Properties

Label 23.37.b.a
Level $23$
Weight $37$
Character orbit 23.b
Self dual yes
Analytic conductor $188.810$
Analytic rank $0$
Dimension $1$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,37,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 37, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 37);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 37 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(188.809894917\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 477713 q^{2} + 22317778 q^{3} + 159490233633 q^{4} + 10661492681714 q^{6} + 43\!\cdots\!61 q^{8}+ \cdots - 14\!\cdots\!37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 477713 q^{2} + 22317778 q^{3} + 159490233633 q^{4} + 10661492681714 q^{6} + 43\!\cdots\!61 q^{8}+ \cdots + 12\!\cdots\!13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
0
477713. 2.23178e7 1.59490e11 0 1.06615e13 0 4.33624e16 −1.49597e17 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.37.b.a 1
23.b odd 2 1 CM 23.37.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.37.b.a 1 1.a even 1 1 trivial
23.37.b.a 1 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 477713 \) acting on \(S_{37}^{\mathrm{new}}(23, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 477713 \) Copy content Toggle raw display
$3$ \( T - 22317778 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 17\!\cdots\!42 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 32\!\cdots\!69 \) Copy content Toggle raw display
$29$ \( T - 24\!\cdots\!22 \) Copy content Toggle raw display
$31$ \( T - 75\!\cdots\!82 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 75\!\cdots\!42 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 15\!\cdots\!78 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 98\!\cdots\!42 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 25\!\cdots\!78 \) Copy content Toggle raw display
$73$ \( T + 42\!\cdots\!62 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less