Properties

Label 225.4.e.f.151.10
Level $225$
Weight $4$
Character 225.151
Analytic conductor $13.275$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.10
Character \(\chi\) \(=\) 225.151
Dual form 225.4.e.f.76.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81989 - 3.15215i) q^{2} +(5.18137 - 0.391700i) q^{3} +(-2.62402 - 4.54493i) q^{4} +(8.19483 - 17.0453i) q^{6} +(1.86027 - 3.22208i) q^{7} +10.0166 q^{8} +(26.6931 - 4.05909i) q^{9} +(14.0066 - 24.2602i) q^{11} +(-15.3762 - 22.5211i) q^{12} +(21.8210 + 37.7951i) q^{13} +(-6.77099 - 11.7277i) q^{14} +(39.2212 - 67.9331i) q^{16} -87.3128 q^{17} +(35.7838 - 91.5278i) q^{18} +38.5062 q^{19} +(8.37666 - 17.4235i) q^{21} +(-50.9811 - 88.3019i) q^{22} +(-57.9733 - 100.413i) q^{23} +(51.8995 - 3.92349i) q^{24} +158.848 q^{26} +(136.717 - 31.4873i) q^{27} -19.5255 q^{28} +(-98.0246 + 169.784i) q^{29} +(-86.7675 - 150.286i) q^{31} +(-102.690 - 177.865i) q^{32} +(63.0708 - 131.187i) q^{33} +(-158.900 + 275.223i) q^{34} +(-88.4915 - 110.667i) q^{36} +181.738 q^{37} +(70.0772 - 121.377i) q^{38} +(127.867 + 187.283i) q^{39} +(124.893 + 216.320i) q^{41} +(-39.6767 - 58.1133i) q^{42} +(-230.354 + 398.985i) q^{43} -147.015 q^{44} -422.021 q^{46} +(164.196 - 284.395i) q^{47} +(176.610 - 367.349i) q^{48} +(164.579 + 285.059i) q^{49} +(-452.400 + 34.2005i) q^{51} +(114.517 - 198.350i) q^{52} -667.821 q^{53} +(149.558 - 488.256i) q^{54} +(18.6335 - 32.2742i) q^{56} +(199.515 - 15.0829i) q^{57} +(356.788 + 617.976i) q^{58} +(-55.5587 - 96.2305i) q^{59} +(-218.973 + 379.272i) q^{61} -631.630 q^{62} +(36.5778 - 93.5586i) q^{63} -120.003 q^{64} +(-298.740 - 437.555i) q^{66} +(77.4225 + 134.100i) q^{67} +(229.110 + 396.831i) q^{68} +(-339.713 - 497.567i) q^{69} +912.989 q^{71} +(267.374 - 40.6581i) q^{72} -975.779 q^{73} +(330.743 - 572.863i) q^{74} +(-101.041 - 175.008i) q^{76} +(-52.1123 - 90.2611i) q^{77} +(823.048 - 62.2207i) q^{78} +(-428.020 + 741.352i) q^{79} +(696.048 - 216.700i) q^{81} +909.164 q^{82} +(34.2104 - 59.2542i) q^{83} +(-101.169 + 7.64816i) q^{84} +(838.439 + 1452.22i) q^{86} +(-441.397 + 918.107i) q^{87} +(140.298 - 243.004i) q^{88} +665.452 q^{89} +162.372 q^{91} +(-304.246 + 526.970i) q^{92} +(-508.441 - 744.699i) q^{93} +(-597.637 - 1035.14i) q^{94} +(-601.747 - 881.361i) q^{96} +(-701.837 + 1215.62i) q^{97} +1198.06 q^{98} +(275.407 - 704.435i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + q^{3} - 48 q^{4} - 13 q^{6} - 6 q^{7} - 90 q^{8} - 61 q^{9} - 29 q^{11} + 77 q^{12} - 24 q^{13} + 69 q^{14} - 192 q^{16} - 158 q^{17} - 125 q^{18} - 150 q^{19} - 60 q^{21} + 18 q^{22}+ \cdots - 1697 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81989 3.15215i 0.643429 1.11445i −0.341233 0.939979i \(-0.610844\pi\)
0.984662 0.174473i \(-0.0558222\pi\)
\(3\) 5.18137 0.391700i 0.997155 0.0753828i
\(4\) −2.62402 4.54493i −0.328002 0.568116i
\(5\) 0 0
\(6\) 8.19483 17.0453i 0.557588 1.15978i
\(7\) 1.86027 3.22208i 0.100445 0.173976i −0.811423 0.584459i \(-0.801307\pi\)
0.911868 + 0.410483i \(0.134640\pi\)
\(8\) 10.0166 0.442674
\(9\) 26.6931 4.05909i 0.988635 0.150337i
\(10\) 0 0
\(11\) 14.0066 24.2602i 0.383923 0.664975i −0.607696 0.794170i \(-0.707906\pi\)
0.991619 + 0.129195i \(0.0412393\pi\)
\(12\) −15.3762 22.5211i −0.369895 0.541774i
\(13\) 21.8210 + 37.7951i 0.465543 + 0.806344i 0.999226 0.0393404i \(-0.0125257\pi\)
−0.533683 + 0.845685i \(0.679192\pi\)
\(14\) −6.77099 11.7277i −0.129259 0.223883i
\(15\) 0 0
\(16\) 39.2212 67.9331i 0.612831 1.06146i
\(17\) −87.3128 −1.24567 −0.622837 0.782351i \(-0.714020\pi\)
−0.622837 + 0.782351i \(0.714020\pi\)
\(18\) 35.7838 91.5278i 0.468574 1.19852i
\(19\) 38.5062 0.464944 0.232472 0.972603i \(-0.425319\pi\)
0.232472 + 0.972603i \(0.425319\pi\)
\(20\) 0 0
\(21\) 8.37666 17.4235i 0.0870446 0.181053i
\(22\) −50.9811 88.3019i −0.494055 0.855728i
\(23\) −57.9733 100.413i −0.525577 0.910327i −0.999556 0.0297904i \(-0.990516\pi\)
0.473979 0.880536i \(-0.342817\pi\)
\(24\) 51.8995 3.92349i 0.441414 0.0333700i
\(25\) 0 0
\(26\) 158.848 1.19818
\(27\) 136.717 31.4873i 0.974489 0.224435i
\(28\) −19.5255 −0.131785
\(29\) −98.0246 + 169.784i −0.627679 + 1.08717i 0.360337 + 0.932822i \(0.382662\pi\)
−0.988016 + 0.154350i \(0.950672\pi\)
\(30\) 0 0
\(31\) −86.7675 150.286i −0.502707 0.870713i −0.999995 0.00312811i \(-0.999004\pi\)
0.497289 0.867585i \(-0.334329\pi\)
\(32\) −102.690 177.865i −0.567290 0.982575i
\(33\) 63.0708 131.187i 0.332703 0.692024i
\(34\) −158.900 + 275.223i −0.801503 + 1.38824i
\(35\) 0 0
\(36\) −88.4915 110.667i −0.409683 0.512349i
\(37\) 181.738 0.807499 0.403749 0.914870i \(-0.367707\pi\)
0.403749 + 0.914870i \(0.367707\pi\)
\(38\) 70.0772 121.377i 0.299159 0.518158i
\(39\) 127.867 + 187.283i 0.525003 + 0.768956i
\(40\) 0 0
\(41\) 124.893 + 216.320i 0.475730 + 0.823989i 0.999613 0.0278012i \(-0.00885054\pi\)
−0.523883 + 0.851790i \(0.675517\pi\)
\(42\) −39.6767 58.1133i −0.145768 0.213502i
\(43\) −230.354 + 398.985i −0.816945 + 1.41499i 0.0909774 + 0.995853i \(0.471001\pi\)
−0.907923 + 0.419138i \(0.862332\pi\)
\(44\) −147.015 −0.503711
\(45\) 0 0
\(46\) −422.021 −1.35269
\(47\) 164.196 284.395i 0.509583 0.882624i −0.490355 0.871523i \(-0.663133\pi\)
0.999938 0.0111016i \(-0.00353381\pi\)
\(48\) 176.610 367.349i 0.531072 1.10463i
\(49\) 164.579 + 285.059i 0.479822 + 0.831075i
\(50\) 0 0
\(51\) −452.400 + 34.2005i −1.24213 + 0.0939024i
\(52\) 114.517 198.350i 0.305398 0.528965i
\(53\) −667.821 −1.73080 −0.865399 0.501083i \(-0.832935\pi\)
−0.865399 + 0.501083i \(0.832935\pi\)
\(54\) 149.558 488.256i 0.376893 1.23043i
\(55\) 0 0
\(56\) 18.6335 32.2742i 0.0444645 0.0770147i
\(57\) 199.515 15.0829i 0.463621 0.0350488i
\(58\) 356.788 + 617.976i 0.807735 + 1.39904i
\(59\) −55.5587 96.2305i −0.122595 0.212341i 0.798195 0.602399i \(-0.205788\pi\)
−0.920790 + 0.390058i \(0.872455\pi\)
\(60\) 0 0
\(61\) −218.973 + 379.272i −0.459617 + 0.796080i −0.998941 0.0460189i \(-0.985347\pi\)
0.539324 + 0.842098i \(0.318680\pi\)
\(62\) −631.630 −1.29382
\(63\) 36.5778 93.5586i 0.0731487 0.187100i
\(64\) −120.003 −0.234381
\(65\) 0 0
\(66\) −298.740 437.555i −0.557156 0.816050i
\(67\) 77.4225 + 134.100i 0.141174 + 0.244521i 0.927939 0.372732i \(-0.121579\pi\)
−0.786765 + 0.617253i \(0.788246\pi\)
\(68\) 229.110 + 396.831i 0.408584 + 0.707688i
\(69\) −339.713 497.567i −0.592705 0.868117i
\(70\) 0 0
\(71\) 912.989 1.52608 0.763041 0.646350i \(-0.223705\pi\)
0.763041 + 0.646350i \(0.223705\pi\)
\(72\) 267.374 40.6581i 0.437643 0.0665501i
\(73\) −975.779 −1.56447 −0.782234 0.622984i \(-0.785920\pi\)
−0.782234 + 0.622984i \(0.785920\pi\)
\(74\) 330.743 572.863i 0.519568 0.899919i
\(75\) 0 0
\(76\) −101.041 175.008i −0.152503 0.264142i
\(77\) −52.1123 90.2611i −0.0771265 0.133587i
\(78\) 823.048 62.2207i 1.19477 0.0903218i
\(79\) −428.020 + 741.352i −0.609570 + 1.05581i 0.381742 + 0.924269i \(0.375324\pi\)
−0.991311 + 0.131536i \(0.958009\pi\)
\(80\) 0 0
\(81\) 696.048 216.700i 0.954798 0.297256i
\(82\) 909.164 1.22439
\(83\) 34.2104 59.2542i 0.0452420 0.0783614i −0.842518 0.538669i \(-0.818927\pi\)
0.887760 + 0.460307i \(0.152261\pi\)
\(84\) −101.169 + 7.64816i −0.131410 + 0.00993431i
\(85\) 0 0
\(86\) 838.439 + 1452.22i 1.05129 + 1.82089i
\(87\) −441.397 + 918.107i −0.543939 + 1.13140i
\(88\) 140.298 243.004i 0.169953 0.294367i
\(89\) 665.452 0.792559 0.396280 0.918130i \(-0.370301\pi\)
0.396280 + 0.918130i \(0.370301\pi\)
\(90\) 0 0
\(91\) 162.372 0.187046
\(92\) −304.246 + 526.970i −0.344781 + 0.597178i
\(93\) −508.441 744.699i −0.566913 0.830340i
\(94\) −597.637 1035.14i −0.655762 1.13581i
\(95\) 0 0
\(96\) −601.747 881.361i −0.639745 0.937016i
\(97\) −701.837 + 1215.62i −0.734646 + 1.27245i 0.220232 + 0.975448i \(0.429319\pi\)
−0.954878 + 0.296997i \(0.904015\pi\)
\(98\) 1198.06 1.23492
\(99\) 275.407 704.435i 0.279590 0.715135i
\(100\) 0 0
\(101\) 327.589 567.401i 0.322736 0.558995i −0.658316 0.752742i \(-0.728731\pi\)
0.981051 + 0.193747i \(0.0620641\pi\)
\(102\) −715.514 + 1488.27i −0.694573 + 1.44471i
\(103\) 126.762 + 219.557i 0.121264 + 0.210035i 0.920266 0.391293i \(-0.127972\pi\)
−0.799002 + 0.601328i \(0.794639\pi\)
\(104\) 218.572 + 378.577i 0.206084 + 0.356948i
\(105\) 0 0
\(106\) −1215.36 + 2105.07i −1.11365 + 1.92889i
\(107\) −1132.73 −1.02341 −0.511706 0.859161i \(-0.670986\pi\)
−0.511706 + 0.859161i \(0.670986\pi\)
\(108\) −501.856 538.746i −0.447140 0.480008i
\(109\) 1514.68 1.33101 0.665506 0.746392i \(-0.268216\pi\)
0.665506 + 0.746392i \(0.268216\pi\)
\(110\) 0 0
\(111\) 941.649 71.1866i 0.805201 0.0608715i
\(112\) −145.924 252.748i −0.123112 0.213236i
\(113\) 836.016 + 1448.02i 0.695980 + 1.20547i 0.969849 + 0.243706i \(0.0783633\pi\)
−0.273869 + 0.961767i \(0.588303\pi\)
\(114\) 315.552 656.350i 0.259247 0.539235i
\(115\) 0 0
\(116\) 1028.87 0.823521
\(117\) 735.885 + 920.297i 0.581475 + 0.727192i
\(118\) −404.443 −0.315526
\(119\) −162.426 + 281.329i −0.125122 + 0.216718i
\(120\) 0 0
\(121\) 273.129 + 473.073i 0.205206 + 0.355427i
\(122\) 797.015 + 1380.47i 0.591462 + 1.02444i
\(123\) 731.847 + 1071.91i 0.536491 + 0.785782i
\(124\) −455.359 + 788.705i −0.329778 + 0.571192i
\(125\) 0 0
\(126\) −228.343 285.565i −0.161447 0.201906i
\(127\) 547.016 0.382203 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(128\) 603.131 1044.65i 0.416482 0.721369i
\(129\) −1037.27 + 2157.52i −0.707955 + 1.47255i
\(130\) 0 0
\(131\) −633.985 1098.09i −0.422836 0.732374i 0.573379 0.819290i \(-0.305632\pi\)
−0.996216 + 0.0869161i \(0.972299\pi\)
\(132\) −761.736 + 57.5856i −0.502277 + 0.0379711i
\(133\) 71.6321 124.070i 0.0467014 0.0808892i
\(134\) 563.602 0.363342
\(135\) 0 0
\(136\) −874.575 −0.551428
\(137\) 465.222 805.788i 0.290121 0.502504i −0.683717 0.729747i \(-0.739638\pi\)
0.973838 + 0.227243i \(0.0729711\pi\)
\(138\) −2186.65 + 165.306i −1.34884 + 0.101969i
\(139\) −1565.13 2710.89i −0.955057 1.65421i −0.734238 0.678892i \(-0.762461\pi\)
−0.220818 0.975315i \(-0.570873\pi\)
\(140\) 0 0
\(141\) 739.361 1537.87i 0.441599 0.918527i
\(142\) 1661.54 2877.87i 0.981926 1.70075i
\(143\) 1222.56 0.714932
\(144\) 771.191 1972.55i 0.446291 1.14152i
\(145\) 0 0
\(146\) −1775.81 + 3075.80i −1.00662 + 1.74353i
\(147\) 964.401 + 1412.53i 0.541105 + 0.792540i
\(148\) −476.882 825.984i −0.264861 0.458753i
\(149\) 815.678 + 1412.80i 0.448476 + 0.776784i 0.998287 0.0585055i \(-0.0186335\pi\)
−0.549811 + 0.835289i \(0.685300\pi\)
\(150\) 0 0
\(151\) −910.818 + 1577.58i −0.490870 + 0.850211i −0.999945 0.0105108i \(-0.996654\pi\)
0.509075 + 0.860722i \(0.329988\pi\)
\(152\) 385.700 0.205819
\(153\) −2330.65 + 354.410i −1.23152 + 0.187270i
\(154\) −379.355 −0.198502
\(155\) 0 0
\(156\) 515.663 1072.58i 0.264654 0.550482i
\(157\) −1417.59 2455.34i −0.720612 1.24814i −0.960755 0.277400i \(-0.910527\pi\)
0.240142 0.970738i \(-0.422806\pi\)
\(158\) 1557.90 + 2698.36i 0.784430 + 1.35867i
\(159\) −3460.23 + 261.586i −1.72587 + 0.130472i
\(160\) 0 0
\(161\) −431.385 −0.211167
\(162\) 583.663 2588.41i 0.283067 1.25534i
\(163\) −3048.62 −1.46495 −0.732473 0.680796i \(-0.761634\pi\)
−0.732473 + 0.680796i \(0.761634\pi\)
\(164\) 655.440 1135.26i 0.312081 0.540540i
\(165\) 0 0
\(166\) −124.519 215.673i −0.0582200 0.100840i
\(167\) −1418.96 2457.71i −0.657500 1.13882i −0.981261 0.192685i \(-0.938281\pi\)
0.323761 0.946139i \(-0.395053\pi\)
\(168\) 83.9053 174.523i 0.0385324 0.0801474i
\(169\) 146.186 253.202i 0.0665391 0.115249i
\(170\) 0 0
\(171\) 1027.85 156.300i 0.459660 0.0698981i
\(172\) 2417.81 1.07184
\(173\) 255.267 442.135i 0.112183 0.194306i −0.804467 0.593997i \(-0.797549\pi\)
0.916650 + 0.399691i \(0.130883\pi\)
\(174\) 2090.71 + 3062.20i 0.910900 + 1.33417i
\(175\) 0 0
\(176\) −1098.71 1903.03i −0.470561 0.815035i
\(177\) −325.563 476.843i −0.138253 0.202496i
\(178\) 1211.05 2097.60i 0.509956 0.883269i
\(179\) −2274.36 −0.949687 −0.474843 0.880070i \(-0.657495\pi\)
−0.474843 + 0.880070i \(0.657495\pi\)
\(180\) 0 0
\(181\) −975.489 −0.400594 −0.200297 0.979735i \(-0.564191\pi\)
−0.200297 + 0.979735i \(0.564191\pi\)
\(182\) 295.500 511.820i 0.120351 0.208454i
\(183\) −986.019 + 2050.92i −0.398298 + 0.828462i
\(184\) −580.694 1005.79i −0.232659 0.402978i
\(185\) 0 0
\(186\) −3272.71 + 247.410i −1.29014 + 0.0975321i
\(187\) −1222.96 + 2118.23i −0.478244 + 0.828342i
\(188\) −1723.41 −0.668578
\(189\) 152.876 499.089i 0.0588364 0.192081i
\(190\) 0 0
\(191\) 940.013 1628.15i 0.356110 0.616800i −0.631198 0.775622i \(-0.717436\pi\)
0.987307 + 0.158822i \(0.0507696\pi\)
\(192\) −621.781 + 47.0053i −0.233714 + 0.0176683i
\(193\) −306.781 531.360i −0.114418 0.198177i 0.803129 0.595805i \(-0.203167\pi\)
−0.917547 + 0.397628i \(0.869834\pi\)
\(194\) 2554.53 + 4424.58i 0.945386 + 1.63746i
\(195\) 0 0
\(196\) 863.715 1496.00i 0.314765 0.545189i
\(197\) 68.3454 0.0247178 0.0123589 0.999924i \(-0.496066\pi\)
0.0123589 + 0.999924i \(0.496066\pi\)
\(198\) −1719.27 2150.12i −0.617087 0.771728i
\(199\) 2174.87 0.774736 0.387368 0.921925i \(-0.373384\pi\)
0.387368 + 0.921925i \(0.373384\pi\)
\(200\) 0 0
\(201\) 453.681 + 664.493i 0.159205 + 0.233183i
\(202\) −1192.35 2065.22i −0.415315 0.719347i
\(203\) 364.705 + 631.687i 0.126095 + 0.218403i
\(204\) 1342.54 + 1966.38i 0.460769 + 0.674874i
\(205\) 0 0
\(206\) 922.769 0.312099
\(207\) −1955.08 2445.01i −0.656459 0.820967i
\(208\) 3423.39 1.14120
\(209\) 539.343 934.169i 0.178503 0.309176i
\(210\) 0 0
\(211\) 237.521 + 411.398i 0.0774957 + 0.134227i 0.902169 0.431383i \(-0.141974\pi\)
−0.824673 + 0.565610i \(0.808641\pi\)
\(212\) 1752.37 + 3035.20i 0.567705 + 0.983295i
\(213\) 4730.53 357.618i 1.52174 0.115040i
\(214\) −2061.44 + 3570.53i −0.658493 + 1.14054i
\(215\) 0 0
\(216\) 1369.44 315.395i 0.431381 0.0993514i
\(217\) −645.644 −0.201978
\(218\) 2756.56 4774.50i 0.856412 1.48335i
\(219\) −5055.87 + 382.213i −1.56002 + 0.117934i
\(220\) 0 0
\(221\) −1905.25 3300.00i −0.579915 1.00444i
\(222\) 1489.31 3097.77i 0.450252 0.936525i
\(223\) 1483.17 2568.93i 0.445384 0.771427i −0.552695 0.833384i \(-0.686401\pi\)
0.998079 + 0.0619561i \(0.0197339\pi\)
\(224\) −764.129 −0.227926
\(225\) 0 0
\(226\) 6085.84 1.79126
\(227\) 1416.11 2452.78i 0.414056 0.717167i −0.581273 0.813709i \(-0.697445\pi\)
0.995329 + 0.0965423i \(0.0307783\pi\)
\(228\) −592.081 867.204i −0.171980 0.251895i
\(229\) 2146.22 + 3717.37i 0.619330 + 1.07271i 0.989608 + 0.143790i \(0.0459289\pi\)
−0.370278 + 0.928921i \(0.620738\pi\)
\(230\) 0 0
\(231\) −305.368 447.263i −0.0869772 0.127393i
\(232\) −981.870 + 1700.65i −0.277857 + 0.481263i
\(233\) −4267.52 −1.19989 −0.599945 0.800041i \(-0.704811\pi\)
−0.599945 + 0.800041i \(0.704811\pi\)
\(234\) 4240.14 644.776i 1.18456 0.180130i
\(235\) 0 0
\(236\) −291.574 + 505.021i −0.0804231 + 0.139297i
\(237\) −1927.34 + 4008.87i −0.528246 + 1.09875i
\(238\) 591.194 + 1023.98i 0.161014 + 0.278885i
\(239\) −1292.52 2238.70i −0.349816 0.605898i 0.636401 0.771358i \(-0.280422\pi\)
−0.986216 + 0.165460i \(0.947089\pi\)
\(240\) 0 0
\(241\) 1952.49 3381.82i 0.521872 0.903909i −0.477804 0.878466i \(-0.658567\pi\)
0.999676 0.0254427i \(-0.00809954\pi\)
\(242\) 1988.26 0.528141
\(243\) 3521.60 1395.44i 0.929673 0.368385i
\(244\) 2298.36 0.603021
\(245\) 0 0
\(246\) 4710.71 356.120i 1.22091 0.0922983i
\(247\) 840.245 + 1455.35i 0.216452 + 0.374905i
\(248\) −869.112 1505.35i −0.222535 0.385442i
\(249\) 154.047 320.418i 0.0392062 0.0815489i
\(250\) 0 0
\(251\) 1466.63 0.368815 0.184408 0.982850i \(-0.440963\pi\)
0.184408 + 0.982850i \(0.440963\pi\)
\(252\) −521.198 + 79.2558i −0.130287 + 0.0198121i
\(253\) −3248.04 −0.807126
\(254\) 995.510 1724.27i 0.245921 0.425947i
\(255\) 0 0
\(256\) −2675.28 4633.72i −0.653144 1.13128i
\(257\) −2223.67 3851.51i −0.539723 0.934828i −0.998919 0.0464928i \(-0.985196\pi\)
0.459195 0.888335i \(-0.348138\pi\)
\(258\) 4913.09 + 7196.06i 1.18557 + 1.73646i
\(259\) 338.081 585.574i 0.0811094 0.140486i
\(260\) 0 0
\(261\) −1927.42 + 4929.95i −0.457104 + 1.16918i
\(262\) −4615.14 −1.08826
\(263\) −877.572 + 1520.00i −0.205754 + 0.356377i −0.950373 0.311113i \(-0.899298\pi\)
0.744618 + 0.667490i \(0.232631\pi\)
\(264\) 631.752 1314.05i 0.147279 0.306341i
\(265\) 0 0
\(266\) −260.725 451.589i −0.0600981 0.104093i
\(267\) 3447.95 260.658i 0.790304 0.0597453i
\(268\) 406.316 703.760i 0.0926108 0.160407i
\(269\) −3412.93 −0.773569 −0.386785 0.922170i \(-0.626414\pi\)
−0.386785 + 0.922170i \(0.626414\pi\)
\(270\) 0 0
\(271\) 206.271 0.0462365 0.0231183 0.999733i \(-0.492641\pi\)
0.0231183 + 0.999733i \(0.492641\pi\)
\(272\) −3424.51 + 5931.43i −0.763388 + 1.32223i
\(273\) 841.309 63.6012i 0.186514 0.0141001i
\(274\) −1693.31 2932.89i −0.373345 0.646652i
\(275\) 0 0
\(276\) −1370.00 + 2849.60i −0.298783 + 0.621469i
\(277\) −2651.82 + 4593.09i −0.575208 + 0.996289i 0.420811 + 0.907148i \(0.361746\pi\)
−0.996019 + 0.0891411i \(0.971588\pi\)
\(278\) −11393.5 −2.45805
\(279\) −2926.12 3659.40i −0.627893 0.785242i
\(280\) 0 0
\(281\) −1424.58 + 2467.44i −0.302431 + 0.523825i −0.976686 0.214673i \(-0.931131\pi\)
0.674255 + 0.738498i \(0.264465\pi\)
\(282\) −3502.04 5129.34i −0.739516 1.08315i
\(283\) 4037.52 + 6993.19i 0.848077 + 1.46891i 0.882922 + 0.469520i \(0.155573\pi\)
−0.0348448 + 0.999393i \(0.511094\pi\)
\(284\) −2395.70 4149.47i −0.500558 0.866992i
\(285\) 0 0
\(286\) 2224.92 3853.67i 0.460008 0.796757i
\(287\) 929.336 0.191139
\(288\) −3463.10 4330.95i −0.708560 0.886124i
\(289\) 2710.53 0.551705
\(290\) 0 0
\(291\) −3160.32 + 6573.47i −0.636636 + 1.32420i
\(292\) 2560.46 + 4434.85i 0.513149 + 0.888800i
\(293\) −1311.43 2271.46i −0.261482 0.452900i 0.705154 0.709054i \(-0.250878\pi\)
−0.966636 + 0.256154i \(0.917545\pi\)
\(294\) 6207.60 469.282i 1.23141 0.0930920i
\(295\) 0 0
\(296\) 1820.39 0.357459
\(297\) 1151.06 3757.81i 0.224886 0.734176i
\(298\) 5937.79 1.15425
\(299\) 2530.07 4382.22i 0.489358 0.847593i
\(300\) 0 0
\(301\) 857.042 + 1484.44i 0.164116 + 0.284258i
\(302\) 3315.18 + 5742.06i 0.631680 + 1.09410i
\(303\) 1475.11 3068.23i 0.279679 0.581733i
\(304\) 1510.26 2615.85i 0.284932 0.493517i
\(305\) 0 0
\(306\) −3124.39 + 7991.55i −0.583690 + 1.49296i
\(307\) 1699.16 0.315883 0.157941 0.987448i \(-0.449514\pi\)
0.157941 + 0.987448i \(0.449514\pi\)
\(308\) −273.487 + 473.693i −0.0505953 + 0.0876337i
\(309\) 742.799 + 1087.96i 0.136752 + 0.200296i
\(310\) 0 0
\(311\) −2409.47 4173.32i −0.439319 0.760924i 0.558318 0.829627i \(-0.311447\pi\)
−0.997637 + 0.0687036i \(0.978114\pi\)
\(312\) 1280.79 + 1875.93i 0.232405 + 0.340397i
\(313\) −3008.23 + 5210.40i −0.543243 + 0.940925i 0.455472 + 0.890250i \(0.349471\pi\)
−0.998715 + 0.0506747i \(0.983863\pi\)
\(314\) −10319.5 −1.85465
\(315\) 0 0
\(316\) 4492.52 0.799760
\(317\) 3638.36 6301.82i 0.644639 1.11655i −0.339746 0.940517i \(-0.610341\pi\)
0.984385 0.176030i \(-0.0563256\pi\)
\(318\) −5472.69 + 11383.2i −0.965072 + 2.00735i
\(319\) 2745.99 + 4756.19i 0.481962 + 0.834782i
\(320\) 0 0
\(321\) −5869.08 + 443.690i −1.02050 + 0.0771476i
\(322\) −785.074 + 1359.79i −0.135871 + 0.235335i
\(323\) −3362.09 −0.579169
\(324\) −2811.33 2594.86i −0.482052 0.444936i
\(325\) 0 0
\(326\) −5548.16 + 9609.69i −0.942589 + 1.63261i
\(327\) 7848.13 593.302i 1.32723 0.100335i
\(328\) 1250.99 + 2166.79i 0.210593 + 0.364758i
\(329\) −610.898 1058.11i −0.102370 0.177311i
\(330\) 0 0
\(331\) 797.088 1380.60i 0.132362 0.229258i −0.792224 0.610230i \(-0.791077\pi\)
0.924587 + 0.380972i \(0.124410\pi\)
\(332\) −359.075 −0.0593579
\(333\) 4851.15 737.688i 0.798322 0.121397i
\(334\) −10329.4 −1.69222
\(335\) 0 0
\(336\) −855.088 1252.42i −0.138836 0.203349i
\(337\) 4198.47 + 7271.96i 0.678650 + 1.17546i 0.975388 + 0.220497i \(0.0707679\pi\)
−0.296738 + 0.954959i \(0.595899\pi\)
\(338\) −532.087 921.602i −0.0856264 0.148309i
\(339\) 4898.90 + 7175.27i 0.784872 + 1.14958i
\(340\) 0 0
\(341\) −4861.28 −0.772003
\(342\) 1377.90 3524.39i 0.217861 0.557243i
\(343\) 2500.79 0.393673
\(344\) −2307.36 + 3996.46i −0.361640 + 0.626379i
\(345\) 0 0
\(346\) −929.117 1609.28i −0.144363 0.250044i
\(347\) 5210.44 + 9024.74i 0.806083 + 1.39618i 0.915557 + 0.402188i \(0.131750\pi\)
−0.109474 + 0.993990i \(0.534917\pi\)
\(348\) 5330.97 403.010i 0.821178 0.0620793i
\(349\) 3953.71 6848.03i 0.606411 1.05033i −0.385416 0.922743i \(-0.625942\pi\)
0.991827 0.127591i \(-0.0407245\pi\)
\(350\) 0 0
\(351\) 4173.37 + 4480.15i 0.634639 + 0.681290i
\(352\) −5753.39 −0.871184
\(353\) 2501.98 4333.56i 0.377244 0.653406i −0.613416 0.789760i \(-0.710205\pi\)
0.990660 + 0.136354i \(0.0435384\pi\)
\(354\) −2095.57 + 158.421i −0.314628 + 0.0237852i
\(355\) 0 0
\(356\) −1746.16 3024.43i −0.259961 0.450266i
\(357\) −731.390 + 1521.29i −0.108429 + 0.225533i
\(358\) −4139.10 + 7169.13i −0.611056 + 1.05838i
\(359\) −2385.12 −0.350646 −0.175323 0.984511i \(-0.556097\pi\)
−0.175323 + 0.984511i \(0.556097\pi\)
\(360\) 0 0
\(361\) −5376.27 −0.783827
\(362\) −1775.28 + 3074.88i −0.257754 + 0.446443i
\(363\) 1600.48 + 2344.18i 0.231415 + 0.338946i
\(364\) −426.067 737.970i −0.0613516 0.106264i
\(365\) 0 0
\(366\) 4670.36 + 6840.53i 0.667004 + 0.976941i
\(367\) 904.006 1565.78i 0.128580 0.222706i −0.794547 0.607203i \(-0.792292\pi\)
0.923126 + 0.384496i \(0.125625\pi\)
\(368\) −9095.14 −1.28836
\(369\) 4211.84 + 5267.32i 0.594199 + 0.743104i
\(370\) 0 0
\(371\) −1242.33 + 2151.78i −0.173850 + 0.301118i
\(372\) −2050.45 + 4264.93i −0.285781 + 0.594426i
\(373\) −6266.85 10854.5i −0.869933 1.50677i −0.862064 0.506799i \(-0.830829\pi\)
−0.00786860 0.999969i \(-0.502505\pi\)
\(374\) 4451.30 + 7709.89i 0.615432 + 1.06596i
\(375\) 0 0
\(376\) 1644.68 2848.67i 0.225579 0.390715i
\(377\) −8555.98 −1.16885
\(378\) −1294.98 1390.18i −0.176208 0.189161i
\(379\) 5221.98 0.707745 0.353872 0.935294i \(-0.384865\pi\)
0.353872 + 0.935294i \(0.384865\pi\)
\(380\) 0 0
\(381\) 2834.29 214.266i 0.381116 0.0288115i
\(382\) −3421.44 5926.12i −0.458263 0.793734i
\(383\) 4278.85 + 7411.18i 0.570859 + 0.988756i 0.996478 + 0.0838538i \(0.0267229\pi\)
−0.425619 + 0.904902i \(0.639944\pi\)
\(384\) 2715.85 5648.98i 0.360919 0.750712i
\(385\) 0 0
\(386\) −2233.23 −0.294478
\(387\) −4529.36 + 11585.2i −0.594936 + 1.52173i
\(388\) 7366.52 0.963862
\(389\) 2730.66 4729.65i 0.355913 0.616459i −0.631361 0.775489i \(-0.717503\pi\)
0.987274 + 0.159030i \(0.0508366\pi\)
\(390\) 0 0
\(391\) 5061.82 + 8767.32i 0.654698 + 1.13397i
\(392\) 1648.51 + 2855.31i 0.212404 + 0.367895i
\(393\) −3715.04 5441.30i −0.476842 0.698416i
\(394\) 124.381 215.435i 0.0159042 0.0275468i
\(395\) 0 0
\(396\) −3924.28 + 596.745i −0.497986 + 0.0757261i
\(397\) −1998.55 −0.252656 −0.126328 0.991989i \(-0.540319\pi\)
−0.126328 + 0.991989i \(0.540319\pi\)
\(398\) 3958.03 6855.51i 0.498488 0.863406i
\(399\) 322.554 670.912i 0.0404709 0.0841795i
\(400\) 0 0
\(401\) 246.083 + 426.228i 0.0306454 + 0.0530793i 0.880941 0.473225i \(-0.156910\pi\)
−0.850296 + 0.526305i \(0.823577\pi\)
\(402\) 2920.23 220.763i 0.362308 0.0273897i
\(403\) 3786.71 6558.78i 0.468063 0.810709i
\(404\) −3438.40 −0.423432
\(405\) 0 0
\(406\) 2654.89 0.324532
\(407\) 2545.53 4408.99i 0.310018 0.536966i
\(408\) −4531.49 + 342.571i −0.549859 + 0.0415681i
\(409\) 4000.23 + 6928.60i 0.483615 + 0.837646i 0.999823 0.0188177i \(-0.00599021\pi\)
−0.516208 + 0.856463i \(0.672657\pi\)
\(410\) 0 0
\(411\) 2094.86 4357.31i 0.251415 0.522945i
\(412\) 665.249 1152.24i 0.0795496 0.137784i
\(413\) −413.417 −0.0492565
\(414\) −11265.1 + 1713.02i −1.33731 + 0.203358i
\(415\) 0 0
\(416\) 4481.62 7762.40i 0.528196 0.914863i
\(417\) −9171.39 13433.1i −1.07704 1.57751i
\(418\) −1963.09 3400.17i −0.229708 0.397866i
\(419\) −2752.47 4767.41i −0.320923 0.555855i 0.659756 0.751480i \(-0.270660\pi\)
−0.980679 + 0.195625i \(0.937326\pi\)
\(420\) 0 0
\(421\) 5202.28 9010.61i 0.602241 1.04311i −0.390240 0.920713i \(-0.627608\pi\)
0.992481 0.122399i \(-0.0390588\pi\)
\(422\) 1729.05 0.199452
\(423\) 3228.52 8257.89i 0.371101 0.949202i
\(424\) −6689.28 −0.766179
\(425\) 0 0
\(426\) 7481.79 15562.1i 0.850925 1.76993i
\(427\) 814.698 + 1411.10i 0.0923326 + 0.159925i
\(428\) 2972.30 + 5148.17i 0.335681 + 0.581417i
\(429\) 6334.51 478.875i 0.712897 0.0538935i
\(430\) 0 0
\(431\) 6446.05 0.720406 0.360203 0.932874i \(-0.382707\pi\)
0.360203 + 0.932874i \(0.382707\pi\)
\(432\) 3223.17 10522.6i 0.358970 1.17192i
\(433\) 6307.26 0.700018 0.350009 0.936746i \(-0.386179\pi\)
0.350009 + 0.936746i \(0.386179\pi\)
\(434\) −1175.00 + 2035.17i −0.129958 + 0.225095i
\(435\) 0 0
\(436\) −3974.56 6884.13i −0.436575 0.756170i
\(437\) −2232.34 3866.52i −0.244364 0.423251i
\(438\) −7996.34 + 16632.4i −0.872329 + 1.81445i
\(439\) 3947.14 6836.64i 0.429127 0.743269i −0.567669 0.823257i \(-0.692155\pi\)
0.996796 + 0.0799877i \(0.0254881\pi\)
\(440\) 0 0
\(441\) 5550.20 + 6941.08i 0.599309 + 0.749495i
\(442\) −13869.4 −1.49254
\(443\) 4389.59 7602.99i 0.470780 0.815415i −0.528661 0.848833i \(-0.677306\pi\)
0.999441 + 0.0334178i \(0.0106392\pi\)
\(444\) −2794.44 4092.93i −0.298690 0.437482i
\(445\) 0 0
\(446\) −5398.43 9350.36i −0.573146 0.992718i
\(447\) 4779.72 + 7000.71i 0.505756 + 0.740766i
\(448\) −223.239 + 386.661i −0.0235425 + 0.0407768i
\(449\) 16514.2 1.73575 0.867874 0.496784i \(-0.165486\pi\)
0.867874 + 0.496784i \(0.165486\pi\)
\(450\) 0 0
\(451\) 6997.29 0.730576
\(452\) 4387.44 7599.27i 0.456566 0.790796i
\(453\) −4101.34 + 8530.81i −0.425382 + 0.884795i
\(454\) −5154.35 8927.60i −0.532832 0.922892i
\(455\) 0 0
\(456\) 1998.46 151.079i 0.205233 0.0155152i
\(457\) 7748.44 13420.7i 0.793121 1.37373i −0.130904 0.991395i \(-0.541788\pi\)
0.924025 0.382332i \(-0.124879\pi\)
\(458\) 15623.6 1.59398
\(459\) −11937.1 + 2749.25i −1.21390 + 0.279573i
\(460\) 0 0
\(461\) 7641.45 13235.4i 0.772012 1.33716i −0.164446 0.986386i \(-0.552584\pi\)
0.936459 0.350778i \(-0.114083\pi\)
\(462\) −1965.58 + 148.593i −0.197937 + 0.0149636i
\(463\) −6824.87 11821.0i −0.685051 1.18654i −0.973421 0.229025i \(-0.926446\pi\)
0.288369 0.957519i \(-0.406887\pi\)
\(464\) 7689.28 + 13318.2i 0.769323 + 1.33251i
\(465\) 0 0
\(466\) −7766.42 + 13451.8i −0.772044 + 1.33722i
\(467\) 6841.24 0.677891 0.338945 0.940806i \(-0.389930\pi\)
0.338945 + 0.940806i \(0.389930\pi\)
\(468\) 2251.71 5759.42i 0.222405 0.568866i
\(469\) 576.107 0.0567210
\(470\) 0 0
\(471\) −8306.82 12166.8i −0.812650 1.19026i
\(472\) −556.507 963.899i −0.0542698 0.0939980i
\(473\) 6452.96 + 11176.9i 0.627289 + 1.08650i
\(474\) 9129.00 + 13371.0i 0.884618 + 1.29567i
\(475\) 0 0
\(476\) 1704.83 0.164161
\(477\) −17826.2 + 2710.74i −1.71113 + 0.260202i
\(478\) −9408.96 −0.900326
\(479\) 2888.63 5003.25i 0.275542 0.477254i −0.694729 0.719271i \(-0.744476\pi\)
0.970272 + 0.242018i \(0.0778092\pi\)
\(480\) 0 0
\(481\) 3965.70 + 6868.79i 0.375926 + 0.651122i
\(482\) −7106.66 12309.1i −0.671576 1.16320i
\(483\) −2235.16 + 168.974i −0.210566 + 0.0159183i
\(484\) 1433.39 2482.70i 0.134616 0.233161i
\(485\) 0 0
\(486\) 2010.29 13640.1i 0.187631 1.27311i
\(487\) 17699.8 1.64693 0.823463 0.567370i \(-0.192039\pi\)
0.823463 + 0.567370i \(0.192039\pi\)
\(488\) −2193.36 + 3799.01i −0.203460 + 0.352404i
\(489\) −15796.0 + 1194.15i −1.46078 + 0.110432i
\(490\) 0 0
\(491\) 6045.50 + 10471.1i 0.555661 + 0.962433i 0.997852 + 0.0655120i \(0.0208681\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(492\) 2951.40 6138.91i 0.270446 0.562528i
\(493\) 8558.80 14824.3i 0.781884 1.35426i
\(494\) 6116.63 0.557085
\(495\) 0 0
\(496\) −13612.5 −1.23230
\(497\) 1698.41 2941.73i 0.153288 0.265502i
\(498\) −729.656 1068.71i −0.0656560 0.0961643i
\(499\) 8153.68 + 14122.6i 0.731481 + 1.26696i 0.956250 + 0.292550i \(0.0945039\pi\)
−0.224769 + 0.974412i \(0.572163\pi\)
\(500\) 0 0
\(501\) −8314.85 12178.5i −0.741477 1.08602i
\(502\) 2669.10 4623.02i 0.237307 0.411027i
\(503\) 8574.88 0.760109 0.380054 0.924964i \(-0.375905\pi\)
0.380054 + 0.924964i \(0.375905\pi\)
\(504\) 366.384 937.135i 0.0323810 0.0828241i
\(505\) 0 0
\(506\) −5911.09 + 10238.3i −0.519328 + 0.899503i
\(507\) 658.266 1369.20i 0.0576620 0.119937i
\(508\) −1435.38 2486.15i −0.125364 0.217136i
\(509\) −2027.21 3511.23i −0.176532 0.305762i 0.764159 0.645028i \(-0.223154\pi\)
−0.940690 + 0.339267i \(0.889821\pi\)
\(510\) 0 0
\(511\) −1815.21 + 3144.04i −0.157143 + 0.272180i
\(512\) −9824.79 −0.848044
\(513\) 5264.46 1212.46i 0.453083 0.104350i
\(514\) −16187.4 −1.38909
\(515\) 0 0
\(516\) 12527.6 947.057i 1.06879 0.0807982i
\(517\) −4599.66 7966.84i −0.391282 0.677720i
\(518\) −1230.54 2131.36i −0.104376 0.180785i
\(519\) 1149.45 2390.85i 0.0972161 0.202210i
\(520\) 0 0
\(521\) −22757.9 −1.91371 −0.956854 0.290570i \(-0.906155\pi\)
−0.956854 + 0.290570i \(0.906155\pi\)
\(522\) 12032.2 + 15047.5i 1.00888 + 1.26170i
\(523\) −12468.0 −1.04242 −0.521211 0.853428i \(-0.674520\pi\)
−0.521211 + 0.853428i \(0.674520\pi\)
\(524\) −3327.18 + 5762.84i −0.277382 + 0.480440i
\(525\) 0 0
\(526\) 3194.17 + 5532.47i 0.264777 + 0.458607i
\(527\) 7575.92 + 13121.9i 0.626209 + 1.08463i
\(528\) −6438.26 9429.92i −0.530661 0.777244i
\(529\) −638.318 + 1105.60i −0.0524631 + 0.0908687i
\(530\) 0 0
\(531\) −1873.64 2343.18i −0.153125 0.191498i
\(532\) −751.855 −0.0612726
\(533\) −5450.56 + 9440.65i −0.442946 + 0.767205i
\(534\) 5453.27 11342.8i 0.441921 0.919198i
\(535\) 0 0
\(536\) 775.507 + 1343.22i 0.0624941 + 0.108243i
\(537\) −11784.3 + 890.869i −0.946985 + 0.0715900i
\(538\) −6211.17 + 10758.1i −0.497737 + 0.862106i
\(539\) 9220.77 0.736859
\(540\) 0 0
\(541\) −22965.1 −1.82504 −0.912519 0.409034i \(-0.865866\pi\)
−0.912519 + 0.409034i \(0.865866\pi\)
\(542\) 375.392 650.198i 0.0297499 0.0515284i
\(543\) −5054.37 + 382.099i −0.399454 + 0.0301979i
\(544\) 8966.20 + 15529.9i 0.706659 + 1.22397i
\(545\) 0 0
\(546\) 1330.61 2767.68i 0.104295 0.216933i
\(547\) 5091.50 8818.73i 0.397983 0.689327i −0.595494 0.803360i \(-0.703044\pi\)
0.993477 + 0.114033i \(0.0363770\pi\)
\(548\) −4883.00 −0.380641
\(549\) −4305.58 + 11012.8i −0.334713 + 0.856129i
\(550\) 0 0
\(551\) −3774.56 + 6537.73i −0.291836 + 0.505475i
\(552\) −3402.76 4983.92i −0.262375 0.384293i
\(553\) 1592.47 + 2758.23i 0.122457 + 0.212101i
\(554\) 9652.07 + 16717.9i 0.740211 + 1.28208i
\(555\) 0 0
\(556\) −8213.87 + 14226.8i −0.626521 + 1.08517i
\(557\) −4498.86 −0.342231 −0.171116 0.985251i \(-0.554737\pi\)
−0.171116 + 0.985251i \(0.554737\pi\)
\(558\) −16860.2 + 2563.84i −1.27912 + 0.194509i
\(559\) −20106.2 −1.52129
\(560\) 0 0
\(561\) −5506.89 + 11454.3i −0.414440 + 0.862037i
\(562\) 5185.15 + 8980.94i 0.389186 + 0.674089i
\(563\) 6021.09 + 10428.8i 0.450726 + 0.780680i 0.998431 0.0559910i \(-0.0178318\pi\)
−0.547705 + 0.836671i \(0.684498\pi\)
\(564\) −8929.62 + 675.060i −0.666675 + 0.0503992i
\(565\) 0 0
\(566\) 29391.4 2.18271
\(567\) 596.613 2645.84i 0.0441894 0.195970i
\(568\) 9145.01 0.675557
\(569\) −1745.67 + 3023.58i −0.128615 + 0.222768i −0.923140 0.384463i \(-0.874387\pi\)
0.794525 + 0.607231i \(0.207720\pi\)
\(570\) 0 0
\(571\) 8050.10 + 13943.2i 0.589993 + 1.02190i 0.994233 + 0.107245i \(0.0342029\pi\)
−0.404239 + 0.914653i \(0.632464\pi\)
\(572\) −3208.01 5556.43i −0.234499 0.406164i
\(573\) 4232.81 8804.25i 0.308600 0.641890i
\(574\) 1691.29 2929.40i 0.122985 0.213016i
\(575\) 0 0
\(576\) −3203.26 + 487.104i −0.231718 + 0.0352361i
\(577\) 5196.41 0.374921 0.187460 0.982272i \(-0.439974\pi\)
0.187460 + 0.982272i \(0.439974\pi\)
\(578\) 4932.87 8543.98i 0.354983 0.614849i
\(579\) −1797.68 2633.01i −0.129031 0.188988i
\(580\) 0 0
\(581\) −127.281 220.458i −0.00908868 0.0157421i
\(582\) 14969.1 + 21924.8i 1.06613 + 1.56153i
\(583\) −9353.92 + 16201.5i −0.664494 + 1.15094i
\(584\) −9773.95 −0.692550
\(585\) 0 0
\(586\) −9546.61 −0.672981
\(587\) −1948.60 + 3375.07i −0.137014 + 0.237315i −0.926365 0.376627i \(-0.877084\pi\)
0.789351 + 0.613942i \(0.210417\pi\)
\(588\) 3889.24 8089.63i 0.272771 0.567365i
\(589\) −3341.09 5786.94i −0.233730 0.404833i
\(590\) 0 0
\(591\) 354.123 26.7709i 0.0246475 0.00186330i
\(592\) 7127.96 12346.0i 0.494861 0.857124i
\(593\) 3023.70 0.209390 0.104695 0.994504i \(-0.466613\pi\)
0.104695 + 0.994504i \(0.466613\pi\)
\(594\) −9750.38 10467.1i −0.673506 0.723015i
\(595\) 0 0
\(596\) 4280.71 7414.40i 0.294202 0.509573i
\(597\) 11268.8 851.897i 0.772532 0.0584017i
\(598\) −9208.93 15950.3i −0.629734 1.09073i
\(599\) −8314.74 14401.6i −0.567164 0.982356i −0.996845 0.0793757i \(-0.974707\pi\)
0.429681 0.902981i \(-0.358626\pi\)
\(600\) 0 0
\(601\) 1479.34 2562.29i 0.100405 0.173907i −0.811446 0.584427i \(-0.801319\pi\)
0.911852 + 0.410520i \(0.134653\pi\)
\(602\) 6238.89 0.422389
\(603\) 2610.97 + 3265.28i 0.176330 + 0.220518i
\(604\) 9560.01 0.644025
\(605\) 0 0
\(606\) −6986.97 10233.6i −0.468360 0.685993i
\(607\) 3506.18 + 6072.88i 0.234451 + 0.406080i 0.959113 0.283024i \(-0.0913376\pi\)
−0.724662 + 0.689104i \(0.758004\pi\)
\(608\) −3954.22 6848.92i −0.263758 0.456843i
\(609\) 2137.10 + 3130.15i 0.142200 + 0.208276i
\(610\) 0 0
\(611\) 14331.7 0.948932
\(612\) 7726.44 + 9662.68i 0.510332 + 0.638220i
\(613\) −8462.75 −0.557597 −0.278799 0.960350i \(-0.589936\pi\)
−0.278799 + 0.960350i \(0.589936\pi\)
\(614\) 3092.28 5355.99i 0.203248 0.352036i
\(615\) 0 0
\(616\) −521.986 904.106i −0.0341419 0.0591355i
\(617\) −4206.71 7286.24i −0.274483 0.475418i 0.695522 0.718505i \(-0.255173\pi\)
−0.970005 + 0.243087i \(0.921840\pi\)
\(618\) 4781.21 361.449i 0.311211 0.0235269i
\(619\) 560.233 970.351i 0.0363775 0.0630076i −0.847263 0.531173i \(-0.821751\pi\)
0.883641 + 0.468165i \(0.155085\pi\)
\(620\) 0 0
\(621\) −11087.7 11902.7i −0.716478 0.769146i
\(622\) −17539.9 −1.13068
\(623\) 1237.92 2144.14i 0.0796088 0.137886i
\(624\) 17737.8 1340.94i 1.13795 0.0860266i
\(625\) 0 0
\(626\) 10949.3 + 18964.7i 0.699077 + 1.21084i
\(627\) 2428.62 5051.53i 0.154688 0.321752i
\(628\) −7439.57 + 12885.7i −0.472725 + 0.818783i
\(629\) −15868.0 −1.00588
\(630\) 0 0
\(631\) 7709.69 0.486399 0.243200 0.969976i \(-0.421803\pi\)
0.243200 + 0.969976i \(0.421803\pi\)
\(632\) −4287.29 + 7425.80i −0.269840 + 0.467377i
\(633\) 1391.83 + 2038.57i 0.0873936 + 0.128003i
\(634\) −13242.8 22937.3i −0.829559 1.43684i
\(635\) 0 0
\(636\) 10268.6 + 15040.1i 0.640214 + 0.937702i
\(637\) −7182.55 + 12440.5i −0.446755 + 0.773803i
\(638\) 19989.6 1.24043
\(639\) 24370.5 3705.90i 1.50874 0.229426i
\(640\) 0 0
\(641\) −10149.8 + 17580.0i −0.625419 + 1.08326i 0.363041 + 0.931773i \(0.381739\pi\)
−0.988460 + 0.151484i \(0.951595\pi\)
\(642\) −9282.53 + 19307.7i −0.570642 + 1.18694i
\(643\) 15932.6 + 27596.1i 0.977169 + 1.69251i 0.672582 + 0.740023i \(0.265185\pi\)
0.304587 + 0.952484i \(0.401481\pi\)
\(644\) 1131.96 + 1960.61i 0.0692632 + 0.119967i
\(645\) 0 0
\(646\) −6118.64 + 10597.8i −0.372654 + 0.645456i
\(647\) −22400.4 −1.36113 −0.680563 0.732689i \(-0.738265\pi\)
−0.680563 + 0.732689i \(0.738265\pi\)
\(648\) 6972.01 2170.59i 0.422664 0.131587i
\(649\) −3112.76 −0.188269
\(650\) 0 0
\(651\) −3345.32 + 252.899i −0.201403 + 0.0152257i
\(652\) 7999.63 + 13855.8i 0.480506 + 0.832260i
\(653\) 5171.12 + 8956.65i 0.309895 + 0.536755i 0.978339 0.207008i \(-0.0663726\pi\)
−0.668444 + 0.743763i \(0.733039\pi\)
\(654\) 12412.6 25818.2i 0.742157 1.54369i
\(655\) 0 0
\(656\) 19593.7 1.16617
\(657\) −26046.6 + 3960.77i −1.54669 + 0.235197i
\(658\) −4447.07 −0.263472
\(659\) −118.705 + 205.603i −0.00701682 + 0.0121535i −0.869512 0.493911i \(-0.835567\pi\)
0.862496 + 0.506064i \(0.168900\pi\)
\(660\) 0 0
\(661\) −14411.8 24962.0i −0.848042 1.46885i −0.882953 0.469461i \(-0.844448\pi\)
0.0349116 0.999390i \(-0.488885\pi\)
\(662\) −2901.23 5025.08i −0.170332 0.295023i
\(663\) −11164.4 16352.2i −0.653983 0.957869i
\(664\) 342.671 593.524i 0.0200274 0.0346885i
\(665\) 0 0
\(666\) 6503.26 16634.0i 0.378373 0.967801i
\(667\) 22731.2 1.31958
\(668\) −7446.76 + 12898.2i −0.431323 + 0.747073i
\(669\) 6678.61 13891.5i 0.385964 0.802807i
\(670\) 0 0
\(671\) 6134.15 + 10624.7i 0.352915 + 0.611267i
\(672\) −3959.23 + 299.309i −0.227278 + 0.0171817i
\(673\) −3880.42 + 6721.08i −0.222257 + 0.384961i −0.955493 0.295014i \(-0.904676\pi\)
0.733236 + 0.679974i \(0.238009\pi\)
\(674\) 30563.0 1.74665
\(675\) 0 0
\(676\) −1534.38 −0.0872998
\(677\) −11796.7 + 20432.4i −0.669693 + 1.15994i 0.308296 + 0.951290i \(0.400241\pi\)
−0.977990 + 0.208653i \(0.933092\pi\)
\(678\) 31533.0 2383.82i 1.78616 0.135030i
\(679\) 2611.21 + 4522.75i 0.147583 + 0.255622i
\(680\) 0 0
\(681\) 6376.65 13263.5i 0.358816 0.746339i
\(682\) −8847.01 + 15323.5i −0.496729 + 0.860361i
\(683\) −4383.39 −0.245572 −0.122786 0.992433i \(-0.539183\pi\)
−0.122786 + 0.992433i \(0.539183\pi\)
\(684\) −3407.48 4261.38i −0.190480 0.238214i
\(685\) 0 0
\(686\) 4551.17 7882.86i 0.253301 0.438730i
\(687\) 12576.5 + 18420.4i 0.698432 + 1.02297i
\(688\) 18069.5 + 31297.3i 1.00130 + 1.73430i
\(689\) −14572.5 25240.4i −0.805761 1.39562i
\(690\) 0 0
\(691\) 8876.26 15374.1i 0.488667 0.846396i −0.511248 0.859433i \(-0.670817\pi\)
0.999915 + 0.0130375i \(0.00415008\pi\)
\(692\) −2679.30 −0.147185
\(693\) −1757.42 2197.82i −0.0963330 0.120474i
\(694\) 37929.7 2.07463
\(695\) 0 0
\(696\) −4421.28 + 9196.28i −0.240788 + 0.500839i
\(697\) −10904.7 18887.5i −0.592605 1.02642i
\(698\) −14390.7 24925.3i −0.780364 1.35163i
\(699\) −22111.6 + 1671.59i −1.19648 + 0.0904510i
\(700\) 0 0
\(701\) 15650.2 0.843223 0.421611 0.906777i \(-0.361465\pi\)
0.421611 + 0.906777i \(0.361465\pi\)
\(702\) 21717.2 5001.69i 1.16761 0.268912i
\(703\) 6998.03 0.375442
\(704\) −1680.84 + 2911.30i −0.0899845 + 0.155858i
\(705\) 0 0
\(706\) −9106.68 15773.2i −0.485460 0.840841i
\(707\) −1218.81 2111.04i −0.0648345 0.112297i
\(708\) −1312.93 + 2730.91i −0.0696936 + 0.144963i
\(709\) −6608.80 + 11446.8i −0.350069 + 0.606337i −0.986261 0.165194i \(-0.947175\pi\)
0.636192 + 0.771530i \(0.280508\pi\)
\(710\) 0 0
\(711\) −8415.98 + 21526.4i −0.443916 + 1.13545i
\(712\) 6665.54 0.350845
\(713\) −10060.4 + 17425.1i −0.528422 + 0.915254i
\(714\) 3464.29 + 5074.04i 0.181579 + 0.265954i
\(715\) 0 0
\(716\) 5967.97 + 10336.8i 0.311499 + 0.539533i
\(717\) −7573.90 11093.3i −0.394495 0.577804i
\(718\) −4340.67 + 7518.26i −0.225616 + 0.390779i
\(719\) −14824.5 −0.768932 −0.384466 0.923139i \(-0.625614\pi\)
−0.384466 + 0.923139i \(0.625614\pi\)
\(720\) 0 0
\(721\) 943.243 0.0487215
\(722\) −9784.23 + 16946.8i −0.504337 + 0.873537i
\(723\) 8791.93 18287.2i 0.452248 0.940677i
\(724\) 2559.70 + 4433.53i 0.131396 + 0.227584i
\(725\) 0 0
\(726\) 10301.9 778.802i 0.526639 0.0398127i
\(727\) −3610.05 + 6252.78i −0.184167 + 0.318986i −0.943295 0.331954i \(-0.892292\pi\)
0.759129 + 0.650941i \(0.225625\pi\)
\(728\) 1626.41 0.0828005
\(729\) 17700.1 8609.71i 0.899258 0.437419i
\(730\) 0 0
\(731\) 20112.9 34836.5i 1.01765 1.76262i
\(732\) 11908.6 900.267i 0.601305 0.0454574i
\(733\) −930.981 1612.51i −0.0469121 0.0812542i 0.841616 0.540077i \(-0.181605\pi\)
−0.888528 + 0.458822i \(0.848271\pi\)
\(734\) −3290.39 5699.12i −0.165464 0.286592i
\(735\) 0 0
\(736\) −11906.6 + 20622.9i −0.596310 + 1.03284i
\(737\) 4337.71 0.216800
\(738\) 24268.4 3690.38i 1.21048 0.184071i
\(739\) −29412.7 −1.46409 −0.732046 0.681255i \(-0.761434\pi\)
−0.732046 + 0.681255i \(0.761434\pi\)
\(740\) 0 0
\(741\) 4923.68 + 7211.57i 0.244097 + 0.357522i
\(742\) 4521.81 + 7832.00i 0.223721 + 0.387496i
\(743\) −17211.1 29810.5i −0.849816 1.47192i −0.881373 0.472422i \(-0.843380\pi\)
0.0315568 0.999502i \(-0.489953\pi\)
\(744\) −5092.84 7459.32i −0.250958 0.367570i
\(745\) 0 0
\(746\) −45619.9 −2.23896
\(747\) 672.666 1720.54i 0.0329472 0.0842724i
\(748\) 12836.3 0.627460
\(749\) −2107.18 + 3649.75i −0.102797 + 0.178049i
\(750\) 0 0
\(751\) 14688.2 + 25440.7i 0.713689 + 1.23615i 0.963463 + 0.267842i \(0.0863105\pi\)
−0.249773 + 0.968304i \(0.580356\pi\)
\(752\) −12879.9 22308.7i −0.624577 1.08180i
\(753\) 7599.13 574.478i 0.367766 0.0278023i
\(754\) −15571.0 + 26969.7i −0.752071 + 1.30262i
\(755\) 0 0
\(756\) −2669.47 + 614.807i −0.128423 + 0.0295771i
\(757\) 6235.27 0.299372 0.149686 0.988734i \(-0.452174\pi\)
0.149686 + 0.988734i \(0.452174\pi\)
\(758\) 9503.45 16460.5i 0.455384 0.788748i
\(759\) −16829.3 + 1272.26i −0.804829 + 0.0608434i
\(760\) 0 0
\(761\) 13985.1 + 24222.9i 0.666176 + 1.15385i 0.978965 + 0.204028i \(0.0654034\pi\)
−0.312789 + 0.949823i \(0.601263\pi\)
\(762\) 4482.71 9324.04i 0.213112 0.443274i
\(763\) 2817.72 4880.44i 0.133694 0.231565i
\(764\) −9866.44 −0.467219
\(765\) 0 0
\(766\) 31148.2 1.46923
\(767\) 2424.69 4199.69i 0.114147 0.197708i
\(768\) −15676.6 22961.1i −0.736565 1.07882i
\(769\) 4534.05 + 7853.21i 0.212616 + 0.368263i 0.952533 0.304437i \(-0.0984682\pi\)
−0.739916 + 0.672699i \(0.765135\pi\)
\(770\) 0 0
\(771\) −13030.3 19085.1i −0.608658 0.891482i
\(772\) −1610.00 + 2788.60i −0.0750584 + 0.130005i
\(773\) −31339.8 −1.45823 −0.729117 0.684389i \(-0.760069\pi\)
−0.729117 + 0.684389i \(0.760069\pi\)
\(774\) 28275.2 + 35361.0i 1.31309 + 1.64215i
\(775\) 0 0
\(776\) −7029.99 + 12176.3i −0.325209 + 0.563278i
\(777\) 1522.35 3166.50i 0.0702884 0.146200i
\(778\) −9939.03 17214.9i −0.458010 0.793296i
\(779\) 4809.14 + 8329.68i 0.221188 + 0.383109i
\(780\) 0 0
\(781\) 12787.9 22149.3i 0.585899 1.01481i
\(782\) 36847.8 1.68501
\(783\) −8055.60 + 26298.8i −0.367667 + 1.20031i
\(784\) 25819.9 1.17620
\(785\) 0 0
\(786\) −23912.7 + 1807.75i −1.08516 + 0.0820361i
\(787\) −5039.70 8729.01i −0.228267 0.395369i 0.729028 0.684484i \(-0.239972\pi\)
−0.957294 + 0.289115i \(0.906639\pi\)
\(788\) −179.340 310.625i −0.00810750 0.0140426i
\(789\) −3951.64 + 8219.42i −0.178304 + 0.370873i
\(790\) 0 0
\(791\) 6220.87 0.279632
\(792\) 2758.63 7056.02i 0.123767 0.316572i
\(793\) −19112.9 −0.855886
\(794\) −3637.15 + 6299.72i −0.162566 + 0.281573i
\(795\) 0 0
\(796\) −5706.90 9884.63i −0.254115 0.440140i
\(797\) 3815.40 + 6608.47i 0.169571 + 0.293706i 0.938269 0.345906i \(-0.112428\pi\)
−0.768698 + 0.639612i \(0.779095\pi\)
\(798\) −1527.80 2237.72i −0.0677739 0.0992664i
\(799\) −14336.4 + 24831.4i −0.634775 + 1.09946i
\(800\) 0 0
\(801\) 17763.0 2701.13i 0.783552 0.119151i
\(802\) 1791.38 0.0788725
\(803\) −13667.4 + 23672.6i −0.600636 + 1.04033i
\(804\) 1829.61 3805.59i 0.0802554 0.166931i
\(805\) 0 0
\(806\) −13782.8 23872.5i −0.602331 1.04327i
\(807\) −17683.7 + 1336.85i −0.771368 + 0.0583138i
\(808\) 3281.32 5683.41i 0.142867 0.247452i
\(809\) −2066.39 −0.0898028 −0.0449014 0.998991i \(-0.514297\pi\)
−0.0449014 + 0.998991i \(0.514297\pi\)
\(810\) 0 0
\(811\) −27700.4 −1.19937 −0.599687 0.800235i \(-0.704708\pi\)
−0.599687 + 0.800235i \(0.704708\pi\)
\(812\) 1913.98 3315.11i 0.0827187 0.143273i
\(813\) 1068.77 80.7966i 0.0461049 0.00348544i
\(814\) −9265.18 16047.8i −0.398949 0.691000i
\(815\) 0 0
\(816\) −15420.3 + 32074.3i −0.661543 + 1.37601i
\(817\) −8870.06 + 15363.4i −0.379834 + 0.657892i
\(818\) 29119.9 1.24469
\(819\) 4334.22 659.082i 0.184921 0.0281199i
\(820\) 0 0
\(821\) −8551.54 + 14811.7i −0.363521 + 0.629637i −0.988538 0.150974i \(-0.951759\pi\)
0.625017 + 0.780612i \(0.285092\pi\)
\(822\) −9922.46 14533.1i −0.421029 0.616668i
\(823\) 4595.08 + 7958.91i 0.194623 + 0.337096i 0.946777 0.321891i \(-0.104318\pi\)
−0.752154 + 0.658987i \(0.770985\pi\)
\(824\) 1269.72 + 2199.21i 0.0536804 + 0.0929771i
\(825\) 0 0
\(826\) −752.374 + 1303.15i −0.0316930 + 0.0548940i
\(827\) 9902.35 0.416371 0.208185 0.978089i \(-0.433244\pi\)
0.208185 + 0.978089i \(0.433244\pi\)
\(828\) −5982.27 + 15301.4i −0.251085 + 0.642224i
\(829\) 26858.5 1.12525 0.562626 0.826711i \(-0.309791\pi\)
0.562626 + 0.826711i \(0.309791\pi\)
\(830\) 0 0
\(831\) −11941.0 + 24837.2i −0.498468 + 1.03682i
\(832\) −2618.59 4535.54i −0.109115 0.188992i
\(833\) −14369.8 24889.3i −0.597701 1.03525i
\(834\) −59033.9 + 4462.84i −2.45105 + 0.185294i
\(835\) 0 0
\(836\) −5660.98 −0.234197
\(837\) −16594.7 17814.5i −0.685300 0.735676i
\(838\) −20036.8 −0.825965
\(839\) 4650.27 8054.51i 0.191353 0.331433i −0.754346 0.656477i \(-0.772046\pi\)
0.945699 + 0.325044i \(0.105379\pi\)
\(840\) 0 0
\(841\) −7023.13 12164.4i −0.287963 0.498767i
\(842\) −18935.2 32796.7i −0.774999 1.34234i
\(843\) −6414.75 + 13342.7i −0.262083 + 0.545133i
\(844\) 1246.52 2159.03i 0.0508375 0.0880532i
\(845\) 0 0
\(846\) −20154.5 25205.2i −0.819063 1.02432i
\(847\) 2032.37 0.0824477
\(848\) −26192.8 + 45367.2i −1.06069 + 1.83716i
\(849\) 23659.1 + 34652.8i 0.956395 + 1.40080i
\(850\) 0 0
\(851\) −10535.9 18248.8i −0.424403 0.735088i
\(852\) −14038.3 20561.5i −0.564490 0.826792i
\(853\) 11107.3 19238.4i 0.445845 0.772227i −0.552265 0.833668i \(-0.686236\pi\)
0.998111 + 0.0614415i \(0.0195698\pi\)
\(854\) 5930.65 0.237638
\(855\) 0 0
\(856\) −11346.1 −0.453037
\(857\) 17174.0 29746.2i 0.684541 1.18566i −0.289040 0.957317i \(-0.593336\pi\)
0.973581 0.228343i \(-0.0733306\pi\)
\(858\) 10018.6 20838.8i 0.398637 0.829167i
\(859\) −5589.12 9680.65i −0.222001 0.384516i 0.733415 0.679781i \(-0.237925\pi\)
−0.955415 + 0.295265i \(0.904592\pi\)
\(860\) 0 0
\(861\) 4815.23 364.021i 0.190595 0.0144086i
\(862\) 11731.1 20318.9i 0.463531 0.802858i
\(863\) 33684.0 1.32864 0.664321 0.747448i \(-0.268721\pi\)
0.664321 + 0.747448i \(0.268721\pi\)
\(864\) −19640.0 21083.7i −0.773342 0.830189i
\(865\) 0 0
\(866\) 11478.5 19881.4i 0.450412 0.780136i
\(867\) 14044.2 1061.71i 0.550135 0.0415891i
\(868\) 1694.18 + 2934.41i 0.0662492 + 0.114747i
\(869\) 11990.2 + 20767.7i 0.468056 + 0.810697i
\(870\) 0 0
\(871\) −3378.87 + 5852.38i −0.131445 + 0.227670i
\(872\) 15171.9 0.589204
\(873\) −13799.9 + 35297.4i −0.535002 + 1.36843i
\(874\) −16250.4 −0.628924
\(875\) 0 0
\(876\) 15003.8 + 21975.6i 0.578689 + 0.847589i
\(877\) 2704.66 + 4684.60i 0.104139 + 0.180374i 0.913386 0.407095i \(-0.133458\pi\)
−0.809247 + 0.587468i \(0.800125\pi\)
\(878\) −14366.7 24883.9i −0.552225 0.956482i
\(879\) −7684.71 11255.6i −0.294879 0.431901i
\(880\) 0 0
\(881\) −41501.3 −1.58708 −0.793538 0.608520i \(-0.791763\pi\)
−0.793538 + 0.608520i \(0.791763\pi\)
\(882\) 31980.1 4863.04i 1.22089 0.185654i
\(883\) −10532.8 −0.401423 −0.200711 0.979650i \(-0.564325\pi\)
−0.200711 + 0.979650i \(0.564325\pi\)
\(884\) −9998.84 + 17318.5i −0.380427 + 0.658919i
\(885\) 0 0
\(886\) −15977.2 27673.2i −0.605827 1.04932i
\(887\) 15001.2 + 25982.9i 0.567861 + 0.983564i 0.996777 + 0.0802195i \(0.0255621\pi\)
−0.428916 + 0.903344i \(0.641105\pi\)
\(888\) 9432.09 713.046i 0.356442 0.0269462i
\(889\) 1017.60 1762.53i 0.0383905 0.0664943i
\(890\) 0 0
\(891\) 4492.11 19921.5i 0.168902 0.749040i
\(892\) −15567.5 −0.584347
\(893\) 6322.56 10951.0i 0.236928 0.410371i
\(894\) 30765.9 2325.83i 1.15097 0.0870106i
\(895\) 0 0
\(896\) −2243.97 3886.68i −0.0836673 0.144916i
\(897\) 11392.7 23696.9i 0.424072 0.882070i
\(898\) 30054.0 52055.0i 1.11683 1.93441i
\(899\) 34021.4 1.26215
\(900\) 0 0
\(901\) 58309.4 2.15601
\(902\) 12734.3 22056.5i 0.470074 0.814192i
\(903\) 5022.10 + 7355.72i 0.185078 + 0.271078i
\(904\) 8374.01 + 14504.2i 0.308092 + 0.533632i
\(905\) 0 0
\(906\) 19426.3 + 28453.2i 0.712359 + 1.04337i
\(907\) 549.175 951.200i 0.0201048 0.0348226i −0.855798 0.517310i \(-0.826933\pi\)
0.875903 + 0.482488i \(0.160267\pi\)
\(908\) −14863.6 −0.543245
\(909\) 6441.25 16475.4i 0.235031 0.601161i
\(910\) 0 0
\(911\) 18420.8 31905.7i 0.669931 1.16036i −0.307992 0.951389i \(-0.599657\pi\)
0.977923 0.208966i \(-0.0670098\pi\)
\(912\) 6800.59 14145.2i 0.246919 0.513592i
\(913\) −958.346 1659.90i −0.0347389 0.0601696i
\(914\) −28202.6 48848.4i −1.02063 1.76779i
\(915\) 0 0
\(916\) 11263.5 19508.9i 0.406283 0.703703i
\(917\) −4717.54 −0.169888
\(918\) −13058.3 + 42631.0i −0.469486 + 1.53271i
\(919\) 46004.8 1.65131 0.825657 0.564172i \(-0.190804\pi\)
0.825657 + 0.564172i \(0.190804\pi\)
\(920\) 0 0
\(921\) 8803.96 665.561i 0.314984 0.0238121i
\(922\) −27813.2 48173.9i −0.993470 1.72074i
\(923\) 19922.3 + 34506.5i 0.710457 + 1.23055i
\(924\) −1231.49 + 2561.50i −0.0438453 + 0.0911983i
\(925\) 0 0
\(926\) −49682.1 −1.76313
\(927\) 4274.87 + 5346.14i 0.151462 + 0.189418i
\(928\) 40264.8 1.42431
\(929\) −25451.4 + 44083.2i −0.898853 + 1.55686i −0.0698903 + 0.997555i \(0.522265\pi\)
−0.828963 + 0.559304i \(0.811068\pi\)
\(930\) 0 0
\(931\) 6337.31 + 10976.5i 0.223090 + 0.386404i
\(932\) 11198.0 + 19395.6i 0.393566 + 0.681677i
\(933\) −14119.0 20679.7i −0.495430 0.725641i
\(934\) 12450.3 21564.6i 0.436175 0.755477i
\(935\) 0 0
\(936\) 7371.04 + 9218.21i 0.257404 + 0.321909i
\(937\) −26913.6 −0.938343 −0.469172 0.883107i \(-0.655447\pi\)
−0.469172 + 0.883107i \(0.655447\pi\)
\(938\) 1048.45 1815.97i 0.0364960 0.0632129i
\(939\) −13545.8 + 28175.3i −0.470768 + 0.979199i
\(940\) 0 0
\(941\) −10780.5 18672.3i −0.373468 0.646865i 0.616629 0.787254i \(-0.288498\pi\)
−0.990096 + 0.140389i \(0.955165\pi\)
\(942\) −53468.9 + 4042.14i −1.84938 + 0.139809i
\(943\) 14480.9 25081.6i 0.500066 0.866140i
\(944\) −8716.32 −0.300521
\(945\) 0 0
\(946\) 46974.8 1.61446
\(947\) −14284.5 + 24741.5i −0.490163 + 0.848987i −0.999936 0.0113221i \(-0.996396\pi\)
0.509773 + 0.860309i \(0.329729\pi\)
\(948\) 23277.4 1759.72i 0.797485 0.0602881i
\(949\) −21292.5 36879.7i −0.728328 1.26150i
\(950\) 0 0
\(951\) 16383.2 34077.2i 0.558636 1.16196i
\(952\) −1626.95 + 2817.95i −0.0553883 + 0.0959353i
\(953\) −3807.33 −0.129414 −0.0647069 0.997904i \(-0.520611\pi\)
−0.0647069 + 0.997904i \(0.520611\pi\)
\(954\) −23897.2 + 61124.2i −0.811006 + 2.07439i
\(955\) 0 0
\(956\) −6783.17 + 11748.8i −0.229480 + 0.397472i
\(957\) 16091.0 + 23568.0i 0.543519 + 0.796075i
\(958\) −10514.0 18210.8i −0.354584 0.614158i
\(959\) −1730.88 2997.97i −0.0582825 0.100948i
\(960\) 0 0
\(961\) −161.700 + 280.072i −0.00542781 + 0.00940124i
\(962\) 28868.6 0.967526
\(963\) −30236.1 + 4597.84i −1.01178 + 0.153856i
\(964\) −20493.5 −0.684701
\(965\) 0 0
\(966\) −3535.13 + 7353.07i −0.117744 + 0.244908i
\(967\) −8952.67 15506.5i −0.297723 0.515672i 0.677891 0.735162i \(-0.262894\pi\)
−0.975615 + 0.219490i \(0.929561\pi\)
\(968\) 2735.81 + 4738.57i 0.0908392 + 0.157338i
\(969\) −17420.2 + 1316.93i −0.577521 + 0.0436594i
\(970\) 0 0
\(971\) −8567.95 −0.283170 −0.141585 0.989926i \(-0.545220\pi\)
−0.141585 + 0.989926i \(0.545220\pi\)
\(972\) −15582.9 12343.8i −0.514221 0.407331i
\(973\) −11646.3 −0.383723
\(974\) 32211.7 55792.2i 1.05968 1.83542i
\(975\) 0 0
\(976\) 17176.8 + 29751.0i 0.563335 + 0.975725i
\(977\) 9810.17 + 16991.7i 0.321244 + 0.556411i 0.980745 0.195293i \(-0.0625657\pi\)
−0.659501 + 0.751704i \(0.729232\pi\)
\(978\) −24982.9 + 51964.6i −0.816837 + 1.69902i
\(979\) 9320.74 16144.0i 0.304282 0.527032i
\(980\) 0 0
\(981\) 40431.7 6148.23i 1.31589 0.200100i
\(982\) 44008.6 1.43011
\(983\) 23668.1 40994.4i 0.767951 1.33013i −0.170721 0.985319i \(-0.554610\pi\)
0.938672 0.344811i \(-0.112057\pi\)
\(984\) 7330.59 + 10736.9i 0.237491 + 0.347845i
\(985\) 0 0
\(986\) −31152.2 53957.2i −1.00617 1.74275i
\(987\) −3579.74 5243.14i −0.115445 0.169089i
\(988\) 4409.64 7637.71i 0.141993 0.245939i
\(989\) 53417.6 1.71747
\(990\) 0 0
\(991\) 13735.8 0.440294 0.220147 0.975467i \(-0.429346\pi\)
0.220147 + 0.975467i \(0.429346\pi\)
\(992\) −17820.4 + 30865.8i −0.570361 + 0.987894i
\(993\) 3589.23 7465.60i 0.114704 0.238584i
\(994\) −6181.84 10707.3i −0.197259 0.341663i
\(995\) 0 0
\(996\) −1860.50 + 140.650i −0.0591890 + 0.00447456i
\(997\) −17936.3 + 31066.6i −0.569758 + 0.986850i 0.426831 + 0.904331i \(0.359630\pi\)
−0.996590 + 0.0825187i \(0.973704\pi\)
\(998\) 59355.3 1.88262
\(999\) 24846.6 5722.43i 0.786899 0.181231i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.e.f.151.10 yes 24
5.2 odd 4 225.4.k.e.124.19 48
5.3 odd 4 225.4.k.e.124.6 48
5.4 even 2 225.4.e.e.151.3 yes 24
9.2 odd 6 2025.4.a.bj.1.10 12
9.4 even 3 inner 225.4.e.f.76.10 yes 24
9.7 even 3 2025.4.a.bf.1.3 12
45.4 even 6 225.4.e.e.76.3 24
45.13 odd 12 225.4.k.e.49.19 48
45.22 odd 12 225.4.k.e.49.6 48
45.29 odd 6 2025.4.a.be.1.3 12
45.34 even 6 2025.4.a.bi.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.4.e.e.76.3 24 45.4 even 6
225.4.e.e.151.3 yes 24 5.4 even 2
225.4.e.f.76.10 yes 24 9.4 even 3 inner
225.4.e.f.151.10 yes 24 1.1 even 1 trivial
225.4.k.e.49.6 48 45.22 odd 12
225.4.k.e.49.19 48 45.13 odd 12
225.4.k.e.124.6 48 5.3 odd 4
225.4.k.e.124.19 48 5.2 odd 4
2025.4.a.be.1.3 12 45.29 odd 6
2025.4.a.bf.1.3 12 9.7 even 3
2025.4.a.bi.1.10 12 45.34 even 6
2025.4.a.bj.1.10 12 9.2 odd 6