Newspace parameters
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.n (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.08596546749\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{8})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -9\nu^{11} - 250\nu^{9} - 2274\nu^{7} - 7596\nu^{5} - 8901\nu^{3} - 1658\nu ) / 272 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 39 \nu^{11} + 17 \nu^{10} - 1089 \nu^{9} + 459 \nu^{8} - 9973 \nu^{7} + 3927 \nu^{6} - 33443 \nu^{5} + 11305 \nu^{4} - 37228 \nu^{3} + 10064 \nu^{2} - 3524 \nu + 612 ) / 1088 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 39 \nu^{11} - 25 \nu^{10} + 1089 \nu^{9} - 651 \nu^{8} + 9973 \nu^{7} - 5223 \nu^{6} + 33443 \nu^{5} - 12889 \nu^{4} + 37228 \nu^{3} - 8184 \nu^{2} + 2436 \nu - 756 ) / 1088 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 39 \nu^{11} + 17 \nu^{10} + 1089 \nu^{9} + 459 \nu^{8} + 9973 \nu^{7} + 3927 \nu^{6} + 33443 \nu^{5} + 11305 \nu^{4} + 37228 \nu^{3} + 10064 \nu^{2} + 3524 \nu + 612 ) / 1088 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 39 \nu^{11} - 25 \nu^{10} - 1089 \nu^{9} - 651 \nu^{8} - 9973 \nu^{7} - 5223 \nu^{6} - 33443 \nu^{5} - 12889 \nu^{4} - 37228 \nu^{3} - 8184 \nu^{2} - 2436 \nu - 756 ) / 1088 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 153 \nu^{11} - 39 \nu^{10} + 4267 \nu^{9} - 1089 \nu^{8} + 39015 \nu^{7} - 9973 \nu^{6} + 130713 \nu^{5} - 33443 \nu^{4} + 146744 \nu^{3} - 37228 \nu^{2} + 10132 \nu - 2436 ) / 1088 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 153 \nu^{11} - 39 \nu^{10} - 4267 \nu^{9} - 1089 \nu^{8} - 39015 \nu^{7} - 9973 \nu^{6} - 130713 \nu^{5} - 33443 \nu^{4} - 146744 \nu^{3} - 37228 \nu^{2} - 10132 \nu - 2436 ) / 1088 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 119 \nu^{11} - 27 \nu^{10} + 3315 \nu^{9} - 767 \nu^{8} + 30243 \nu^{7} - 7247 \nu^{6} + 100725 \nu^{5} - 25865 \nu^{4} + 110670 \nu^{3} - 31582 \nu^{2} + 3808 \nu - 2016 ) / 544 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 119 \nu^{11} - 27 \nu^{10} - 3315 \nu^{9} - 767 \nu^{8} - 30243 \nu^{7} - 7247 \nu^{6} - 100725 \nu^{5} - 25865 \nu^{4} - 110670 \nu^{3} - 31582 \nu^{2} - 3808 \nu - 2016 ) / 544 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 123 \nu^{11} - 41 \nu^{10} + 3445 \nu^{9} - 1137 \nu^{8} + 31741 \nu^{7} - 10297 \nu^{6} + 107943 \nu^{5} - 33839 \nu^{4} + 123568 \nu^{3} - 36486 \nu^{2} + 8300 \nu - 1384 ) / 544 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 123 \nu^{11} - 41 \nu^{10} - 3445 \nu^{9} - 1137 \nu^{8} - 31741 \nu^{7} - 10297 \nu^{6} - 107943 \nu^{5} - 33839 \nu^{4} - 123568 \nu^{3} - 36486 \nu^{2} - 8300 \nu - 1384 ) / 544 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{11} + 2\beta_{10} - 4\beta_{7} - 4\beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - 8 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} - 13\beta_{5} - 7\beta_{4} + 13\beta_{3} + 7\beta_{2} - 4\beta_1 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( - 20 \beta_{11} - 20 \beta_{10} - 6 \beta_{9} - 6 \beta_{8} + 52 \beta_{7} + 52 \beta_{6} + 9 \beta_{5} + 17 \beta_{4} + 9 \beta_{3} + 17 \beta_{2} + 80 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 2 \beta_{11} - 2 \beta_{10} + 6 \beta_{9} - 6 \beta_{8} - 42 \beta_{7} + 42 \beta_{6} + 155 \beta_{5} + 69 \beta_{4} - 155 \beta_{3} - 69 \beta_{2} + 64 \beta_1 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 218 \beta_{11} + 218 \beta_{10} + 84 \beta_{9} + 84 \beta_{8} - 612 \beta_{7} - 612 \beta_{6} - 107 \beta_{5} - 243 \beta_{4} - 107 \beta_{3} - 243 \beta_{2} - 884 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 52 \beta_{11} + 52 \beta_{10} - 132 \beta_{9} + 132 \beta_{8} + 670 \beta_{7} - 670 \beta_{6} - 1817 \beta_{5} - 767 \beta_{4} + 1817 \beta_{3} + 767 \beta_{2} - 964 \beta_1 ) / 2 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 2452 \beta_{11} - 2452 \beta_{10} - 998 \beta_{9} - 998 \beta_{8} + 7084 \beta_{7} + 7084 \beta_{6} + 1381 \beta_{5} + 3285 \beta_{4} + 1381 \beta_{3} + 3285 \beta_{2} + 10072 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 906 \beta_{11} - 906 \beta_{10} + 2214 \beta_{9} - 2214 \beta_{8} - 9690 \beta_{7} + 9690 \beta_{6} + 21307 \beta_{5} + 8869 \beta_{4} - 21307 \beta_{3} - 8869 \beta_{2} + 13760 \beta_1 ) / 2 \)
|
\(\nu^{10}\) | \(=\) |
\( ( 27962 \beta_{11} + 27962 \beta_{10} + 11532 \beta_{9} + 11532 \beta_{8} - 82108 \beta_{7} - 82108 \beta_{6} - 17963 \beta_{5} - 43211 \beta_{4} - 17963 \beta_{3} - 43211 \beta_{2} - 116276 ) / 2 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 13716 \beta_{11} + 13716 \beta_{10} - 33212 \beta_{9} + 33212 \beta_{8} + 133350 \beta_{7} - 133350 \beta_{6} - 250913 \beta_{5} - 104063 \beta_{4} + 250913 \beta_{3} + 104063 \beta_{2} - 188772 \beta_1 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).
\(n\) | \(69\) | \(103\) | \(105\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\beta_{7}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 |
|
0 | −2.25523 | − | 0.934148i | 0 | −1.35305 | + | 3.26655i | 0 | 0.666590 | + | 1.60929i | 0 | 2.09212 | + | 2.09212i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
9.2 | 0 | −0.216544 | − | 0.0896953i | 0 | 1.33137 | − | 3.21420i | 0 | 0.934059 | + | 2.25502i | 0 | −2.08247 | − | 2.08247i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
9.3 | 0 | 2.47178 | + | 1.02384i | 0 | −0.392531 | + | 0.947653i | 0 | −0.893542 | − | 2.15720i | 0 | 2.94010 | + | 2.94010i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
25.1 | 0 | −1.24310 | + | 3.00110i | 0 | 0.194339 | + | 0.0804980i | 0 | −1.76317 | + | 0.730328i | 0 | −5.33998 | − | 5.33998i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
25.2 | 0 | 0.152809 | − | 0.368914i | 0 | −1.09698 | − | 0.454383i | 0 | 4.72436 | − | 1.95689i | 0 | 2.00857 | + | 2.00857i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
25.3 | 0 | 1.09029 | − | 2.63218i | 0 | 3.31685 | + | 1.37389i | 0 | −3.66830 | + | 1.51946i | 0 | −3.61834 | − | 3.61834i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
49.1 | 0 | −1.24310 | − | 3.00110i | 0 | 0.194339 | − | 0.0804980i | 0 | −1.76317 | − | 0.730328i | 0 | −5.33998 | + | 5.33998i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
49.2 | 0 | 0.152809 | + | 0.368914i | 0 | −1.09698 | + | 0.454383i | 0 | 4.72436 | + | 1.95689i | 0 | 2.00857 | − | 2.00857i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 0 | 1.09029 | + | 2.63218i | 0 | 3.31685 | − | 1.37389i | 0 | −3.66830 | − | 1.51946i | 0 | −3.61834 | + | 3.61834i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
121.1 | 0 | −2.25523 | + | 0.934148i | 0 | −1.35305 | − | 3.26655i | 0 | 0.666590 | − | 1.60929i | 0 | 2.09212 | − | 2.09212i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
121.2 | 0 | −0.216544 | + | 0.0896953i | 0 | 1.33137 | + | 3.21420i | 0 | 0.934059 | − | 2.25502i | 0 | −2.08247 | + | 2.08247i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
121.3 | 0 | 2.47178 | − | 1.02384i | 0 | −0.392531 | − | 0.947653i | 0 | −0.893542 | + | 2.15720i | 0 | 2.94010 | − | 2.94010i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 136.2.n.c | ✓ | 12 |
3.b | odd | 2 | 1 | 1224.2.bq.c | 12 | ||
4.b | odd | 2 | 1 | 272.2.v.f | 12 | ||
17.d | even | 8 | 1 | inner | 136.2.n.c | ✓ | 12 |
17.e | odd | 16 | 2 | 2312.2.a.w | 12 | ||
17.e | odd | 16 | 2 | 2312.2.b.n | 12 | ||
51.g | odd | 8 | 1 | 1224.2.bq.c | 12 | ||
68.g | odd | 8 | 1 | 272.2.v.f | 12 | ||
68.i | even | 16 | 2 | 4624.2.a.bt | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.2.n.c | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
136.2.n.c | ✓ | 12 | 17.d | even | 8 | 1 | inner |
272.2.v.f | 12 | 4.b | odd | 2 | 1 | ||
272.2.v.f | 12 | 68.g | odd | 8 | 1 | ||
1224.2.bq.c | 12 | 3.b | odd | 2 | 1 | ||
1224.2.bq.c | 12 | 51.g | odd | 8 | 1 | ||
2312.2.a.w | 12 | 17.e | odd | 16 | 2 | ||
2312.2.b.n | 12 | 17.e | odd | 16 | 2 | ||
4624.2.a.bt | 12 | 68.i | even | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} + 4 T_{3}^{10} - 8 T_{3}^{9} + 8 T_{3}^{8} + 40 T_{3}^{7} - 224 T_{3}^{6} + 96 T_{3}^{5} + 3652 T_{3}^{4} + 464 T_{3}^{3} + 304 T_{3}^{2} + 192 T_{3} + 32 \)
acting on \(S_{2}^{\mathrm{new}}(136, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} + 4 T^{10} - 8 T^{9} + 8 T^{8} + \cdots + 32 \)
$5$
\( T^{12} - 4 T^{11} + 16 T^{10} - 56 T^{9} + \cdots + 128 \)
$7$
\( T^{12} - 22 T^{10} - 12 T^{9} + \cdots + 147968 \)
$11$
\( T^{12} + 12 T^{11} + 48 T^{10} + \cdots + 16928 \)
$13$
\( T^{12} + 92 T^{10} + 3060 T^{8} + \cdots + 262144 \)
$17$
\( T^{12} - 4 T^{11} - 40 T^{10} + \cdots + 24137569 \)
$19$
\( T^{12} + 4 T^{11} + 8 T^{10} + 8 T^{9} + \cdots + 1024 \)
$23$
\( T^{12} + 8 T^{11} - 6 T^{10} + \cdots + 43655168 \)
$29$
\( T^{12} - 8 T^{11} + 20 T^{10} + \cdots + 118210688 \)
$31$
\( T^{12} + 32 T^{11} + \cdots + 103219712 \)
$37$
\( T^{12} - 4 T^{11} + 56 T^{10} - 328 T^{9} + \cdots + 512 \)
$41$
\( T^{12} - 16 T^{11} + \cdots + 591542408 \)
$43$
\( T^{12} - 8 T^{11} + 32 T^{10} + \cdots + 148254976 \)
$47$
\( T^{12} + 360 T^{10} + \cdots + 440664064 \)
$53$
\( T^{12} + 8 T^{11} + 32 T^{10} + \cdots + 25080064 \)
$59$
\( T^{12} - 16 T^{11} + 128 T^{10} + \cdots + 9339136 \)
$61$
\( T^{12} - 44 T^{11} + \cdots + 118949888 \)
$67$
\( (T^{6} + 20 T^{5} + 58 T^{4} - 880 T^{3} + \cdots + 28928)^{2} \)
$71$
\( T^{12} - 32 T^{11} + 578 T^{10} + \cdots + 10913792 \)
$73$
\( T^{12} - 8 T^{11} + 158 T^{10} + \cdots + 545424392 \)
$79$
\( T^{12} + 8 T^{11} + \cdots + 1130596352 \)
$83$
\( T^{12} - 40 T^{11} + 800 T^{10} + \cdots + 256 \)
$89$
\( T^{12} + 552 T^{10} + \cdots + 12558340096 \)
$97$
\( T^{12} + 16 T^{11} + 334 T^{10} + \cdots + 30451208 \)
show more
show less