Properties

Label 23.37.b
Level 2323
Weight 3737
Character orbit 23.b
Rep. character χ23(22,)\chi_{23}(22,\cdot)
Character field Q\Q
Dimension 7171
Newform subspaces 33
Sturm bound 7474
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 23 23
Weight: k k == 37 37
Character orbit: [χ][\chi] == 23.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 23 23
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 7474
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M37(23,[χ])M_{37}(23, [\chi]).

Total New Old
Modular forms 73 73 0
Cusp forms 71 71 0
Eisenstein series 2 2 0

Trace form

71q169832q2+420071358q3+2439865505256q4+4961334023571q6+36 ⁣ ⁣91q8+33 ⁣ ⁣53q9+80 ⁣ ⁣39q1213 ⁣ ⁣42q13+65 ⁣ ⁣80q16+11 ⁣ ⁣59q18++55 ⁣ ⁣28q98+O(q100) 71 q - 169832 q^{2} + 420071358 q^{3} + 2439865505256 q^{4} + 4961334023571 q^{6} + 36\!\cdots\!91 q^{8} + 33\!\cdots\!53 q^{9} + 80\!\cdots\!39 q^{12} - 13\!\cdots\!42 q^{13} + 65\!\cdots\!80 q^{16} + 11\!\cdots\!59 q^{18}+ \cdots + 55\!\cdots\!28 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S37new(23,[χ])S_{37}^{\mathrm{new}}(23, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
23.37.b.a 23.b 23.b 11 188.810188.810 Q\Q Q(23)\Q(\sqrt{-23}) 23.37.b.a 477713477713 2231777822317778 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+477713q2+22317778q3+159490233633q4+q+477713q^{2}+22317778q^{3}+159490233633q^{4}+\cdots
23.37.b.b 23.b 23.b 22 188.810188.810 Q(69)\Q(\sqrt{69}) Q(23)\Q(\sqrt{-23}) 23.37.b.b 477713-477713 22317778-22317778 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(239266819β)q2+(12627057+)q3+q+(-239266-819\beta )q^{2}+(-12627057+\cdots)q^{3}+\cdots
23.37.b.c 23.b 23.b 6868 188.810188.810 None 23.37.b.c 169832-169832 420071358420071358 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]