Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [23,37,Mod(22,23)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 37, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("23.22");
S:= CuspForms(chi, 37);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 37 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(188.809894917\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 | −489228. | 1.09821e7 | 1.70625e11 | 2.06652e12i | −5.37275e12 | − | 2.78671e15i | −4.98548e16 | −1.49974e17 | − | 1.01100e18i | ||||||||||||||||
22.2 | −489228. | 1.09821e7 | 1.70625e11 | − | 2.06652e12i | −5.37275e12 | 2.78671e15i | −4.98548e16 | −1.49974e17 | 1.01100e18i | |||||||||||||||||
22.3 | −484017. | −4.64426e8 | 1.65553e11 | 3.72485e12i | 2.24790e14 | 4.69428e14i | −4.68693e16 | 6.55965e16 | − | 1.80289e18i | |||||||||||||||||
22.4 | −484017. | −4.64426e8 | 1.65553e11 | − | 3.72485e12i | 2.24790e14 | − | 4.69428e14i | −4.68693e16 | 6.55965e16 | 1.80289e18i | ||||||||||||||||
22.5 | −479695. | 3.36313e8 | 1.61388e11 | 5.78517e12i | −1.61328e14 | 3.89623e14i | −4.44525e16 | −3.69883e16 | − | 2.77511e18i | |||||||||||||||||
22.6 | −479695. | 3.36313e8 | 1.61388e11 | − | 5.78517e12i | −1.61328e14 | − | 3.89623e14i | −4.44525e16 | −3.69883e16 | 2.77511e18i | ||||||||||||||||
22.7 | −444581. | 6.99679e8 | 1.28933e11 | − | 3.58455e11i | −3.11064e14 | − | 2.16806e15i | −2.67699e16 | 3.39457e17 | 1.59363e17i | ||||||||||||||||
22.8 | −444581. | 6.99679e8 | 1.28933e11 | 3.58455e11i | −3.11064e14 | 2.16806e15i | −2.67699e16 | 3.39457e17 | − | 1.59363e17i | |||||||||||||||||
22.9 | −369775. | −8.91776e7 | 6.80142e10 | 1.41364e12i | 3.29757e13 | 2.56323e14i | 2.60790e14 | −1.42142e17 | − | 5.22730e17i | |||||||||||||||||
22.10 | −369775. | −8.91776e7 | 6.80142e10 | − | 1.41364e12i | 3.29757e13 | − | 2.56323e14i | 2.60790e14 | −1.42142e17 | 5.22730e17i | ||||||||||||||||
22.11 | −359295. | −3.03855e8 | 6.03737e10 | − | 5.22108e12i | 1.09174e14 | 2.99567e15i | 2.99861e15 | −5.77666e16 | 1.87591e18i | |||||||||||||||||
22.12 | −359295. | −3.03855e8 | 6.03737e10 | 5.22108e12i | 1.09174e14 | − | 2.99567e15i | 2.99861e15 | −5.77666e16 | − | 1.87591e18i | ||||||||||||||||
22.13 | −359253. | −4.43320e8 | 6.03436e10 | 7.17873e12i | 1.59264e14 | 2.68871e15i | 3.00908e15 | 4.64378e16 | − | 2.57898e18i | |||||||||||||||||
22.14 | −359253. | −4.43320e8 | 6.03436e10 | − | 7.17873e12i | 1.59264e14 | − | 2.68871e15i | 3.00908e15 | 4.64378e16 | 2.57898e18i | ||||||||||||||||
22.15 | −355814. | 4.11127e8 | 5.78844e10 | − | 2.31241e12i | −1.46285e14 | − | 1.37033e15i | 3.85529e15 | 1.89306e16 | 8.22790e17i | ||||||||||||||||
22.16 | −355814. | 4.11127e8 | 5.78844e10 | 2.31241e12i | −1.46285e14 | 1.37033e15i | 3.85529e15 | 1.89306e16 | − | 8.22790e17i | |||||||||||||||||
22.17 | −277285. | 1.78977e8 | 8.16767e9 | 5.05491e12i | −4.96277e13 | 8.18328e13i | 1.67901e16 | −1.18062e17 | − | 1.40165e18i | |||||||||||||||||
22.18 | −277285. | 1.78977e8 | 8.16767e9 | − | 5.05491e12i | −4.96277e13 | − | 8.18328e13i | 1.67901e16 | −1.18062e17 | 1.40165e18i | ||||||||||||||||
22.19 | −269386. | 5.83675e8 | 3.84927e9 | − | 6.49898e12i | −1.57234e14 | 2.49713e15i | 1.74751e16 | 1.90582e17 | 1.75073e18i | |||||||||||||||||
22.20 | −269386. | 5.83675e8 | 3.84927e9 | 6.49898e12i | −1.57234e14 | − | 2.49713e15i | 1.74751e16 | 1.90582e17 | − | 1.75073e18i | ||||||||||||||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 23.37.b.c | ✓ | 68 |
23.b | odd | 2 | 1 | inner | 23.37.b.c | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
23.37.b.c | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
23.37.b.c | ✓ | 68 | 23.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{34} + 84916 T_{2}^{33} - 1723052509746 T_{2}^{32} + \cdots + 20\!\cdots\!00 \) acting on \(S_{37}^{\mathrm{new}}(23, [\chi])\).