Properties

Label 2312.2.b
Level $2312$
Weight $2$
Character orbit 2312.b
Rep. character $\chi_{2312}(577,\cdot)$
Character field $\Q$
Dimension $68$
Newform subspaces $15$
Sturm bound $612$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(612\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2312, [\chi])\).

Total New Old
Modular forms 342 68 274
Cusp forms 270 68 202
Eisenstein series 72 0 72

Trace form

\( 68 q - 76 q^{9} + 12 q^{21} - 76 q^{25} + 12 q^{33} + 20 q^{35} + 12 q^{43} - 76 q^{49} + 4 q^{53} - 44 q^{55} + 12 q^{59} - 44 q^{67} - 36 q^{69} - 12 q^{77} + 80 q^{81} + 12 q^{83} - 20 q^{87} + 36 q^{89}+ \cdots - 12 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2312, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2312.2.b.a 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-2}) \) None 136.2.k.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{3}+\beta q^{5}+2\beta q^{7}-5q^{9}+2\beta q^{11}+\cdots\)
2312.2.b.b 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-1}) \) None 136.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-q^{9}-\beta q^{11}-6 q^{13}-4 q^{19}+\cdots\)
2312.2.b.c 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-1}) \) None 136.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+\beta q^{5}-\beta q^{7}-q^{9}-3\beta q^{11}+\cdots\)
2312.2.b.d 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-2}) \) None 136.2.k.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+2\beta q^{5}-2\beta q^{7}+q^{9}+\beta q^{11}+\cdots\)
2312.2.b.e 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-2}) \) None 136.2.k.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-\beta q^{5}-\beta q^{7}+q^{9}+\beta q^{11}+\cdots\)
2312.2.b.f 2312.b 17.b $2$ $18.461$ \(\Q(\sqrt{-2}) \) None 136.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-3\beta q^{5}+3\beta q^{7}+q^{9}+\beta q^{11}+\cdots\)
2312.2.b.g 2312.b 17.b $4$ $18.461$ \(\Q(i, \sqrt{5})\) None 136.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}+(-3+\beta _{3})q^{9}+\cdots\)
2312.2.b.h 2312.b 17.b $4$ $18.461$ \(\Q(i, \sqrt{13})\) None 2312.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{2})q^{3}-\beta _{1}q^{5}+\beta _{1}q^{7}+(-4+\cdots)q^{9}+\cdots\)
2312.2.b.i 2312.b 17.b $4$ $18.461$ 4.0.2048.2 None 136.2.n.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(\beta _{1}-2\beta _{3})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
2312.2.b.j 2312.b 17.b $4$ $18.461$ 4.0.2048.2 None 136.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(2\beta _{1}-\beta _{3})q^{7}+(1+\cdots)q^{9}+\cdots\)
2312.2.b.k 2312.b 17.b $4$ $18.461$ \(\Q(i, \sqrt{5})\) None 2312.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(3\beta _{1}+\beta _{3})q^{5}+(\beta _{1}+3\beta _{3})q^{7}+\cdots\)
2312.2.b.l 2312.b 17.b $6$ $18.461$ 6.0.419904.1 None 2312.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3}-\beta _{5})q^{3}+(\beta _{1}-2\beta _{3})q^{5}+\cdots\)
2312.2.b.m 2312.b 17.b $6$ $18.461$ 6.0.419904.1 None 2312.2.a.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3}+\beta _{5})q^{3}+(-\beta _{1}-2\beta _{3}+\cdots)q^{5}+\cdots\)
2312.2.b.n 2312.b 17.b $12$ $18.461$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 136.2.n.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{10}q^{5}+\beta _{6}q^{7}+(-2+\beta _{3}+\cdots)q^{9}+\cdots\)
2312.2.b.o 2312.b 17.b $12$ $18.461$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 2312.2.a.u \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{3}-\beta _{4}-\beta _{7}-\beta _{10}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2312, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2312, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(578, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1156, [\chi])\)\(^{\oplus 2}\)