Properties

Label 2312.2.b.l
Level $2312$
Weight $2$
Character orbit 2312.b
Analytic conductor $18.461$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-24,0,0,0,12,0,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} - \beta_{3} + \beta_1) q^{3} + ( - 2 \beta_{3} + \beta_1) q^{5} + (\beta_{5} + 2 \beta_{3} + \beta_1) q^{7} + ( - \beta_{4} + 2 \beta_{2} - 4) q^{9} + ( - 2 \beta_{5} + 2 \beta_{3}) q^{11}+ \cdots + (6 \beta_{5} - 8 \beta_{3} + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{9} + 12 q^{13} - 30 q^{15} + 12 q^{19} + 12 q^{21} - 6 q^{25} - 24 q^{33} + 18 q^{35} + 6 q^{43} + 6 q^{47} + 6 q^{49} - 12 q^{53} + 12 q^{55} - 18 q^{59} - 42 q^{67} - 30 q^{69} - 12 q^{77}+ \cdots + 78 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 6x^{4} + 9x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
1.87939i
1.53209i
0.347296i
0.347296i
1.53209i
1.87939i
0 3.22668i 0 3.87939i 0 0.467911i 0 −7.41147 0
577.2 0 2.41147i 0 0.467911i 0 1.65270i 0 −2.81521 0
577.3 0 2.18479i 0 1.65270i 0 3.87939i 0 −1.77332 0
577.4 0 2.18479i 0 1.65270i 0 3.87939i 0 −1.77332 0
577.5 0 2.41147i 0 0.467911i 0 1.65270i 0 −2.81521 0
577.6 0 3.22668i 0 3.87939i 0 0.467911i 0 −7.41147 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2312.2.b.l 6
17.b even 2 1 inner 2312.2.b.l 6
17.c even 4 1 2312.2.a.o 3
17.c even 4 1 2312.2.a.r yes 3
68.f odd 4 1 4624.2.a.bb 3
68.f odd 4 1 4624.2.a.bi 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2312.2.a.o 3 17.c even 4 1
2312.2.a.r yes 3 17.c even 4 1
2312.2.b.l 6 1.a even 1 1 trivial
2312.2.b.l 6 17.b even 2 1 inner
4624.2.a.bb 3 68.f odd 4 1
4624.2.a.bi 3 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2312, [\chi])\):

\( T_{3}^{6} + 21T_{3}^{4} + 138T_{3}^{2} + 289 \) Copy content Toggle raw display
\( T_{5}^{6} + 18T_{5}^{4} + 45T_{5}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 21 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$5$ \( T^{6} + 18 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} + 18 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{6} + 36 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T^{3} - 6 T^{2} - 9 T + 51)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T^{3} - 6 T^{2} + 3 T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 126 T^{4} + \cdots + 32761 \) Copy content Toggle raw display
$29$ \( T^{6} + 162 T^{4} + \cdots + 106929 \) Copy content Toggle raw display
$31$ \( T^{6} + 129 T^{4} + \cdots + 2809 \) Copy content Toggle raw display
$37$ \( T^{6} + 105 T^{4} + \cdots + 11881 \) Copy content Toggle raw display
$41$ \( T^{6} + 306 T^{4} + \cdots + 938961 \) Copy content Toggle raw display
$43$ \( (T^{3} - 3 T^{2} - 60 T + 71)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} - 3 T^{2} - 6 T + 17)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 6 T^{2} - 8)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 9 T^{2} + \cdots - 801)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 189 T^{4} + \cdots + 71289 \) Copy content Toggle raw display
$67$ \( (T^{3} + 21 T^{2} + \cdots - 269)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 261 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$73$ \( T^{6} + 45 T^{4} + \cdots + 1369 \) Copy content Toggle raw display
$79$ \( T^{6} + 27 T^{4} + \cdots + 361 \) Copy content Toggle raw display
$83$ \( (T^{3} - 3 T^{2} - 45 T - 17)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 9 T^{2} - 66 T - 37)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 324 T^{4} + \cdots + 788544 \) Copy content Toggle raw display
show more
show less