L(s) = 1 | + 2.18i·3-s + 1.65i·5-s − 3.87i·7-s − 1.77·9-s + 1.06i·11-s + 6.10·13-s − 3.61·15-s − 1.41·19-s + 8.47·21-s − 6.92i·23-s + 2.26·25-s + 2.68i·27-s − 7.90i·29-s − 9.00i·31-s − 2.32·33-s + ⋯ |
L(s) = 1 | + 1.26i·3-s + 0.739i·5-s − 1.46i·7-s − 0.591·9-s + 0.320i·11-s + 1.69·13-s − 0.932·15-s − 0.323·19-s + 1.84·21-s − 1.44i·23-s + 0.453·25-s + 0.515i·27-s − 1.46i·29-s − 1.61i·31-s − 0.404·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.743 - 0.669i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.743 - 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.987902251\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.987902251\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 - 2.18iT - 3T^{2} \) |
| 5 | \( 1 - 1.65iT - 5T^{2} \) |
| 7 | \( 1 + 3.87iT - 7T^{2} \) |
| 11 | \( 1 - 1.06iT - 11T^{2} \) |
| 13 | \( 1 - 6.10T + 13T^{2} \) |
| 19 | \( 1 + 1.41T + 19T^{2} \) |
| 23 | \( 1 + 6.92iT - 23T^{2} \) |
| 29 | \( 1 + 7.90iT - 29T^{2} \) |
| 31 | \( 1 + 9.00iT - 31T^{2} \) |
| 37 | \( 1 - 3.47iT - 37T^{2} \) |
| 41 | \( 1 - 10.3iT - 41T^{2} \) |
| 43 | \( 1 - 8.86T + 43T^{2} \) |
| 47 | \( 1 - 3.22T + 47T^{2} \) |
| 53 | \( 1 - 1.06T + 53T^{2} \) |
| 59 | \( 1 - 9.46T + 59T^{2} \) |
| 61 | \( 1 + 11.3iT - 61T^{2} \) |
| 67 | \( 1 - 2.04T + 67T^{2} \) |
| 71 | \( 1 - 0.448iT - 71T^{2} \) |
| 73 | \( 1 + 1.83iT - 73T^{2} \) |
| 79 | \( 1 + 2.75iT - 79T^{2} \) |
| 83 | \( 1 + 0.389T + 83T^{2} \) |
| 89 | \( 1 - 13.9T + 89T^{2} \) |
| 97 | \( 1 - 13.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.310544869459643471815353879763, −8.322261815807397291404039816681, −7.63009138900435730542064962839, −6.59057934632167207224543769738, −6.15347231169531288358307883493, −4.79355088957534373612187456353, −4.06428456325102454269720290872, −3.73786566694440881131573840508, −2.55219731630794553181542048121, −0.879729574476115711818081898367,
1.07371600414511898298444720613, 1.76905342707560849878614089291, 2.89597876458962875206005376078, 3.94846222942019015260171543561, 5.45098987797341436612405482675, 5.62135185745182336445368188982, 6.61677444548919214473570304531, 7.31765169029367688582524051207, 8.382286968233322134853061825758, 8.753599293184982358640239303142