Properties

Label 23.37.b.b
Level $23$
Weight $37$
Character orbit 23.b
Self dual yes
Analytic conductor $188.810$
Analytic rank $0$
Dimension $2$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,37,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 37, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 37);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 37 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(188.809894917\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{69}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 5\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 55\sqrt{69})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 819 \beta - 239266) q^{2} + ( - 2936336 \beta - 12627057) q^{3} + (391246947 \beta + 23529721761) q^{4} + (710502069875 \beta + 128509182500466) q^{6} + ( - 56281251446784 \beta - 59\!\cdots\!83) q^{8}+ \cdots + (65532494981408 \beta + 29\!\cdots\!04) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 819 \beta - 239266) q^{2} + ( - 2936336 \beta - 12627057) q^{3} + (391246947 \beta + 23529721761) q^{4} + (710502069875 \beta + 128509182500466) q^{6} + ( - 56281251446784 \beta - 59\!\cdots\!83) q^{8}+ \cdots + ( - 21\!\cdots\!19 \beta - 63\!\cdots\!66) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 477713 q^{2} - 22317778 q^{3} + 46668196575 q^{4} + 256307862931057 q^{6} - 11\!\cdots\!82 q^{8}+ \cdots + 59\!\cdots\!00 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 477713 q^{2} - 22317778 q^{3} + 46668196575 q^{4} + 256307862931057 q^{6} - 11\!\cdots\!82 q^{8}+ \cdots - 12\!\cdots\!13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
4.65331
−3.65331
−425942. −6.81912e8 1.12707e11 0 2.90455e14 0 −1.87364e16 3.14910e17 0
22.2 −51770.6 6.59595e8 −6.60393e10 0 −3.41476e13 0 6.97654e15 2.84970e17 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.37.b.b 2
23.b odd 2 1 CM 23.37.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.37.b.b 2 1.a even 1 1 trivial
23.37.b.b 2 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 477713T_{2} + 22051280161 \) acting on \(S_{37}^{\mathrm{new}}(23, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + \cdots + 22051280161 \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 44\!\cdots\!79 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 37\!\cdots\!59 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 32\!\cdots\!69)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 72\!\cdots\!79 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 89\!\cdots\!19 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 28\!\cdots\!59 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 22\!\cdots\!79 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 98\!\cdots\!42)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 67\!\cdots\!79 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 18\!\cdots\!39 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less