L(s) = 1 | + 3.22i·3-s + 3.87i·5-s − 0.467i·7-s − 7.41·9-s − 1.30i·11-s − 2.94·13-s − 12.5·15-s + 3.18·19-s + 1.50·21-s + 3.17i·23-s − 10.0·25-s − 14.2i·27-s − 8.80i·29-s − 0.857i·31-s + 4.21·33-s + ⋯ |
L(s) = 1 | + 1.86i·3-s + 1.73i·5-s − 0.176i·7-s − 2.47·9-s − 0.393i·11-s − 0.816·13-s − 3.23·15-s + 0.730·19-s + 0.329·21-s + 0.661i·23-s − 2.00·25-s − 2.73i·27-s − 1.63i·29-s − 0.153i·31-s + 0.733·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.168 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.168 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6446763034\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6446763034\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 - 3.22iT - 3T^{2} \) |
| 5 | \( 1 - 3.87iT - 5T^{2} \) |
| 7 | \( 1 + 0.467iT - 7T^{2} \) |
| 11 | \( 1 + 1.30iT - 11T^{2} \) |
| 13 | \( 1 + 2.94T + 13T^{2} \) |
| 19 | \( 1 - 3.18T + 19T^{2} \) |
| 23 | \( 1 - 3.17iT - 23T^{2} \) |
| 29 | \( 1 + 8.80iT - 29T^{2} \) |
| 31 | \( 1 + 0.857iT - 31T^{2} \) |
| 37 | \( 1 + 3.49iT - 37T^{2} \) |
| 41 | \( 1 - 8.12iT - 41T^{2} \) |
| 43 | \( 1 + 7.00T + 43T^{2} \) |
| 47 | \( 1 + 2.41T + 47T^{2} \) |
| 53 | \( 1 + 1.30T + 53T^{2} \) |
| 59 | \( 1 + 9.96T + 59T^{2} \) |
| 61 | \( 1 - 3.35iT - 61T^{2} \) |
| 67 | \( 1 + 12.7T + 67T^{2} \) |
| 71 | \( 1 - 12.6iT - 71T^{2} \) |
| 73 | \( 1 + 5.10iT - 73T^{2} \) |
| 79 | \( 1 - 4.06iT - 79T^{2} \) |
| 83 | \( 1 - 8.51T + 83T^{2} \) |
| 89 | \( 1 + 4.31T + 89T^{2} \) |
| 97 | \( 1 - 6.93iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.827811484004542507849591000140, −9.192749682567594107684987668889, −8.042761629549631111510307585106, −7.36568330655436683060040249849, −6.29455080500618563621174088930, −5.65952276291610115235114360463, −4.69621395600370110307686297038, −3.83017755244629301557110392961, −3.16021848145932035554002982215, −2.50057396235909439323765279009,
0.21921036058206667194632426012, 1.30308764294944402021288938279, 1.97373790637667700778012902648, 3.15038598475031584103172944367, 4.71605878493975489416252885395, 5.26671364629412090300613250858, 6.08999499575502172502023739302, 7.06419542437279209131697171900, 7.57366585983047199252230400391, 8.408471983458016606403867971761