089
\(40\) 0 0
\(41\) 8.12061 1.26823 0.634113 0.773240i \(-0.281365\pi\)
0.634113 + 0.773240i \(0.281365\pi\)
\(42\) 0 0
\(43\) −7.00774 −1.06867 −0.534335 0.845273i \(-0.679438\pi\)
−0.534335 + 0.845273i \(0.679438\pi\)
\(44\) 0 0
\(45\) −28.7520 −4.28609
\(46\) 0 0
\(47\) 2.41147 0.351750 0.175875 0.984413i \(-0.443725\pi\)
0.175875 + 0.984413i \(0.443725\pi\)
\(48\) 0 0
\(49\) −6.78106 −0.968723
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.30541 0.179311 0.0896557 0.995973i \(-0.471423\pi\)
0.0896557 + 0.995973i \(0.471423\pi\)
\(54\) 0 0
\(55\) −5.06418 −0.682854
\(56\) 0 0
\(57\) 10.2763 1.36113
\(58\) 0 0
\(59\) −9.96585 −1.29744 −0.648722 0.761026i \(-0.724696\pi\)
−0.648722 + 0.761026i \(0.724696\pi\)
\(60\) 0 0
\(61\) 3.35504 0.429568 0.214784 0.976662i \(-0.431095\pi\)
0.214784 + 0.976662i \(0.431095\pi\)
\(62\) 0 0
\(63\) 3.46791 0.436916
\(64\) 0 0
\(65\) 11.4192 1.41638
\(66\) 0 0
\(67\) 12.7811 1.56145 0.780727 0.624872i \(-0.214849\pi\)
0.780727 + 0.624872i \(0.214849\pi\)
\(68\) 0 0
\(69\) −10.2294 −1.23147
\(70\) 0 0
\(71\) 12.6236 1.49815 0.749073 0.662487i \(-0.230499\pi\)
0.749073 + 0.662487i \(0.230499\pi\)
\(72\) 0 0
\(73\) 5.10607 0.597620 0.298810 0.954313i \(-0.403410\pi\)
0.298810 + 0.954313i \(0.403410\pi\)
\(74\) 0 0
\(75\) 32.4270 3.74434
\(76\) 0 0
\(77\) 0.610815 0.0696088
\(78\) 0 0
\(79\) −4.06418 −0.457256 −0.228628 0.973514i \(-0.573424\pi\)
−0.228628 + 0.973514i \(0.573424\pi\)
\(80\) 0 0
\(81\) 23.6955 2.63284
\(82\) 0 0
\(83\) 8.51754 0.934922 0.467461 0.884014i \(-0.345169\pi\)
0.467461 + 0.884014i \(0.345169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 28.3969 3.04447
\(88\) 0 0
\(89\) −4.31315 −0.457193 −0.228596 0.973521i \(-0.573414\pi\)
−0.228596 + 0.973521i \(0.573414\pi\)
\(90\) 0 0
\(91\) −1.37733 −0.144383
\(92\) 0 0
\(93\) −2.76558 −0.286777
\(94\) 0 0
\(95\) −12.3550 −1.26760
\(96\) 0 0
\(97\) −6.93582 −0.704226 −0.352113 0.935957i \(-0.614537\pi\)
−0.352113 + 0.935957i \(0.614537\pi\)
\(98\) 0 0
\(99\) 9.67499 0.972373
\(100\) 0 0
\(101\) 13.9094 1.38404 0.692019 0.721879i \(-0.256721\pi\)
0.692019 + 0.721879i \(0.256721\pi\)
\(102\) 0 0
\(103\) 13.7219 1.35206 0.676031 0.736873i \(-0.263698\pi\)
0.676031 + 0.736873i \(0.263698\pi\)
\(104\) 0 0
\(105\) −5.85710 −0.571594
\(106\) 0 0
\(107\) 15.9290 1.53992 0.769958 0.638095i \(-0.220277\pi\)
0.769958 + 0.638095i \(0.220277\pi\)
\(108\) 0 0
\(109\) −1.22163 −0.117011 −0.0585054 0.998287i \(-0.518633\pi\)
−0.0585054 + 0.998287i \(0.518633\pi\)
\(110\) 0 0
\(111\) 11.2618 1.06892
\(112\) 0 0
\(113\) −2.47565 −0.232890 −0.116445 0.993197i \(-0.537150\pi\)
−0.116445 + 0.993197i \(0.537150\pi\)
\(114\) 0 0
\(115\) 12.2986 1.14685
\(116\) 0 0
\(117\) −21.8161 −2.01690
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.29591 −0.845083
\(122\) 0 0
\(123\) 26.2026 2.36261
\(124\) 0 0
\(125\) −19.5895 −1.75213
\(126\) 0 0
\(127\) −2.36184 −0.209580 −0.104790 0.994494i \(-0.533417\pi\)
−0.104790 + 0.994494i \(0.533417\pi\)
\(128\) 0 0
\(129\) −22.6117 −1.99085
\(130\) 0 0
\(131\) 1.07098 0.0935724 0.0467862 0.998905i \(-0.485102\pi\)
0.0467862 + 0.998905i \(0.485102\pi\)
\(132\) 0 0
\(133\) 1.49020 0.129217
\(134\) 0 0
\(135\) −55.2208 −4.75265
\(136\) 0 0
\(137\) 19.5749 1.67240 0.836199 0.548426i \(-0.184773\pi\)
0.836199 + 0.548426i \(0.184773\pi\)
\(138\) 0 0
\(139\) 7.95811 0.674998 0.337499 0.941326i \(-0.390419\pi\)
0.337499 + 0.941326i \(0.390419\pi\)
\(140\) 0 0
\(141\) 7.78106 0.655283
\(142\) 0 0
\(143\) −3.84255 −0.321330
\(144\) 0 0
\(145\) −34.1411 −2.83527
\(146\) 0 0
\(147\) −21.8803 −1.80466
\(148\) 0 0
\(149\) 1.65270 0.135395 0.0676974 0.997706i \(-0.478435\pi\)
0.0676974 + 0.997706i \(0.478435\pi\)
\(150\) 0 0
\(151\) −15.8280 −1.28806 −0.644032 0.764998i \(-0.722740\pi\)
−0.644032 + 0.764998i \(0.722740\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.32501 0.267071
\(156\) 0 0
\(157\) −6.80840 −0.543370 −0.271685 0.962386i \(-0.587581\pi\)
−0.271685 + 0.962386i \(0.587581\pi\)
\(158\) 0 0
\(159\) 4.21213 0.334044
\(160\) 0 0
\(161\) −1.48339 −0.116908
\(162\) 0 0
\(163\) 3.81521 0.298830 0.149415 0.988775i \(-0.452261\pi\)
0.149415 + 0.988775i \(0.452261\pi\)
\(164\) 0 0
\(165\) −16.3405 −1.27211
\(166\) 0 0
\(167\) −11.7023 −0.905554 −0.452777 0.891624i \(-0.649567\pi\)
−0.452777 + 0.891624i \(0.649567\pi\)
\(168\) 0 0
\(169\) −4.33544 −0.333495
\(170\) 0 0
\(171\) 23.6040 1.80504
\(172\) 0 0
\(173\) 15.1361 1.15078 0.575388 0.817881i \(-0.304851\pi\)
0.575388 + 0.817881i \(0.304851\pi\)
\(174\) 0 0
\(175\) 4.70233 0.355463
\(176\) 0 0
\(177\) −32.1566 −2.41704
\(178\) 0 0
\(179\) −6.10607 −0.456389 −0.228194 0.973616i \(-0.573282\pi\)
−0.228194 + 0.973616i \(0.573282\pi\)
\(180\) 0 0
\(181\) 7.28581 0.541550 0.270775 0.962643i \(-0.412720\pi\)
0.270775 + 0.962643i \(0.412720\pi\)
\(182\) 0 0
\(183\) 10.8256 0.800254
\(184\) 0 0
\(185\) −13.5398 −0.995468
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.66044 0.484476
\(190\) 0 0
\(191\) 16.5253 1.19573 0.597864 0.801598i \(-0.296016\pi\)
0.597864 + 0.801598i \(0.296016\pi\)
\(192\) 0 0
\(193\) −5.65270 −0.406891 −0.203445 0.979086i \(-0.565214\pi\)
−0.203445 + 0.979086i \(0.565214\pi\)
\(194\) 0 0
\(195\) 36.8462 2.63861
\(196\) 0 0
\(197\) 0.834808 0.0594776 0.0297388 0.999558i \(-0.490532\pi\)
0.0297388 + 0.999558i \(0.490532\pi\)
\(198\) 0 0
\(199\) 23.0719 1.63552 0.817762 0.575556i \(-0.195214\pi\)
0.817762 + 0.575556i \(0.195214\pi\)
\(200\) 0 0
\(201\) 41.2404 2.90887
\(202\) 0 0
\(203\) 4.11793 0.289022
\(204\) 0 0
\(205\) −31.5030 −2.20026
\(206\) 0 0
\(207\) −23.4962 −1.63310
\(208\) 0 0
\(209\) 4.15745 0.287577
\(210\) 0 0
\(211\) −17.8530 −1.22905 −0.614525 0.788897i \(-0.710652\pi\)
−0.614525 + 0.788897i \(0.710652\pi\)
\(212\) 0 0
\(213\) 40.7324 2.79094
\(214\) 0 0
\(215\) 27.1857 1.85405
\(216\) 0 0
\(217\) −0.401045 −0.0272247
\(218\) 0 0
\(219\) 16.4757 1.11332
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.6750 −0.982710 −0.491355 0.870959i \(-0.663498\pi\)
−0.491355 + 0.870959i \(0.663498\pi\)
\(224\) 0 0
\(225\) 74.4826 4.96550
\(226\) 0 0
\(227\) 18.6013 1.23461 0.617306 0.786723i \(-0.288224\pi\)
0.617306 + 0.786723i \(0.288224\pi\)
\(228\) 0 0
\(229\) 7.78880 0.514698 0.257349 0.966318i \(-0.417151\pi\)
0.257349 + 0.966318i \(0.417151\pi\)
\(230\) 0 0
\(231\) 1.97090 0.129676
\(232\) 0 0
\(233\) −15.4466 −1.01194 −0.505969 0.862552i \(-0.668865\pi\)
−0.505969 + 0.862552i \(0.668865\pi\)
\(234\) 0 0
\(235\) −9.35504 −0.610255
\(236\) 0 0
\(237\) −13.1138 −0.851833
\(238\) 0 0
\(239\) −26.9368 −1.74239 −0.871197 0.490934i \(-0.836656\pi\)
−0.871197 + 0.490934i \(0.836656\pi\)
\(240\) 0 0
\(241\) −19.7246 −1.27057 −0.635287 0.772276i \(-0.719118\pi\)
−0.635287 + 0.772276i \(0.719118\pi\)
\(242\) 0 0
\(243\) 33.7547 2.16536
\(244\) 0 0
\(245\) 26.3063 1.68065
\(246\) 0 0
\(247\) −9.37464 −0.596494
\(248\) 0 0
\(249\) 27.4834 1.74169
\(250\) 0 0
\(251\) −26.9864 −1.70337 −0.851683 0.524058i \(-0.824418\pi\)
−0.851683 + 0.524058i \(0.824418\pi\)
\(252\) 0 0
\(253\) −4.13846 −0.260183
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.2422 1.76170 0.880849 0.473398i \(-0.156973\pi\)
0.880849 + 0.473398i \(0.156973\pi\)
\(258\) 0 0
\(259\) 1.63310 0.101476
\(260\) 0 0
\(261\) 65.2259 4.03738
\(262\) 0 0
\(263\) −5.96585 −0.367870 −0.183935 0.982938i \(-0.558884\pi\)
−0.183935 + 0.982938i \(0.558884\pi\)
\(264\) 0 0
\(265\) −5.06418 −0.311090
\(266\) 0 0
\(267\) −13.9172 −0.851716
\(268\) 0 0
\(269\) 23.7392 1.44740 0.723701 0.690113i \(-0.242439\pi\)
0.723701 + 0.690113i \(0.242439\pi\)
\(270\) 0 0
\(271\) 6.56212 0.398620 0.199310 0.979936i \(-0.436130\pi\)
0.199310 + 0.979936i \(0.436130\pi\)
\(272\) 0 0
\(273\) −4.44419 −0.268975
\(274\) 0 0
\(275\) 13.1189 0.791097
\(276\) 0 0
\(277\) 13.7638 0.826988 0.413494 0.910507i \(-0.364308\pi\)
0.413494 + 0.910507i \(0.364308\pi\)
\(278\) 0 0
\(279\) −6.35235 −0.380305
\(280\) 0 0
\(281\) −23.0446 −1.37472 −0.687362 0.726315i \(-0.741231\pi\)
−0.687362 + 0.726315i \(0.741231\pi\)
\(282\) 0 0
\(283\) 24.0077 1.42711 0.713556 0.700598i \(-0.247083\pi\)
0.713556 + 0.700598i \(0.247083\pi\)
\(284\) 0 0
\(285\) −39.8658 −2.36144
\(286\) 0 0
\(287\) 3.79973 0.224291
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −22.3797 −1.31192
\(292\) 0 0
\(293\) −21.2472 −1.24128 −0.620638 0.784097i \(-0.713126\pi\)
−0.620638 + 0.784097i \(0.713126\pi\)
\(294\) 0 0
\(295\) 38.6614 2.25095
\(296\) 0 0
\(297\) 18.5817 1.07822
\(298\) 0 0
\(299\) 9.33181 0.539673
\(300\) 0 0
\(301\) −3.27900 −0.188998
\(302\) 0 0
\(303\) 44.8813 2.57836
\(304\) 0 0
\(305\) −13.0155 −0.745264
\(306\) 0 0
\(307\) −13.3277 −0.760652 −0.380326 0.924853i \(-0.624188\pi\)
−0.380326 + 0.924853i \(0.624188\pi\)
\(308\) 0 0
\(309\) 44.2763 2.51879
\(310\) 0 0
\(311\) −10.5895 −0.600473 −0.300237 0.953865i \(-0.597066\pi\)
−0.300237 + 0.953865i \(0.597066\pi\)
\(312\) 0 0
\(313\) −4.38919 −0.248091 −0.124046 0.992277i \(-0.539587\pi\)
−0.124046 + 0.992277i \(0.539587\pi\)
\(314\) 0 0
\(315\) −13.4534 −0.758011
\(316\) 0 0
\(317\) −1.36184 −0.0764888 −0.0382444 0.999268i \(-0.512177\pi\)
−0.0382444 + 0.999268i \(0.512177\pi\)
\(318\) 0 0
\(319\) 11.4884 0.643229
\(320\) 0 0
\(321\) 51.3979 2.86875
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −29.5817 −1.64090
\(326\) 0 0
\(327\) −3.94181 −0.217982
\(328\) 0 0
\(329\) 1.12836 0.0622083
\(330\) 0 0
\(331\) −17.9418 −0.986171 −0.493085 0.869981i \(-0.664131\pi\)
−0.493085 + 0.869981i \(0.664131\pi\)
\(332\) 0 0
\(333\) 25.8675 1.41753
\(334\) 0 0
\(335\) −49.5827 −2.70899
\(336\) 0 0
\(337\) −32.6091 −1.77633 −0.888164 0.459526i \(-0.848019\pi\)
−0.888164 + 0.459526i \(0.848019\pi\)
\(338\) 0 0
\(339\) −7.98814 −0.433856
\(340\) 0 0
\(341\) −1.11886 −0.0605897
\(342\) 0 0
\(343\) −6.44831 −0.348176
\(344\) 0 0
\(345\) 39.6837 2.13650
\(346\) 0 0
\(347\) −11.3696 −0.610351 −0.305176 0.952296i \(-0.598715\pi\)
−0.305176 + 0.952296i \(0.598715\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −41.8999 −2.23645
\(352\) 0 0
\(353\) −11.1506 −0.593489 −0.296744 0.954957i \(-0.595901\pi\)
−0.296744 + 0.954957i \(0.595901\pi\)
\(354\) 0 0
\(355\) −48.9718 −2.59916
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.4442 1.02623 0.513113 0.858321i \(-0.328492\pi\)
0.513113 + 0.858321i \(0.328492\pi\)
\(360\) 0 0
\(361\) −8.85710 −0.466163
\(362\) 0 0
\(363\) −29.9949 −1.57433
\(364\) 0 0
\(365\) −19.8084 −1.03682
\(366\) 0 0
\(367\) 29.4662 1.53812 0.769060 0.639176i \(-0.220724\pi\)
0.769060 + 0.639176i \(0.220724\pi\)
\(368\) 0 0
\(369\) 60.1857 3.13314
\(370\) 0 0
\(371\) 0.610815 0.0317119
\(372\) 0 0
\(373\) −31.2891 −1.62009 −0.810044 0.586369i \(-0.800557\pi\)
−0.810044 + 0.586369i \(0.800557\pi\)
\(374\) 0 0
\(375\) −63.2089 −3.26410
\(376\) 0 0
\(377\) −25.9053 −1.33419
\(378\) 0 0
\(379\) 31.9932 1.64338 0.821690 0.569935i \(-0.193032\pi\)
0.821690 + 0.569935i \(0.193032\pi\)
\(380\) 0 0
\(381\) −7.62092 −0.390432
\(382\) 0 0
\(383\) 4.00505 0.204649 0.102324 0.994751i \(-0.467372\pi\)
0.102324 + 0.994751i \(0.467372\pi\)
\(384\) 0 0
\(385\) −2.36959 −0.120765
\(386\) 0 0
\(387\) −51.9377 −2.64014
\(388\) 0 0
\(389\) 13.0155 0.659911 0.329956 0.943996i \(-0.392966\pi\)
0.329956 + 0.943996i \(0.392966\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 3.45573 0.174318
\(394\) 0 0
\(395\) 15.7665 0.793299
\(396\) 0 0
\(397\) −37.0523 −1.85960 −0.929801 0.368062i \(-0.880021\pi\)
−0.929801 + 0.368062i \(0.880021\pi\)
\(398\) 0 0
\(399\) 4.80840 0.240721
\(400\) 0 0
\(401\) 8.84255 0.441576 0.220788 0.975322i \(-0.429137\pi\)
0.220788 + 0.975322i \(0.429137\pi\)
\(402\) 0 0
\(403\) 2.52292 0.125675
\(404\) 0 0
\(405\) −91.9241 −4.56774
\(406\) 0 0
\(407\) 4.55613 0.225839
\(408\) 0 0
\(409\) 10.0942 0.499126 0.249563 0.968359i \(-0.419713\pi\)
0.249563 + 0.968359i \(0.419713\pi\)
\(410\) 0 0
\(411\) 63.1620 3.11555
\(412\) 0 0
\(413\) −4.66313 −0.229458
\(414\) 0 0
\(415\) −33.0428 −1.62201
\(416\) 0 0
\(417\) 25.6783 1.25747
\(418\) 0 0
\(419\) 19.2226 0.939084 0.469542 0.882910i \(-0.344419\pi\)
0.469542 + 0.882910i \(0.344419\pi\)
\(420\) 0 0
\(421\) 13.1925 0.642965 0.321482 0.946916i \(-0.395819\pi\)
0.321482 + 0.946916i \(0.395819\pi\)
\(422\) 0 0
\(423\) 17.8726 0.868994
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.56986 0.0759708
\(428\) 0 0
\(429\) −12.3987 −0.598614
\(430\) 0 0
\(431\) −18.8307 −0.907042 −0.453521 0.891245i \(-0.649832\pi\)
−0.453521 + 0.891245i \(0.649832\pi\)
\(432\) 0 0
\(433\) −4.19665 −0.201678 −0.100839 0.994903i \(-0.532153\pi\)
−0.100839 + 0.994903i \(0.532153\pi\)
\(434\) 0 0
\(435\) −110.163 −5.28189
\(436\) 0 0
\(437\) −10.0966 −0.482985
\(438\) 0 0
\(439\) 32.8708 1.56884 0.784419 0.620231i \(-0.212961\pi\)
0.784419 + 0.620231i \(0.212961\pi\)
\(440\) 0 0
\(441\) −50.2576 −2.39322
\(442\) 0 0
\(443\) 13.3979 0.636552 0.318276 0.947998i \(-0.396896\pi\)
0.318276 + 0.947998i \(0.396896\pi\)
\(444\) 0 0
\(445\) 16.7324 0.793190
\(446\) 0 0
\(447\) 5.33275 0.252230
\(448\) 0 0
\(449\) −10.3446 −0.488192 −0.244096 0.969751i \(-0.578491\pi\)
−0.244096 + 0.969751i \(0.578491\pi\)
\(450\) 0 0
\(451\) 10.6007 0.499168
\(452\) 0 0
\(453\) −51.0719 −2.39957
\(454\) 0 0
\(455\) 5.34318 0.250492
\(456\) 0 0
\(457\) −20.4929 −0.958617 −0.479308 0.877647i \(-0.659112\pi\)
−0.479308 + 0.877647i \(0.659112\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.9017 0.600891 0.300445 0.953799i \(-0.402865\pi\)
0.300445 + 0.953799i \(0.402865\pi\)
\(462\) 0 0
\(463\) −9.54488 −0.443588 −0.221794 0.975094i \(-0.571191\pi\)
−0.221794 + 0.975094i \(0.571191\pi\)
\(464\) 0 0
\(465\) 10.7287 0.497533
\(466\) 0 0
\(467\) −16.5790 −0.767186 −0.383593 0.923502i \(-0.625313\pi\)
−0.383593 + 0.923502i \(0.625313\pi\)
\(468\) 0 0
\(469\) 5.98040 0.276149
\(470\) 0 0
\(471\) −21.9685 −1.01226
\(472\) 0 0
\(473\) −9.14796 −0.420623
\(474\) 0 0
\(475\) 32.0060 1.46854
\(476\) 0 0
\(477\) 9.67499 0.442987
\(478\) 0 0
\(479\) −1.13247 −0.0517441 −0.0258720 0.999665i \(-0.508236\pi\)
−0.0258720 + 0.999665i \(0.508236\pi\)
\(480\) 0 0
\(481\) −10.2736 −0.468437
\(482\) 0 0
\(483\) −4.78644 −0.217790
\(484\) 0 0
\(485\) 26.9067 1.22177
\(486\) 0 0
\(487\) −26.2267 −1.18844 −0.594222 0.804301i \(-0.702540\pi\)
−0.594222 + 0.804301i \(0.702540\pi\)
\(488\) 0 0
\(489\) 12.3105 0.556698
\(490\) 0 0
\(491\) −3.40104 −0.153487 −0.0767435 0.997051i \(-0.524452\pi\)
−0.0767435 + 0.997051i \(0.524452\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −37.5330 −1.68698
\(496\) 0 0
\(497\) 5.90673 0.264953
\(498\) 0 0
\(499\) −29.6587 −1.32771 −0.663853 0.747863i \(-0.731080\pi\)
−0.663853 + 0.747863i \(0.731080\pi\)
\(500\) 0 0
\(501\) −37.7597 −1.68698
\(502\) 0 0
\(503\) −12.7861 −0.570105 −0.285052 0.958512i \(-0.592011\pi\)
−0.285052 + 0.958512i \(0.592011\pi\)
\(504\) 0 0
\(505\) −53.9600 −2.40119
\(506\) 0 0
\(507\) −13.9891 −0.621277
\(508\) 0 0
\(509\) −29.3337 −1.30019 −0.650096 0.759852i \(-0.725271\pi\)
−0.650096 + 0.759852i \(0.725271\pi\)
\(510\) 0 0
\(511\) 2.38919 0.105691
\(512\) 0 0
\(513\) 45.3337 2.00153
\(514\) 0 0
\(515\) −53.2327 −2.34571
\(516\) 0 0
\(517\) 3.14796 0.138447
\(518\) 0 0
\(519\) 48.8394 2.14381
\(520\) 0 0
\(521\) 22.8075 0.999213 0.499607 0.866252i \(-0.333478\pi\)
0.499607 + 0.866252i \(0.333478\pi\)
\(522\) 0 0
\(523\) 14.5422 0.635886 0.317943 0.948110i \(-0.397008\pi\)
0.317943 + 0.948110i \(0.397008\pi\)
\(524\) 0 0
\(525\) 15.1729 0.662201
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12.9495 −0.563024
\(530\) 0 0
\(531\) −73.8617 −3.20532
\(532\) 0 0
\(533\) −23.9035 −1.03538
\(534\) 0 0
\(535\) −61.7948 −2.67162
\(536\) 0 0
\(537\) −19.7023 −0.850218
\(538\) 0 0
\(539\) −8.85204 −0.381285
\(540\) 0 0
\(541\) 20.0651 0.862667 0.431333 0.902193i \(-0.358043\pi\)
0.431333 + 0.902193i \(0.358043\pi\)
\(542\) 0 0
\(543\) 23.5090 1.00887
\(544\) 0 0
\(545\) 4.73917 0.203004
\(546\) 0 0
\(547\) −14.1019 −0.602956 −0.301478 0.953473i \(-0.597480\pi\)
−0.301478 + 0.953473i \(0.597480\pi\)
\(548\) 0 0
\(549\) 24.8658 1.06125
\(550\) 0 0
\(551\) 28.0283 1.19404
\(552\) 0 0
\(553\) −1.90167 −0.0808674
\(554\) 0 0
\(555\) −43.6887 −1.85448
\(556\) 0 0
\(557\) −27.2344 −1.15396 −0.576980 0.816758i \(-0.695769\pi\)
−0.576980 + 0.816758i \(0.695769\pi\)
\(558\) 0 0
\(559\) 20.6277 0.872460
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.6869 0.492542 0.246271 0.969201i \(-0.420795\pi\)
0.246271 + 0.969201i \(0.420795\pi\)
\(564\) 0 0
\(565\) 9.60401 0.404044
\(566\) 0 0
\(567\) 11.0874 0.465627
\(568\) 0 0
\(569\) −10.7297 −0.449811 −0.224906 0.974381i \(-0.572207\pi\)
−0.224906 + 0.974381i \(0.572207\pi\)
\(570\) 0 0
\(571\) 8.86484 0.370982 0.185491 0.982646i \(-0.440612\pi\)
0.185491 + 0.982646i \(0.440612\pi\)
\(572\) 0 0
\(573\) 53.3218 2.22755
\(574\) 0 0
\(575\) −31.8598 −1.32864
\(576\) 0 0
\(577\) 28.8307 1.20024 0.600119 0.799911i \(-0.295120\pi\)
0.600119 + 0.799911i \(0.295120\pi\)
\(578\) 0 0
\(579\) −18.2395 −0.758007
\(580\) 0 0
\(581\) 3.98545 0.165344
\(582\) 0 0
\(583\) 1.70409 0.0705761
\(584\) 0 0
\(585\) 84.6332 3.49915
\(586\) 0 0
\(587\) 4.58584 0.189278 0.0946389 0.995512i \(-0.469830\pi\)
0.0946389 + 0.995512i \(0.469830\pi\)
\(588\) 0 0
\(589\) −2.72967 −0.112474
\(590\) 0 0
\(591\) 2.69366 0.110802
\(592\) 0 0
\(593\) −21.8108 −0.895661 −0.447830 0.894119i \(-0.647803\pi\)
−0.447830 + 0.894119i \(0.647803\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 74.4457 3.04686
\(598\) 0 0
\(599\) 5.33544 0.218000 0.109000 0.994042i \(-0.465235\pi\)
0.109000 + 0.994042i \(0.465235\pi\)
\(600\) 0 0
\(601\) 16.7273 0.682321 0.341161 0.940005i \(-0.389180\pi\)
0.341161 + 0.940005i \(0.389180\pi\)
\(602\) 0 0
\(603\) 94.7265 3.85756
\(604\) 0 0
\(605\) 36.0624 1.46615
\(606\) 0 0
\(607\) −30.8794 −1.25336 −0.626678 0.779278i \(-0.715586\pi\)
−0.626678 + 0.779278i \(0.715586\pi\)
\(608\) 0 0
\(609\) 13.2872 0.538426
\(610\) 0 0
\(611\) −7.09833 −0.287168
\(612\) 0 0
\(613\) −46.6432 −1.88390 −0.941951 0.335751i \(-0.891010\pi\)
−0.941951 + 0.335751i \(0.891010\pi\)
\(614\) 0 0
\(615\) −101.650 −4.09893
\(616\) 0 0
\(617\) 2.08109 0.0837815 0.0418908 0.999122i \(-0.486662\pi\)
0.0418908 + 0.999122i \(0.486662\pi\)
\(618\) 0 0
\(619\) −35.6168 −1.43156 −0.715780 0.698326i \(-0.753929\pi\)
−0.715780 + 0.698326i \(0.753929\pi\)
\(620\) 0 0
\(621\) −45.1266 −1.81087
\(622\) 0 0
\(623\) −2.01817 −0.0808563
\(624\) 0 0
\(625\) 25.7469 1.02988
\(626\) 0 0
\(627\) 13.4148 0.535734
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −23.7939 −0.947218 −0.473609 0.880735i \(-0.657049\pi\)
−0.473609 + 0.880735i \(0.657049\pi\)
\(632\) 0 0
\(633\) −57.6059 −2.28963
\(634\) 0 0
\(635\) 9.16250 0.363603
\(636\) 0 0
\(637\) 19.9605 0.790863
\(638\) 0 0
\(639\) 93.5595 3.70116
\(640\) 0 0
\(641\) −9.01455 −0.356053 −0.178027 0.984026i \(-0.556971\pi\)
−0.178027 + 0.984026i \(0.556971\pi\)
\(642\) 0 0
\(643\) 3.71419 0.146473 0.0732367 0.997315i \(-0.476667\pi\)
0.0732367 + 0.997315i \(0.476667\pi\)
\(644\) 0 0
\(645\) 87.7197 3.45396
\(646\) 0 0
\(647\) −4.28405 −0.168423 −0.0842117 0.996448i \(-0.526837\pi\)
−0.0842117 + 0.996448i \(0.526837\pi\)
\(648\) 0 0
\(649\) −13.0095 −0.510667
\(650\) 0 0
\(651\) −1.29404 −0.0507176
\(652\) 0 0
\(653\) −4.64765 −0.181877 −0.0909383 0.995857i \(-0.528987\pi\)
−0.0909383 + 0.995857i \(0.528987\pi\)
\(654\) 0 0
\(655\) −4.15476 −0.162340
\(656\) 0 0
\(657\) 37.8435 1.47641
\(658\) 0 0
\(659\) 45.0259 1.75396 0.876980 0.480526i \(-0.159554\pi\)
0.876980 + 0.480526i \(0.159554\pi\)
\(660\) 0 0
\(661\) −17.7537 −0.690540 −0.345270 0.938503i \(-0.612213\pi\)
−0.345270 + 0.938503i \(0.612213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.78106 −0.224180
\(666\) 0 0
\(667\) −27.9002 −1.08030
\(668\) 0 0
\(669\) −47.3515 −1.83072
\(670\) 0 0
\(671\) 4.37969 0.169076
\(672\) 0 0
\(673\) 34.5357 1.33125 0.665627 0.746285i \(-0.268164\pi\)
0.665627 + 0.746285i \(0.268164\pi\)
\(674\) 0 0
\(675\) 143.051 5.50602
\(676\) 0 0
\(677\) 29.1138 1.11893 0.559467 0.828852i \(-0.311006\pi\)
0.559467 + 0.828852i \(0.311006\pi\)
\(678\) 0 0
\(679\) −3.24535 −0.124545
\(680\) 0 0
\(681\) 60.0205 2.29999
\(682\) 0 0
\(683\) 5.03508 0.192662 0.0963310 0.995349i \(-0.469289\pi\)
0.0963310 + 0.995349i \(0.469289\pi\)
\(684\) 0 0
\(685\) −75.9386 −2.90147
\(686\) 0 0
\(687\) 25.1320 0.958845
\(688\) 0 0
\(689\) −3.84255 −0.146389
\(690\) 0 0
\(691\) −11.4270 −0.434702 −0.217351 0.976094i \(-0.569742\pi\)
−0.217351 + 0.976094i \(0.569742\pi\)
\(692\) 0 0
\(693\) 4.52704 0.171968
\(694\) 0 0
\(695\) −30.8726 −1.17106
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −49.8411 −1.88516
\(700\) 0 0
\(701\) 38.0806 1.43828 0.719142 0.694863i \(-0.244535\pi\)
0.719142 + 0.694863i \(0.244535\pi\)
\(702\) 0 0
\(703\) 11.1156 0.419231
\(704\) 0 0
\(705\) −30.1857 −1.13686
\(706\) 0 0
\(707\) 6.50837 0.244772
\(708\) 0 0
\(709\) −13.7382 −0.515950 −0.257975 0.966152i \(-0.583055\pi\)
−0.257975 + 0.966152i \(0.583055\pi\)
\(710\) 0 0
\(711\) −30.1215 −1.12965
\(712\) 0 0
\(713\) 2.71721 0.101760
\(714\) 0 0
\(715\) 14.9067 0.557480
\(716\) 0 0
\(717\) −86.9163 −3.24595
\(718\) 0 0
\(719\) −8.36722 −0.312045 −0.156022 0.987754i \(-0.549867\pi\)
−0.156022 + 0.987754i \(0.549867\pi\)
\(720\) 0 0
\(721\) 6.42065 0.239117
\(722\) 0 0
\(723\) −63.6451 −2.36699
\(724\) 0 0
\(725\) 88.4434 3.28470
\(726\) 0 0
\(727\) 2.78518 0.103297 0.0516483 0.998665i \(-0.483553\pi\)
0.0516483 + 0.998665i \(0.483553\pi\)
\(728\) 0 0
\(729\) 37.8289 1.40107
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.34730 0.197507 0.0987534 0.995112i \(-0.468514\pi\)
0.0987534 + 0.995112i \(0.468514\pi\)
\(734\) 0 0
\(735\) 84.8822 3.13093
\(736\) 0 0
\(737\) 16.6845 0.614581
\(738\) 0 0
\(739\) 21.7374 0.799624 0.399812 0.916597i \(-0.369075\pi\)
0.399812 + 0.916597i \(0.369075\pi\)
\(740\) 0 0
\(741\) −30.2490 −1.11122
\(742\) 0 0
\(743\) 31.2371 1.14598 0.572989 0.819563i \(-0.305784\pi\)
0.572989 + 0.819563i \(0.305784\pi\)
\(744\) 0 0
\(745\) −6.41147 −0.234898
\(746\) 0 0
\(747\) 63.1275 2.30972
\(748\) 0 0
\(749\) 7.45336 0.272340
\(750\) 0 0
\(751\) 22.9608 0.837851 0.418926 0.908021i \(-0.362407\pi\)
0.418926 + 0.908021i \(0.362407\pi\)
\(752\) 0 0
\(753\) −87.0765 −3.17324
\(754\) 0 0
\(755\) 61.4029 2.23468
\(756\) 0 0
\(757\) −32.1756 −1.16944 −0.584721 0.811234i \(-0.698796\pi\)
−0.584721 + 0.811234i \(0.698796\pi\)
\(758\) 0 0
\(759\) −13.3535 −0.484701
\(760\) 0 0
\(761\) −24.8348 −0.900261 −0.450131 0.892963i \(-0.648623\pi\)
−0.450131 + 0.892963i \(0.648623\pi\)
\(762\) 0 0
\(763\) −0.571614 −0.0206938
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.3351 1.05923
\(768\) 0 0
\(769\) −2.52671 −0.0911156 −0.0455578 0.998962i \(-0.514507\pi\)
−0.0455578 + 0.998962i \(0.514507\pi\)
\(770\) 0 0
\(771\) 91.1285 3.28191
\(772\) 0 0
\(773\) −35.9968 −1.29472 −0.647358 0.762186i \(-0.724126\pi\)
−0.647358 + 0.762186i \(0.724126\pi\)
\(774\) 0 0
\(775\) −8.61350 −0.309406
\(776\) 0 0
\(777\) 5.26950 0.189042
\(778\) 0 0
\(779\) 25.8625 0.926619
\(780\) 0 0
\(781\) 16.4789 0.589663
\(782\) 0 0
\(783\) 125.272 4.47687
\(784\) 0 0
\(785\) 26.4124 0.942699
\(786\) 0 0
\(787\) 24.4338 0.870970 0.435485 0.900196i \(-0.356577\pi\)
0.435485 + 0.900196i \(0.356577\pi\)
\(788\) 0 0
\(789\) −19.2499 −0.685315
\(790\) 0 0
\(791\) −1.15839 −0.0411874
\(792\) 0 0
\(793\) −9.87576 −0.350699
\(794\) 0 0
\(795\) −16.3405 −0.579537
\(796\) 0 0
\(797\) 6.45161 0.228528 0.114264 0.993450i \(-0.463549\pi\)
0.114264 + 0.993450i \(0.463549\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −31.9668 −1.12949
\(802\) 0 0
\(803\) 6.66550 0.235220
\(804\) 0 0
\(805\) 5.75465 0.202825
\(806\) 0 0
\(807\) 76.5987 2.69640
\(808\) 0 0
\(809\) 22.6777 0.797305 0.398652 0.917102i \(-0.369478\pi\)
0.398652 + 0.917102i \(0.369478\pi\)
\(810\) 0 0
\(811\) 20.7989 0.730348 0.365174 0.930939i \(-0.381009\pi\)
0.365174 + 0.930939i \(0.381009\pi\)
\(812\) 0 0
\(813\) 21.1739 0.742600
\(814\) 0 0
\(815\) −14.8007 −0.518444
\(816\) 0 0
\(817\) −22.3182 −0.780815
\(818\) 0 0
\(819\) −10.2080 −0.356697
\(820\) 0 0
\(821\) −42.5381 −1.48459 −0.742295 0.670074i \(-0.766262\pi\)
−0.742295 + 0.670074i \(0.766262\pi\)
\(822\) 0 0
\(823\) −49.3474 −1.72014 −0.860071 0.510174i \(-0.829581\pi\)
−0.860071 + 0.510174i \(0.829581\pi\)
\(824\) 0 0
\(825\) 42.3304 1.47375
\(826\) 0 0
\(827\) 20.3577 0.707907 0.353954 0.935263i \(-0.384837\pi\)
0.353954 + 0.935263i \(0.384837\pi\)
\(828\) 0 0
\(829\) 24.0820 0.836403 0.418202 0.908354i \(-0.362661\pi\)
0.418202 + 0.908354i \(0.362661\pi\)
\(830\) 0 0
\(831\) 44.4115 1.54062
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 45.3979 1.57106
\(836\) 0 0
\(837\) −12.2003 −0.421703
\(838\) 0 0
\(839\) −51.1513 −1.76594 −0.882969 0.469432i \(-0.844459\pi\)
−0.882969 + 0.469432i \(0.844459\pi\)
\(840\) 0 0
\(841\) 48.4516 1.67075
\(842\) 0 0
\(843\) −74.3575 −2.56101
\(844\) 0 0
\(845\) 16.8188 0.578585
\(846\) 0 0
\(847\) −4.34966 −0.149456
\(848\) 0 0
\(849\) 77.4653 2.65860
\(850\) 0 0
\(851\) −11.0648 −0.379296
\(852\) 0 0
\(853\) 0.737415 0.0252486 0.0126243 0.999920i \(-0.495981\pi\)
0.0126243 + 0.999920i \(0.495981\pi\)
\(854\) 0 0
\(855\) −91.5690 −3.13160
\(856\) 0 0
\(857\) −18.2932 −0.624885 −0.312442 0.949937i \(-0.601147\pi\)
−0.312442 + 0.949937i \(0.601147\pi\)
\(858\) 0 0
\(859\) 37.9077 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(860\) 0 0
\(861\) 12.2605 0.417837
\(862\) 0 0
\(863\) 38.2719 1.30279 0.651395 0.758739i \(-0.274184\pi\)
0.651395 + 0.758739i \(0.274184\pi\)
\(864\) 0 0
\(865\) −58.7187 −1.99650
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.30541 −0.179974
\(870\) 0 0
\(871\) −37.6219 −1.27477
\(872\) 0 0
\(873\) −51.4047 −1.73978
\(874\) 0 0
\(875\) −9.16613 −0.309872
\(876\) 0 0
\(877\) −38.2249 −1.29076 −0.645382 0.763860i \(-0.723302\pi\)
−0.645382 + 0.763860i \(0.723302\pi\)
\(878\) 0 0
\(879\) −68.5580 −2.31240
\(880\) 0 0
\(881\) −6.38144 −0.214996 −0.107498 0.994205i \(-0.534284\pi\)
−0.107498 + 0.994205i \(0.534284\pi\)
\(882\) 0 0
\(883\) −26.8266 −0.902786 −0.451393 0.892325i \(-0.649073\pi\)
−0.451393 + 0.892325i \(0.649073\pi\)
\(884\) 0 0
\(885\) 124.748 4.19336
\(886\) 0 0
\(887\) −8.87433 −0.297971 −0.148985 0.988839i \(-0.547601\pi\)
−0.148985 + 0.988839i \(0.547601\pi\)
\(888\) 0 0
\(889\) −1.10513 −0.0370650
\(890\) 0 0
\(891\) 30.9323 1.03627
\(892\) 0 0
\(893\) 7.68004 0.257003
\(894\) 0 0
\(895\) 23.6878 0.791795
\(896\) 0 0
\(897\) 30.1108 1.00537
\(898\) 0 0
\(899\) −7.54301 −0.251574
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −10.5803 −0.352090
\(904\) 0 0
\(905\) −28.2645 −0.939542
\(906\) 0 0
\(907\) −37.5827 −1.24791 −0.623956 0.781460i \(-0.714475\pi\)
−0.623956 + 0.781460i \(0.714475\pi\)
\(908\) 0 0
\(909\) 103.089 3.41926
\(910\) 0 0
\(911\) 36.5289 1.21026 0.605128 0.796128i \(-0.293122\pi\)
0.605128 + 0.796128i \(0.293122\pi\)
\(912\) 0 0
\(913\) 11.1189 0.367981
\(914\) 0 0
\(915\) −41.9968 −1.38837
\(916\) 0 0
\(917\) 0.501126 0.0165486
\(918\) 0 0
\(919\) 37.8108 1.24726 0.623631 0.781719i \(-0.285657\pi\)
0.623631 + 0.781719i \(0.285657\pi\)
\(920\) 0 0
\(921\) −43.0042 −1.41704
\(922\) 0 0
\(923\) −37.1584 −1.22308
\(924\) 0 0
\(925\) 35.0752 1.15327
\(926\) 0 0
\(927\) 101.700 3.34026
\(928\) 0 0
\(929\) 10.5645 0.346609 0.173305 0.984868i \(-0.444555\pi\)
0.173305 + 0.984868i \(0.444555\pi\)
\(930\) 0 0
\(931\) −21.5963 −0.707789
\(932\) 0 0
\(933\) −34.1688 −1.11864
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 28.0378 0.915954 0.457977 0.888964i \(-0.348574\pi\)
0.457977 + 0.888964i \(0.348574\pi\)
\(938\) 0 0
\(939\) −14.1625 −0.462176
\(940\) 0 0
\(941\) 26.5871 0.866715 0.433357 0.901222i \(-0.357329\pi\)
0.433357 + 0.901222i \(0.357329\pi\)
\(942\) 0 0
\(943\) −25.7443 −0.838351
\(944\) 0 0
\(945\) −25.8384 −0.840524
\(946\) 0 0
\(947\) 17.7888 0.578058 0.289029 0.957320i \(-0.406668\pi\)
0.289029 + 0.957320i \(0.406668\pi\)
\(948\) 0 0
\(949\) −15.0300 −0.487895
\(950\) 0 0
\(951\) −4.39424 −0.142493
\(952\) 0 0
\(953\) −20.1061 −0.651299 −0.325650 0.945490i \(-0.605583\pi\)
−0.325650 + 0.945490i \(0.605583\pi\)
\(954\) 0 0
\(955\) −64.1079 −2.07448
\(956\) 0 0
\(957\) 37.0696 1.19829
\(958\) 0 0
\(959\) 9.15932 0.295770
\(960\) 0 0
\(961\) −30.2654 −0.976303
\(962\) 0 0
\(963\) 118.057 3.80435
\(964\) 0 0
\(965\) 21.9290 0.705920
\(966\) 0 0
\(967\) −37.0068 −1.19006 −0.595029 0.803704i \(-0.702860\pi\)
−0.595029 + 0.803704i \(0.702860\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.3618 −0.428802 −0.214401 0.976746i \(-0.568780\pi\)
−0.214401 + 0.976746i \(0.568780\pi\)
\(972\) 0 0
\(973\) 3.72369 0.119376
\(974\) 0 0
\(975\) −95.4508 −3.05687
\(976\) 0 0
\(977\) −20.6304 −0.660025 −0.330013 0.943976i \(-0.607053\pi\)
−0.330013 + 0.943976i \(0.607053\pi\)
\(978\) 0 0
\(979\) −5.63041 −0.179949
\(980\) 0 0
\(981\) −9.05407 −0.289074
\(982\) 0 0
\(983\) 16.8452 0.537280 0.268640 0.963241i \(-0.413426\pi\)
0.268640 + 0.963241i \(0.413426\pi\)
\(984\) 0 0
\(985\) −3.23854 −0.103189
\(986\) 0 0
\(987\) 3.64084 0.115889
\(988\) 0 0
\(989\) 22.2163 0.706436
\(990\) 0 0
\(991\) −42.3432 −1.34508 −0.672538 0.740063i \(-0.734796\pi\)
−0.672538 + 0.740063i \(0.734796\pi\)
\(992\) 0 0
\(993\) −57.8925 −1.83716
\(994\) 0 0
\(995\) −89.5049 −2.83749
\(996\) 0 0
\(997\) −24.4097 −0.773064 −0.386532 0.922276i \(-0.626327\pi\)
−0.386532 + 0.922276i \(0.626327\pi\)
\(998\) 0 0
\(999\) 49.6810 1.57184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4624.2.a.bi.1.3 3
4.3 odd 2 2312.2.a.o.1.1 3
17.16 even 2 4624.2.a.bb.1.1 3
68.47 odd 4 2312.2.b.l.577.1 6
68.55 odd 4 2312.2.b.l.577.6 6
68.67 odd 2 2312.2.a.r.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.o.1.1 3 4.3 odd 2
2312.2.a.r.1.3 yes 3 68.67 odd 2
2312.2.b.l.577.1 6 68.47 odd 4
2312.2.b.l.577.6 6 68.55 odd 4
4624.2.a.bb.1.1 3 17.16 even 2
4624.2.a.bi.1.3 3 1.1 even 1 trivial