Properties

Label 2025.4.a.bf.1.3
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,0,48,0,0,6,-45,0,0,29,0,24,-69] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 64 x^{10} + 241 x^{9} + 1452 x^{8} - 5130 x^{7} - 13834 x^{6} + 45247 x^{5} + \cdots + 73008 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 225)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.63978\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.63978 q^{2} +5.24803 q^{4} -3.72054 q^{7} +10.0166 q^{8} -28.0133 q^{11} -43.6420 q^{13} +13.5420 q^{14} -78.4424 q^{16} -87.3128 q^{17} +38.5062 q^{19} +101.962 q^{22} +115.947 q^{23} +158.848 q^{26} -19.5255 q^{28} +196.049 q^{29} +173.535 q^{31} +205.381 q^{32} +317.800 q^{34} +181.738 q^{37} -140.154 q^{38} -249.785 q^{41} +460.708 q^{43} -147.015 q^{44} -422.021 q^{46} -328.392 q^{47} -329.158 q^{49} -229.035 q^{52} -667.821 q^{53} -37.2671 q^{56} -713.577 q^{58} +111.117 q^{59} +437.946 q^{61} -631.630 q^{62} -120.003 q^{64} -154.845 q^{67} -458.221 q^{68} +912.989 q^{71} -975.779 q^{73} -661.485 q^{74} +202.082 q^{76} +104.225 q^{77} +856.040 q^{79} +909.164 q^{82} -68.4209 q^{83} -1676.88 q^{86} -280.597 q^{88} +665.452 q^{89} +162.372 q^{91} +608.492 q^{92} +1195.27 q^{94} +1403.67 q^{97} +1198.06 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 48 q^{4} + 6 q^{7} - 45 q^{8} + 29 q^{11} + 24 q^{13} - 69 q^{14} + 192 q^{16} - 79 q^{17} - 75 q^{19} - 18 q^{22} - 318 q^{23} - 154 q^{26} + 96 q^{28} + 106 q^{29} + 60 q^{31} - 914 q^{32}+ \cdots - 7511 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.63978 −1.28686 −0.643429 0.765506i \(-0.722489\pi\)
−0.643429 + 0.765506i \(0.722489\pi\)
\(3\) 0 0
\(4\) 5.24803 0.656004
\(5\) 0 0
\(6\) 0 0
\(7\) −3.72054 −0.200890 −0.100445 0.994943i \(-0.532027\pi\)
−0.100445 + 0.994943i \(0.532027\pi\)
\(8\) 10.0166 0.442674
\(9\) 0 0
\(10\) 0 0
\(11\) −28.0133 −0.767847 −0.383923 0.923365i \(-0.625427\pi\)
−0.383923 + 0.923365i \(0.625427\pi\)
\(12\) 0 0
\(13\) −43.6420 −0.931086 −0.465543 0.885025i \(-0.654141\pi\)
−0.465543 + 0.885025i \(0.654141\pi\)
\(14\) 13.5420 0.258517
\(15\) 0 0
\(16\) −78.4424 −1.22566
\(17\) −87.3128 −1.24567 −0.622837 0.782351i \(-0.714020\pi\)
−0.622837 + 0.782351i \(0.714020\pi\)
\(18\) 0 0
\(19\) 38.5062 0.464944 0.232472 0.972603i \(-0.425319\pi\)
0.232472 + 0.972603i \(0.425319\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 101.962 0.988110
\(23\) 115.947 1.05115 0.525577 0.850746i \(-0.323849\pi\)
0.525577 + 0.850746i \(0.323849\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 158.848 1.19818
\(27\) 0 0
\(28\) −19.5255 −0.131785
\(29\) 196.049 1.25536 0.627679 0.778472i \(-0.284005\pi\)
0.627679 + 0.778472i \(0.284005\pi\)
\(30\) 0 0
\(31\) 173.535 1.00541 0.502707 0.864457i \(-0.332338\pi\)
0.502707 + 0.864457i \(0.332338\pi\)
\(32\) 205.381 1.13458
\(33\) 0 0
\(34\) 317.800 1.60301
\(35\) 0 0
\(36\) 0 0
\(37\) 181.738 0.807499 0.403749 0.914870i \(-0.367707\pi\)
0.403749 + 0.914870i \(0.367707\pi\)
\(38\) −140.154 −0.598317
\(39\) 0 0
\(40\) 0 0
\(41\) −249.785 −0.951460 −0.475730 0.879591i \(-0.657816\pi\)
−0.475730 + 0.879591i \(0.657816\pi\)
\(42\) 0 0
\(43\) 460.708 1.63389 0.816945 0.576715i \(-0.195666\pi\)
0.816945 + 0.576715i \(0.195666\pi\)
\(44\) −147.015 −0.503711
\(45\) 0 0
\(46\) −422.021 −1.35269
\(47\) −328.392 −1.01917 −0.509583 0.860421i \(-0.670200\pi\)
−0.509583 + 0.860421i \(0.670200\pi\)
\(48\) 0 0
\(49\) −329.158 −0.959643
\(50\) 0 0
\(51\) 0 0
\(52\) −229.035 −0.610797
\(53\) −667.821 −1.73080 −0.865399 0.501083i \(-0.832935\pi\)
−0.865399 + 0.501083i \(0.832935\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −37.2671 −0.0889289
\(57\) 0 0
\(58\) −713.577 −1.61547
\(59\) 111.117 0.245191 0.122595 0.992457i \(-0.460878\pi\)
0.122595 + 0.992457i \(0.460878\pi\)
\(60\) 0 0
\(61\) 437.946 0.919233 0.459617 0.888117i \(-0.347987\pi\)
0.459617 + 0.888117i \(0.347987\pi\)
\(62\) −631.630 −1.29382
\(63\) 0 0
\(64\) −120.003 −0.234381
\(65\) 0 0
\(66\) 0 0
\(67\) −154.845 −0.282348 −0.141174 0.989985i \(-0.545088\pi\)
−0.141174 + 0.989985i \(0.545088\pi\)
\(68\) −458.221 −0.817168
\(69\) 0 0
\(70\) 0 0
\(71\) 912.989 1.52608 0.763041 0.646350i \(-0.223705\pi\)
0.763041 + 0.646350i \(0.223705\pi\)
\(72\) 0 0
\(73\) −975.779 −1.56447 −0.782234 0.622984i \(-0.785920\pi\)
−0.782234 + 0.622984i \(0.785920\pi\)
\(74\) −661.485 −1.03914
\(75\) 0 0
\(76\) 202.082 0.305005
\(77\) 104.225 0.154253
\(78\) 0 0
\(79\) 856.040 1.21914 0.609570 0.792733i \(-0.291342\pi\)
0.609570 + 0.792733i \(0.291342\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 909.164 1.22439
\(83\) −68.4209 −0.0904840 −0.0452420 0.998976i \(-0.514406\pi\)
−0.0452420 + 0.998976i \(0.514406\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1676.88 −2.10259
\(87\) 0 0
\(88\) −280.597 −0.339906
\(89\) 665.452 0.792559 0.396280 0.918130i \(-0.370301\pi\)
0.396280 + 0.918130i \(0.370301\pi\)
\(90\) 0 0
\(91\) 162.372 0.187046
\(92\) 608.492 0.689562
\(93\) 0 0
\(94\) 1195.27 1.31152
\(95\) 0 0
\(96\) 0 0
\(97\) 1403.67 1.46929 0.734646 0.678450i \(-0.237348\pi\)
0.734646 + 0.678450i \(0.237348\pi\)
\(98\) 1198.06 1.23492
\(99\) 0 0
\(100\) 0 0
\(101\) −655.178 −0.645472 −0.322736 0.946489i \(-0.604603\pi\)
−0.322736 + 0.946489i \(0.604603\pi\)
\(102\) 0 0
\(103\) −253.523 −0.242528 −0.121264 0.992620i \(-0.538695\pi\)
−0.121264 + 0.992620i \(0.538695\pi\)
\(104\) −437.143 −0.412168
\(105\) 0 0
\(106\) 2430.73 2.22729
\(107\) −1132.73 −1.02341 −0.511706 0.859161i \(-0.670986\pi\)
−0.511706 + 0.859161i \(0.670986\pi\)
\(108\) 0 0
\(109\) 1514.68 1.33101 0.665506 0.746392i \(-0.268216\pi\)
0.665506 + 0.746392i \(0.268216\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 291.848 0.246224
\(113\) −1672.03 −1.39196 −0.695980 0.718061i \(-0.745030\pi\)
−0.695980 + 0.718061i \(0.745030\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1028.87 0.823521
\(117\) 0 0
\(118\) −404.443 −0.315526
\(119\) 324.851 0.250244
\(120\) 0 0
\(121\) −546.258 −0.410411
\(122\) −1594.03 −1.18292
\(123\) 0 0
\(124\) 910.718 0.659555
\(125\) 0 0
\(126\) 0 0
\(127\) 547.016 0.382203 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(128\) −1206.26 −0.832965
\(129\) 0 0
\(130\) 0 0
\(131\) 1267.97 0.845673 0.422836 0.906206i \(-0.361035\pi\)
0.422836 + 0.906206i \(0.361035\pi\)
\(132\) 0 0
\(133\) −143.264 −0.0934028
\(134\) 563.602 0.363342
\(135\) 0 0
\(136\) −874.575 −0.551428
\(137\) −930.444 −0.580242 −0.290121 0.956990i \(-0.593696\pi\)
−0.290121 + 0.956990i \(0.593696\pi\)
\(138\) 0 0
\(139\) 3130.27 1.91011 0.955057 0.296423i \(-0.0957939\pi\)
0.955057 + 0.296423i \(0.0957939\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3323.08 −1.96385
\(143\) 1222.56 0.714932
\(144\) 0 0
\(145\) 0 0
\(146\) 3551.62 2.01325
\(147\) 0 0
\(148\) 953.765 0.529723
\(149\) −1631.36 −0.896953 −0.448476 0.893795i \(-0.648033\pi\)
−0.448476 + 0.893795i \(0.648033\pi\)
\(150\) 0 0
\(151\) 1821.64 0.981739 0.490870 0.871233i \(-0.336679\pi\)
0.490870 + 0.871233i \(0.336679\pi\)
\(152\) 385.700 0.205819
\(153\) 0 0
\(154\) −379.355 −0.198502
\(155\) 0 0
\(156\) 0 0
\(157\) 2835.18 1.44122 0.720612 0.693338i \(-0.243861\pi\)
0.720612 + 0.693338i \(0.243861\pi\)
\(158\) −3115.80 −1.56886
\(159\) 0 0
\(160\) 0 0
\(161\) −431.385 −0.211167
\(162\) 0 0
\(163\) −3048.62 −1.46495 −0.732473 0.680796i \(-0.761634\pi\)
−0.732473 + 0.680796i \(0.761634\pi\)
\(164\) −1310.88 −0.624162
\(165\) 0 0
\(166\) 249.037 0.116440
\(167\) 2837.92 1.31500 0.657500 0.753454i \(-0.271614\pi\)
0.657500 + 0.753454i \(0.271614\pi\)
\(168\) 0 0
\(169\) −292.373 −0.133078
\(170\) 0 0
\(171\) 0 0
\(172\) 2417.81 1.07184
\(173\) −510.534 −0.224365 −0.112183 0.993688i \(-0.535784\pi\)
−0.112183 + 0.993688i \(0.535784\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2197.43 0.941121
\(177\) 0 0
\(178\) −2422.10 −1.01991
\(179\) −2274.36 −0.949687 −0.474843 0.880070i \(-0.657495\pi\)
−0.474843 + 0.880070i \(0.657495\pi\)
\(180\) 0 0
\(181\) −975.489 −0.400594 −0.200297 0.979735i \(-0.564191\pi\)
−0.200297 + 0.979735i \(0.564191\pi\)
\(182\) −590.999 −0.240702
\(183\) 0 0
\(184\) 1161.39 0.465319
\(185\) 0 0
\(186\) 0 0
\(187\) 2445.92 0.956487
\(188\) −1723.41 −0.668578
\(189\) 0 0
\(190\) 0 0
\(191\) −1880.03 −0.712219 −0.356110 0.934444i \(-0.615897\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(192\) 0 0
\(193\) 613.562 0.228835 0.114418 0.993433i \(-0.463500\pi\)
0.114418 + 0.993433i \(0.463500\pi\)
\(194\) −5109.07 −1.89077
\(195\) 0 0
\(196\) −1727.43 −0.629530
\(197\) 68.3454 0.0247178 0.0123589 0.999924i \(-0.496066\pi\)
0.0123589 + 0.999924i \(0.496066\pi\)
\(198\) 0 0
\(199\) 2174.87 0.774736 0.387368 0.921925i \(-0.373384\pi\)
0.387368 + 0.921925i \(0.373384\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2384.71 0.830630
\(203\) −729.409 −0.252190
\(204\) 0 0
\(205\) 0 0
\(206\) 922.769 0.312099
\(207\) 0 0
\(208\) 3423.39 1.14120
\(209\) −1078.69 −0.357006
\(210\) 0 0
\(211\) −475.041 −0.154991 −0.0774957 0.996993i \(-0.524692\pi\)
−0.0774957 + 0.996993i \(0.524692\pi\)
\(212\) −3504.75 −1.13541
\(213\) 0 0
\(214\) 4122.89 1.31699
\(215\) 0 0
\(216\) 0 0
\(217\) −645.644 −0.201978
\(218\) −5513.12 −1.71282
\(219\) 0 0
\(220\) 0 0
\(221\) 3810.51 1.15983
\(222\) 0 0
\(223\) −2966.35 −0.890768 −0.445384 0.895340i \(-0.646933\pi\)
−0.445384 + 0.895340i \(0.646933\pi\)
\(224\) −764.129 −0.227926
\(225\) 0 0
\(226\) 6085.84 1.79126
\(227\) −2832.23 −0.828113 −0.414056 0.910251i \(-0.635888\pi\)
−0.414056 + 0.910251i \(0.635888\pi\)
\(228\) 0 0
\(229\) −4292.45 −1.23866 −0.619330 0.785131i \(-0.712596\pi\)
−0.619330 + 0.785131i \(0.712596\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1963.74 0.555715
\(233\) −4267.52 −1.19989 −0.599945 0.800041i \(-0.704811\pi\)
−0.599945 + 0.800041i \(0.704811\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 583.148 0.160846
\(237\) 0 0
\(238\) −1182.39 −0.322029
\(239\) 2585.03 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(240\) 0 0
\(241\) −3904.99 −1.04374 −0.521872 0.853024i \(-0.674766\pi\)
−0.521872 + 0.853024i \(0.674766\pi\)
\(242\) 1988.26 0.528141
\(243\) 0 0
\(244\) 2298.36 0.603021
\(245\) 0 0
\(246\) 0 0
\(247\) −1680.49 −0.432903
\(248\) 1738.22 0.445070
\(249\) 0 0
\(250\) 0 0
\(251\) 1466.63 0.368815 0.184408 0.982850i \(-0.440963\pi\)
0.184408 + 0.982850i \(0.440963\pi\)
\(252\) 0 0
\(253\) −3248.04 −0.807126
\(254\) −1991.02 −0.491842
\(255\) 0 0
\(256\) 5350.56 1.30629
\(257\) 4447.35 1.07945 0.539723 0.841842i \(-0.318529\pi\)
0.539723 + 0.841842i \(0.318529\pi\)
\(258\) 0 0
\(259\) −676.162 −0.162219
\(260\) 0 0
\(261\) 0 0
\(262\) −4615.14 −1.08826
\(263\) 1755.14 0.411509 0.205754 0.978604i \(-0.434035\pi\)
0.205754 + 0.978604i \(0.434035\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 521.451 0.120196
\(267\) 0 0
\(268\) −812.632 −0.185222
\(269\) −3412.93 −0.773569 −0.386785 0.922170i \(-0.626414\pi\)
−0.386785 + 0.922170i \(0.626414\pi\)
\(270\) 0 0
\(271\) 206.271 0.0462365 0.0231183 0.999733i \(-0.492641\pi\)
0.0231183 + 0.999733i \(0.492641\pi\)
\(272\) 6849.03 1.52678
\(273\) 0 0
\(274\) 3386.62 0.746689
\(275\) 0 0
\(276\) 0 0
\(277\) 5303.65 1.15042 0.575208 0.818007i \(-0.304921\pi\)
0.575208 + 0.818007i \(0.304921\pi\)
\(278\) −11393.5 −2.45805
\(279\) 0 0
\(280\) 0 0
\(281\) 2849.15 0.604862 0.302431 0.953171i \(-0.402202\pi\)
0.302431 + 0.953171i \(0.402202\pi\)
\(282\) 0 0
\(283\) −8075.05 −1.69615 −0.848077 0.529873i \(-0.822240\pi\)
−0.848077 + 0.529873i \(0.822240\pi\)
\(284\) 4791.40 1.00112
\(285\) 0 0
\(286\) −4449.84 −0.920016
\(287\) 929.336 0.191139
\(288\) 0 0
\(289\) 2710.53 0.551705
\(290\) 0 0
\(291\) 0 0
\(292\) −5120.92 −1.02630
\(293\) 2622.85 0.522964 0.261482 0.965208i \(-0.415789\pi\)
0.261482 + 0.965208i \(0.415789\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1820.39 0.357459
\(297\) 0 0
\(298\) 5937.79 1.15425
\(299\) −5060.15 −0.978716
\(300\) 0 0
\(301\) −1714.08 −0.328233
\(302\) −6630.36 −1.26336
\(303\) 0 0
\(304\) −3020.52 −0.569865
\(305\) 0 0
\(306\) 0 0
\(307\) 1699.16 0.315883 0.157941 0.987448i \(-0.449514\pi\)
0.157941 + 0.987448i \(0.449514\pi\)
\(308\) 546.974 0.101191
\(309\) 0 0
\(310\) 0 0
\(311\) 4818.93 0.878639 0.439319 0.898331i \(-0.355220\pi\)
0.439319 + 0.898331i \(0.355220\pi\)
\(312\) 0 0
\(313\) 6016.46 1.08649 0.543243 0.839575i \(-0.317196\pi\)
0.543243 + 0.839575i \(0.317196\pi\)
\(314\) −10319.5 −1.85465
\(315\) 0 0
\(316\) 4492.52 0.799760
\(317\) −7276.72 −1.28928 −0.644639 0.764487i \(-0.722992\pi\)
−0.644639 + 0.764487i \(0.722992\pi\)
\(318\) 0 0
\(319\) −5491.97 −0.963923
\(320\) 0 0
\(321\) 0 0
\(322\) 1570.15 0.271742
\(323\) −3362.09 −0.579169
\(324\) 0 0
\(325\) 0 0
\(326\) 11096.3 1.88518
\(327\) 0 0
\(328\) −2501.99 −0.421187
\(329\) 1221.80 0.204741
\(330\) 0 0
\(331\) −1594.18 −0.264725 −0.132362 0.991201i \(-0.542256\pi\)
−0.132362 + 0.991201i \(0.542256\pi\)
\(332\) −359.075 −0.0593579
\(333\) 0 0
\(334\) −10329.4 −1.69222
\(335\) 0 0
\(336\) 0 0
\(337\) −8396.93 −1.35730 −0.678650 0.734462i \(-0.737435\pi\)
−0.678650 + 0.734462i \(0.737435\pi\)
\(338\) 1064.17 0.171253
\(339\) 0 0
\(340\) 0 0
\(341\) −4861.28 −0.772003
\(342\) 0 0
\(343\) 2500.79 0.393673
\(344\) 4614.71 0.723281
\(345\) 0 0
\(346\) 1858.23 0.288726
\(347\) −10420.9 −1.61217 −0.806083 0.591802i \(-0.798417\pi\)
−0.806083 + 0.591802i \(0.798417\pi\)
\(348\) 0 0
\(349\) −7907.42 −1.21282 −0.606411 0.795152i \(-0.707391\pi\)
−0.606411 + 0.795152i \(0.707391\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5753.39 −0.871184
\(353\) −5003.97 −0.754488 −0.377244 0.926114i \(-0.623128\pi\)
−0.377244 + 0.926114i \(0.623128\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3492.31 0.519922
\(357\) 0 0
\(358\) 8278.19 1.22211
\(359\) −2385.12 −0.350646 −0.175323 0.984511i \(-0.556097\pi\)
−0.175323 + 0.984511i \(0.556097\pi\)
\(360\) 0 0
\(361\) −5376.27 −0.783827
\(362\) 3550.57 0.515508
\(363\) 0 0
\(364\) 852.134 0.122703
\(365\) 0 0
\(366\) 0 0
\(367\) −1808.01 −0.257159 −0.128580 0.991699i \(-0.541042\pi\)
−0.128580 + 0.991699i \(0.541042\pi\)
\(368\) −9095.14 −1.28836
\(369\) 0 0
\(370\) 0 0
\(371\) 2484.66 0.347701
\(372\) 0 0
\(373\) 12533.7 1.73987 0.869933 0.493170i \(-0.164162\pi\)
0.869933 + 0.493170i \(0.164162\pi\)
\(374\) −8902.61 −1.23086
\(375\) 0 0
\(376\) −3289.36 −0.451159
\(377\) −8555.98 −1.16885
\(378\) 0 0
\(379\) 5221.98 0.707745 0.353872 0.935294i \(-0.384865\pi\)
0.353872 + 0.935294i \(0.384865\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6842.89 0.916525
\(383\) −8557.69 −1.14172 −0.570859 0.821048i \(-0.693390\pi\)
−0.570859 + 0.821048i \(0.693390\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2233.23 −0.294478
\(387\) 0 0
\(388\) 7366.52 0.963862
\(389\) −5461.33 −0.711826 −0.355913 0.934519i \(-0.615830\pi\)
−0.355913 + 0.934519i \(0.615830\pi\)
\(390\) 0 0
\(391\) −10123.6 −1.30940
\(392\) −3297.03 −0.424809
\(393\) 0 0
\(394\) −248.763 −0.0318083
\(395\) 0 0
\(396\) 0 0
\(397\) −1998.55 −0.252656 −0.126328 0.991989i \(-0.540319\pi\)
−0.126328 + 0.991989i \(0.540319\pi\)
\(398\) −7916.06 −0.996975
\(399\) 0 0
\(400\) 0 0
\(401\) −492.166 −0.0612907 −0.0306454 0.999530i \(-0.509756\pi\)
−0.0306454 + 0.999530i \(0.509756\pi\)
\(402\) 0 0
\(403\) −7573.42 −0.936126
\(404\) −3438.40 −0.423432
\(405\) 0 0
\(406\) 2654.89 0.324532
\(407\) −5091.06 −0.620035
\(408\) 0 0
\(409\) −8000.45 −0.967230 −0.483615 0.875281i \(-0.660676\pi\)
−0.483615 + 0.875281i \(0.660676\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1330.50 −0.159099
\(413\) −413.417 −0.0492565
\(414\) 0 0
\(415\) 0 0
\(416\) −8963.24 −1.05639
\(417\) 0 0
\(418\) 3926.18 0.459416
\(419\) 5504.93 0.641846 0.320923 0.947105i \(-0.396007\pi\)
0.320923 + 0.947105i \(0.396007\pi\)
\(420\) 0 0
\(421\) −10404.6 −1.20448 −0.602241 0.798314i \(-0.705726\pi\)
−0.602241 + 0.798314i \(0.705726\pi\)
\(422\) 1729.05 0.199452
\(423\) 0 0
\(424\) −6689.28 −0.766179
\(425\) 0 0
\(426\) 0 0
\(427\) −1629.40 −0.184665
\(428\) −5944.60 −0.671362
\(429\) 0 0
\(430\) 0 0
\(431\) 6446.05 0.720406 0.360203 0.932874i \(-0.382707\pi\)
0.360203 + 0.932874i \(0.382707\pi\)
\(432\) 0 0
\(433\) 6307.26 0.700018 0.350009 0.936746i \(-0.386179\pi\)
0.350009 + 0.936746i \(0.386179\pi\)
\(434\) 2350.01 0.259917
\(435\) 0 0
\(436\) 7949.11 0.873150
\(437\) 4464.67 0.488728
\(438\) 0 0
\(439\) −7894.27 −0.858253 −0.429127 0.903244i \(-0.641179\pi\)
−0.429127 + 0.903244i \(0.641179\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −13869.4 −1.49254
\(443\) −8779.17 −0.941560 −0.470780 0.882251i \(-0.656027\pi\)
−0.470780 + 0.882251i \(0.656027\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10796.9 1.14629
\(447\) 0 0
\(448\) 446.477 0.0470850
\(449\) 16514.2 1.73575 0.867874 0.496784i \(-0.165486\pi\)
0.867874 + 0.496784i \(0.165486\pi\)
\(450\) 0 0
\(451\) 6997.29 0.730576
\(452\) −8774.88 −0.913132
\(453\) 0 0
\(454\) 10308.7 1.06566
\(455\) 0 0
\(456\) 0 0
\(457\) −15496.9 −1.58624 −0.793121 0.609064i \(-0.791545\pi\)
−0.793121 + 0.609064i \(0.791545\pi\)
\(458\) 15623.6 1.59398
\(459\) 0 0
\(460\) 0 0
\(461\) −15282.9 −1.54402 −0.772012 0.635608i \(-0.780750\pi\)
−0.772012 + 0.635608i \(0.780750\pi\)
\(462\) 0 0
\(463\) 13649.7 1.37010 0.685051 0.728495i \(-0.259780\pi\)
0.685051 + 0.728495i \(0.259780\pi\)
\(464\) −15378.6 −1.53865
\(465\) 0 0
\(466\) 15532.8 1.54409
\(467\) 6841.24 0.677891 0.338945 0.940806i \(-0.389930\pi\)
0.338945 + 0.940806i \(0.389930\pi\)
\(468\) 0 0
\(469\) 576.107 0.0567210
\(470\) 0 0
\(471\) 0 0
\(472\) 1113.01 0.108540
\(473\) −12905.9 −1.25458
\(474\) 0 0
\(475\) 0 0
\(476\) 1704.83 0.164161
\(477\) 0 0
\(478\) −9408.96 −0.900326
\(479\) −5777.26 −0.551085 −0.275542 0.961289i \(-0.588857\pi\)
−0.275542 + 0.961289i \(0.588857\pi\)
\(480\) 0 0
\(481\) −7931.39 −0.751851
\(482\) 14213.3 1.34315
\(483\) 0 0
\(484\) −2866.78 −0.269232
\(485\) 0 0
\(486\) 0 0
\(487\) 17699.8 1.64693 0.823463 0.567370i \(-0.192039\pi\)
0.823463 + 0.567370i \(0.192039\pi\)
\(488\) 4386.72 0.406921
\(489\) 0 0
\(490\) 0 0
\(491\) −12091.0 −1.11132 −0.555661 0.831409i \(-0.687535\pi\)
−0.555661 + 0.831409i \(0.687535\pi\)
\(492\) 0 0
\(493\) −17117.6 −1.56377
\(494\) 6116.63 0.557085
\(495\) 0 0
\(496\) −13612.5 −1.23230
\(497\) −3396.81 −0.306575
\(498\) 0 0
\(499\) −16307.4 −1.46296 −0.731481 0.681862i \(-0.761171\pi\)
−0.731481 + 0.681862i \(0.761171\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5338.20 −0.474613
\(503\) 8574.88 0.760109 0.380054 0.924964i \(-0.375905\pi\)
0.380054 + 0.924964i \(0.375905\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11822.2 1.03866
\(507\) 0 0
\(508\) 2870.76 0.250727
\(509\) 4054.42 0.353063 0.176532 0.984295i \(-0.443512\pi\)
0.176532 + 0.984295i \(0.443512\pi\)
\(510\) 0 0
\(511\) 3630.43 0.314287
\(512\) −9824.79 −0.848044
\(513\) 0 0
\(514\) −16187.4 −1.38909
\(515\) 0 0
\(516\) 0 0
\(517\) 9199.32 0.782564
\(518\) 2461.08 0.208753
\(519\) 0 0
\(520\) 0 0
\(521\) −22757.9 −1.91371 −0.956854 0.290570i \(-0.906155\pi\)
−0.956854 + 0.290570i \(0.906155\pi\)
\(522\) 0 0
\(523\) −12468.0 −1.04242 −0.521211 0.853428i \(-0.674520\pi\)
−0.521211 + 0.853428i \(0.674520\pi\)
\(524\) 6654.35 0.554765
\(525\) 0 0
\(526\) −6388.35 −0.529554
\(527\) −15151.8 −1.25242
\(528\) 0 0
\(529\) 1276.64 0.104926
\(530\) 0 0
\(531\) 0 0
\(532\) −751.855 −0.0612726
\(533\) 10901.1 0.885892
\(534\) 0 0
\(535\) 0 0
\(536\) −1551.01 −0.124988
\(537\) 0 0
\(538\) 12422.3 0.995474
\(539\) 9220.77 0.736859
\(540\) 0 0
\(541\) −22965.1 −1.82504 −0.912519 0.409034i \(-0.865866\pi\)
−0.912519 + 0.409034i \(0.865866\pi\)
\(542\) −750.783 −0.0594998
\(543\) 0 0
\(544\) −17932.4 −1.41332
\(545\) 0 0
\(546\) 0 0
\(547\) −10183.0 −0.795966 −0.397983 0.917393i \(-0.630290\pi\)
−0.397983 + 0.917393i \(0.630290\pi\)
\(548\) −4883.00 −0.380641
\(549\) 0 0
\(550\) 0 0
\(551\) 7549.12 0.583672
\(552\) 0 0
\(553\) −3184.93 −0.244913
\(554\) −19304.1 −1.48042
\(555\) 0 0
\(556\) 16427.7 1.25304
\(557\) −4498.86 −0.342231 −0.171116 0.985251i \(-0.554737\pi\)
−0.171116 + 0.985251i \(0.554737\pi\)
\(558\) 0 0
\(559\) −20106.2 −1.52129
\(560\) 0 0
\(561\) 0 0
\(562\) −10370.3 −0.778371
\(563\) −12042.2 −0.901452 −0.450726 0.892662i \(-0.648835\pi\)
−0.450726 + 0.892662i \(0.648835\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 29391.4 2.18271
\(567\) 0 0
\(568\) 9145.01 0.675557
\(569\) 3491.33 0.257231 0.128615 0.991695i \(-0.458947\pi\)
0.128615 + 0.991695i \(0.458947\pi\)
\(570\) 0 0
\(571\) −16100.2 −1.17999 −0.589993 0.807408i \(-0.700870\pi\)
−0.589993 + 0.807408i \(0.700870\pi\)
\(572\) 6416.01 0.468998
\(573\) 0 0
\(574\) −3382.58 −0.245969
\(575\) 0 0
\(576\) 0 0
\(577\) 5196.41 0.374921 0.187460 0.982272i \(-0.439974\pi\)
0.187460 + 0.982272i \(0.439974\pi\)
\(578\) −9865.74 −0.709966
\(579\) 0 0
\(580\) 0 0
\(581\) 254.563 0.0181774
\(582\) 0 0
\(583\) 18707.8 1.32899
\(584\) −9773.95 −0.692550
\(585\) 0 0
\(586\) −9546.61 −0.672981
\(587\) 3897.19 0.274028 0.137014 0.990569i \(-0.456249\pi\)
0.137014 + 0.990569i \(0.456249\pi\)
\(588\) 0 0
\(589\) 6682.18 0.467461
\(590\) 0 0
\(591\) 0 0
\(592\) −14255.9 −0.989721
\(593\) 3023.70 0.209390 0.104695 0.994504i \(-0.466613\pi\)
0.104695 + 0.994504i \(0.466613\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8561.41 −0.588405
\(597\) 0 0
\(598\) 18417.9 1.25947
\(599\) 16629.5 1.13433 0.567164 0.823605i \(-0.308041\pi\)
0.567164 + 0.823605i \(0.308041\pi\)
\(600\) 0 0
\(601\) −2958.68 −0.200810 −0.100405 0.994947i \(-0.532014\pi\)
−0.100405 + 0.994947i \(0.532014\pi\)
\(602\) 6238.89 0.422389
\(603\) 0 0
\(604\) 9560.01 0.644025
\(605\) 0 0
\(606\) 0 0
\(607\) −7012.36 −0.468901 −0.234451 0.972128i \(-0.575329\pi\)
−0.234451 + 0.972128i \(0.575329\pi\)
\(608\) 7908.45 0.527516
\(609\) 0 0
\(610\) 0 0
\(611\) 14331.7 0.948932
\(612\) 0 0
\(613\) −8462.75 −0.557597 −0.278799 0.960350i \(-0.589936\pi\)
−0.278799 + 0.960350i \(0.589936\pi\)
\(614\) −6184.57 −0.406496
\(615\) 0 0
\(616\) 1043.97 0.0682838
\(617\) 8413.43 0.548966 0.274483 0.961592i \(-0.411493\pi\)
0.274483 + 0.961592i \(0.411493\pi\)
\(618\) 0 0
\(619\) −1120.47 −0.0727549 −0.0363775 0.999338i \(-0.511582\pi\)
−0.0363775 + 0.999338i \(0.511582\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −17539.9 −1.13068
\(623\) −2475.84 −0.159218
\(624\) 0 0
\(625\) 0 0
\(626\) −21898.6 −1.39815
\(627\) 0 0
\(628\) 14879.1 0.945450
\(629\) −15868.0 −1.00588
\(630\) 0 0
\(631\) 7709.69 0.486399 0.243200 0.969976i \(-0.421803\pi\)
0.243200 + 0.969976i \(0.421803\pi\)
\(632\) 8574.58 0.539681
\(633\) 0 0
\(634\) 26485.7 1.65912
\(635\) 0 0
\(636\) 0 0
\(637\) 14365.1 0.893511
\(638\) 19989.6 1.24043
\(639\) 0 0
\(640\) 0 0
\(641\) 20299.6 1.25084 0.625419 0.780289i \(-0.284928\pi\)
0.625419 + 0.780289i \(0.284928\pi\)
\(642\) 0 0
\(643\) −31865.2 −1.95434 −0.977169 0.212462i \(-0.931852\pi\)
−0.977169 + 0.212462i \(0.931852\pi\)
\(644\) −2263.92 −0.138526
\(645\) 0 0
\(646\) 12237.3 0.745309
\(647\) −22400.4 −1.36113 −0.680563 0.732689i \(-0.738265\pi\)
−0.680563 + 0.732689i \(0.738265\pi\)
\(648\) 0 0
\(649\) −3112.76 −0.188269
\(650\) 0 0
\(651\) 0 0
\(652\) −15999.3 −0.961011
\(653\) −10342.2 −0.619791 −0.309895 0.950771i \(-0.600294\pi\)
−0.309895 + 0.950771i \(0.600294\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 19593.7 1.16617
\(657\) 0 0
\(658\) −4447.07 −0.263472
\(659\) 237.410 0.0140336 0.00701682 0.999975i \(-0.497766\pi\)
0.00701682 + 0.999975i \(0.497766\pi\)
\(660\) 0 0
\(661\) 28823.7 1.69608 0.848042 0.529930i \(-0.177782\pi\)
0.848042 + 0.529930i \(0.177782\pi\)
\(662\) 5802.46 0.340663
\(663\) 0 0
\(664\) −685.342 −0.0400549
\(665\) 0 0
\(666\) 0 0
\(667\) 22731.2 1.31958
\(668\) 14893.5 0.862646
\(669\) 0 0
\(670\) 0 0
\(671\) −12268.3 −0.705830
\(672\) 0 0
\(673\) 7760.84 0.444515 0.222257 0.974988i \(-0.428658\pi\)
0.222257 + 0.974988i \(0.428658\pi\)
\(674\) 30563.0 1.74665
\(675\) 0 0
\(676\) −1534.38 −0.0872998
\(677\) 23593.3 1.33939 0.669693 0.742638i \(-0.266426\pi\)
0.669693 + 0.742638i \(0.266426\pi\)
\(678\) 0 0
\(679\) −5222.43 −0.295167
\(680\) 0 0
\(681\) 0 0
\(682\) 17694.0 0.993459
\(683\) −4383.39 −0.245572 −0.122786 0.992433i \(-0.539183\pi\)
−0.122786 + 0.992433i \(0.539183\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −9102.34 −0.506602
\(687\) 0 0
\(688\) −36139.0 −2.00260
\(689\) 29145.1 1.61152
\(690\) 0 0
\(691\) −17752.5 −0.977333 −0.488667 0.872471i \(-0.662517\pi\)
−0.488667 + 0.872471i \(0.662517\pi\)
\(692\) −2679.30 −0.147185
\(693\) 0 0
\(694\) 37929.7 2.07463
\(695\) 0 0
\(696\) 0 0
\(697\) 21809.4 1.18521
\(698\) 28781.3 1.56073
\(699\) 0 0
\(700\) 0 0
\(701\) 15650.2 0.843223 0.421611 0.906777i \(-0.361465\pi\)
0.421611 + 0.906777i \(0.361465\pi\)
\(702\) 0 0
\(703\) 6998.03 0.375442
\(704\) 3361.68 0.179969
\(705\) 0 0
\(706\) 18213.4 0.970920
\(707\) 2437.62 0.129669
\(708\) 0 0
\(709\) 13217.6 0.700137 0.350069 0.936724i \(-0.386158\pi\)
0.350069 + 0.936724i \(0.386158\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6665.54 0.350845
\(713\) 20120.8 1.05684
\(714\) 0 0
\(715\) 0 0
\(716\) −11935.9 −0.622998
\(717\) 0 0
\(718\) 8681.34 0.451232
\(719\) −14824.5 −0.768932 −0.384466 0.923139i \(-0.625614\pi\)
−0.384466 + 0.923139i \(0.625614\pi\)
\(720\) 0 0
\(721\) 943.243 0.0487215
\(722\) 19568.5 1.00867
\(723\) 0 0
\(724\) −5119.40 −0.262791
\(725\) 0 0
\(726\) 0 0
\(727\) 7220.09 0.368333 0.184167 0.982895i \(-0.441041\pi\)
0.184167 + 0.982895i \(0.441041\pi\)
\(728\) 1626.41 0.0828005
\(729\) 0 0
\(730\) 0 0
\(731\) −40225.7 −2.03530
\(732\) 0 0
\(733\) 1861.96 0.0938242 0.0469121 0.998899i \(-0.485062\pi\)
0.0469121 + 0.998899i \(0.485062\pi\)
\(734\) 6580.77 0.330927
\(735\) 0 0
\(736\) 23813.2 1.19262
\(737\) 4337.71 0.216800
\(738\) 0 0
\(739\) −29412.7 −1.46409 −0.732046 0.681255i \(-0.761434\pi\)
−0.732046 + 0.681255i \(0.761434\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9043.62 −0.447442
\(743\) 34422.1 1.69963 0.849816 0.527080i \(-0.176713\pi\)
0.849816 + 0.527080i \(0.176713\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −45619.9 −2.23896
\(747\) 0 0
\(748\) 12836.3 0.627460
\(749\) 4214.37 0.205594
\(750\) 0 0
\(751\) −29376.4 −1.42738 −0.713689 0.700462i \(-0.752977\pi\)
−0.713689 + 0.700462i \(0.752977\pi\)
\(752\) 25759.8 1.24915
\(753\) 0 0
\(754\) 31141.9 1.50414
\(755\) 0 0
\(756\) 0 0
\(757\) 6235.27 0.299372 0.149686 0.988734i \(-0.452174\pi\)
0.149686 + 0.988734i \(0.452174\pi\)
\(758\) −19006.9 −0.910767
\(759\) 0 0
\(760\) 0 0
\(761\) −27970.2 −1.33235 −0.666176 0.745795i \(-0.732070\pi\)
−0.666176 + 0.745795i \(0.732070\pi\)
\(762\) 0 0
\(763\) −5635.44 −0.267388
\(764\) −9866.44 −0.467219
\(765\) 0 0
\(766\) 31148.2 1.46923
\(767\) −4849.39 −0.228294
\(768\) 0 0
\(769\) −9068.10 −0.425233 −0.212616 0.977136i \(-0.568198\pi\)
−0.212616 + 0.977136i \(0.568198\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3219.99 0.150117
\(773\) −31339.8 −1.45823 −0.729117 0.684389i \(-0.760069\pi\)
−0.729117 + 0.684389i \(0.760069\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14060.0 0.650418
\(777\) 0 0
\(778\) 19878.1 0.916019
\(779\) −9618.28 −0.442376
\(780\) 0 0
\(781\) −25575.8 −1.17180
\(782\) 36847.8 1.68501
\(783\) 0 0
\(784\) 25819.9 1.17620
\(785\) 0 0
\(786\) 0 0
\(787\) 10079.4 0.456533 0.228267 0.973599i \(-0.426694\pi\)
0.228267 + 0.973599i \(0.426694\pi\)
\(788\) 358.679 0.0162150
\(789\) 0 0
\(790\) 0 0
\(791\) 6220.87 0.279632
\(792\) 0 0
\(793\) −19112.9 −0.855886
\(794\) 7274.29 0.325132
\(795\) 0 0
\(796\) 11413.8 0.508230
\(797\) −7630.80 −0.339143 −0.169571 0.985518i \(-0.554238\pi\)
−0.169571 + 0.985518i \(0.554238\pi\)
\(798\) 0 0
\(799\) 28672.8 1.26955
\(800\) 0 0
\(801\) 0 0
\(802\) 1791.38 0.0788725
\(803\) 27334.7 1.20127
\(804\) 0 0
\(805\) 0 0
\(806\) 27565.6 1.20466
\(807\) 0 0
\(808\) −6562.63 −0.285733
\(809\) −2066.39 −0.0898028 −0.0449014 0.998991i \(-0.514297\pi\)
−0.0449014 + 0.998991i \(0.514297\pi\)
\(810\) 0 0
\(811\) −27700.4 −1.19937 −0.599687 0.800235i \(-0.704708\pi\)
−0.599687 + 0.800235i \(0.704708\pi\)
\(812\) −3827.96 −0.165437
\(813\) 0 0
\(814\) 18530.4 0.797898
\(815\) 0 0
\(816\) 0 0
\(817\) 17740.1 0.759668
\(818\) 29119.9 1.24469
\(819\) 0 0
\(820\) 0 0
\(821\) 17103.1 0.727042 0.363521 0.931586i \(-0.381574\pi\)
0.363521 + 0.931586i \(0.381574\pi\)
\(822\) 0 0
\(823\) −9190.15 −0.389245 −0.194623 0.980878i \(-0.562348\pi\)
−0.194623 + 0.980878i \(0.562348\pi\)
\(824\) −2539.43 −0.107361
\(825\) 0 0
\(826\) 1504.75 0.0633861
\(827\) 9902.35 0.416371 0.208185 0.978089i \(-0.433244\pi\)
0.208185 + 0.978089i \(0.433244\pi\)
\(828\) 0 0
\(829\) 26858.5 1.12525 0.562626 0.826711i \(-0.309791\pi\)
0.562626 + 0.826711i \(0.309791\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5237.19 0.218229
\(833\) 28739.7 1.19540
\(834\) 0 0
\(835\) 0 0
\(836\) −5660.98 −0.234197
\(837\) 0 0
\(838\) −20036.8 −0.825965
\(839\) −9300.55 −0.382706 −0.191353 0.981521i \(-0.561288\pi\)
−0.191353 + 0.981521i \(0.561288\pi\)
\(840\) 0 0
\(841\) 14046.3 0.575926
\(842\) 37870.4 1.55000
\(843\) 0 0
\(844\) −2493.03 −0.101675
\(845\) 0 0
\(846\) 0 0
\(847\) 2032.37 0.0824477
\(848\) 52385.5 2.12137
\(849\) 0 0
\(850\) 0 0
\(851\) 21071.9 0.848806
\(852\) 0 0
\(853\) −22214.6 −0.891691 −0.445845 0.895110i \(-0.647097\pi\)
−0.445845 + 0.895110i \(0.647097\pi\)
\(854\) 5930.65 0.237638
\(855\) 0 0
\(856\) −11346.1 −0.453037
\(857\) −34347.9 −1.36908 −0.684541 0.728974i \(-0.739997\pi\)
−0.684541 + 0.728974i \(0.739997\pi\)
\(858\) 0 0
\(859\) 11178.2 0.444001 0.222001 0.975047i \(-0.428741\pi\)
0.222001 + 0.975047i \(0.428741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −23462.2 −0.927061
\(863\) 33684.0 1.32864 0.664321 0.747448i \(-0.268721\pi\)
0.664321 + 0.747448i \(0.268721\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −22957.1 −0.900824
\(867\) 0 0
\(868\) −3388.36 −0.132498
\(869\) −23980.5 −0.936112
\(870\) 0 0
\(871\) 6757.75 0.262890
\(872\) 15171.9 0.589204
\(873\) 0 0
\(874\) −16250.4 −0.628924
\(875\) 0 0
\(876\) 0 0
\(877\) −5409.31 −0.208278 −0.104139 0.994563i \(-0.533209\pi\)
−0.104139 + 0.994563i \(0.533209\pi\)
\(878\) 28733.5 1.10445
\(879\) 0 0
\(880\) 0 0
\(881\) −41501.3 −1.58708 −0.793538 0.608520i \(-0.791763\pi\)
−0.793538 + 0.608520i \(0.791763\pi\)
\(882\) 0 0
\(883\) −10532.8 −0.401423 −0.200711 0.979650i \(-0.564325\pi\)
−0.200711 + 0.979650i \(0.564325\pi\)
\(884\) 19997.7 0.760854
\(885\) 0 0
\(886\) 31954.3 1.21165
\(887\) −30002.5 −1.13572 −0.567861 0.823125i \(-0.692229\pi\)
−0.567861 + 0.823125i \(0.692229\pi\)
\(888\) 0 0
\(889\) −2035.20 −0.0767810
\(890\) 0 0
\(891\) 0 0
\(892\) −15567.5 −0.584347
\(893\) −12645.1 −0.473856
\(894\) 0 0
\(895\) 0 0
\(896\) 4487.95 0.167335
\(897\) 0 0
\(898\) −60108.0 −2.23366
\(899\) 34021.4 1.26215
\(900\) 0 0
\(901\) 58309.4 2.15601
\(902\) −25468.6 −0.940147
\(903\) 0 0
\(904\) −16748.0 −0.616185
\(905\) 0 0
\(906\) 0 0
\(907\) −1098.35 −0.0402096 −0.0201048 0.999798i \(-0.506400\pi\)
−0.0201048 + 0.999798i \(0.506400\pi\)
\(908\) −14863.6 −0.543245
\(909\) 0 0
\(910\) 0 0
\(911\) −36841.5 −1.33986 −0.669931 0.742423i \(-0.733676\pi\)
−0.669931 + 0.742423i \(0.733676\pi\)
\(912\) 0 0
\(913\) 1916.69 0.0694778
\(914\) 56405.3 2.04127
\(915\) 0 0
\(916\) −22526.9 −0.812566
\(917\) −4717.54 −0.169888
\(918\) 0 0
\(919\) 46004.8 1.65131 0.825657 0.564172i \(-0.190804\pi\)
0.825657 + 0.564172i \(0.190804\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 55626.4 1.98694
\(923\) −39844.7 −1.42091
\(924\) 0 0
\(925\) 0 0
\(926\) −49682.1 −1.76313
\(927\) 0 0
\(928\) 40264.8 1.42431
\(929\) 50902.9 1.79771 0.898853 0.438251i \(-0.144402\pi\)
0.898853 + 0.438251i \(0.144402\pi\)
\(930\) 0 0
\(931\) −12674.6 −0.446180
\(932\) −22396.1 −0.787133
\(933\) 0 0
\(934\) −24900.7 −0.872349
\(935\) 0 0
\(936\) 0 0
\(937\) −26913.6 −0.938343 −0.469172 0.883107i \(-0.655447\pi\)
−0.469172 + 0.883107i \(0.655447\pi\)
\(938\) −2096.91 −0.0729919
\(939\) 0 0
\(940\) 0 0
\(941\) 21560.9 0.746935 0.373468 0.927643i \(-0.378169\pi\)
0.373468 + 0.927643i \(0.378169\pi\)
\(942\) 0 0
\(943\) −28961.8 −1.00013
\(944\) −8716.32 −0.300521
\(945\) 0 0
\(946\) 46974.8 1.61446
\(947\) 28569.0 0.980326 0.490163 0.871631i \(-0.336937\pi\)
0.490163 + 0.871631i \(0.336937\pi\)
\(948\) 0 0
\(949\) 42585.0 1.45666
\(950\) 0 0
\(951\) 0 0
\(952\) 3253.89 0.110777
\(953\) −3807.33 −0.129414 −0.0647069 0.997904i \(-0.520611\pi\)
−0.0647069 + 0.997904i \(0.520611\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 13566.3 0.458961
\(957\) 0 0
\(958\) 21028.0 0.709168
\(959\) 3461.76 0.116565
\(960\) 0 0
\(961\) 323.400 0.0108556
\(962\) 28868.6 0.967526
\(963\) 0 0
\(964\) −20493.5 −0.684701
\(965\) 0 0
\(966\) 0 0
\(967\) 17905.3 0.595447 0.297723 0.954652i \(-0.403773\pi\)
0.297723 + 0.954652i \(0.403773\pi\)
\(968\) −5471.62 −0.181678
\(969\) 0 0
\(970\) 0 0
\(971\) −8567.95 −0.283170 −0.141585 0.989926i \(-0.545220\pi\)
−0.141585 + 0.989926i \(0.545220\pi\)
\(972\) 0 0
\(973\) −11646.3 −0.383723
\(974\) −64423.3 −2.11936
\(975\) 0 0
\(976\) −34353.5 −1.12667
\(977\) −19620.3 −0.642488 −0.321244 0.946997i \(-0.604101\pi\)
−0.321244 + 0.946997i \(0.604101\pi\)
\(978\) 0 0
\(979\) −18641.5 −0.608564
\(980\) 0 0
\(981\) 0 0
\(982\) 44008.6 1.43011
\(983\) −47336.3 −1.53590 −0.767951 0.640508i \(-0.778724\pi\)
−0.767951 + 0.640508i \(0.778724\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 62304.4 2.01235
\(987\) 0 0
\(988\) −8819.27 −0.283986
\(989\) 53417.6 1.71747
\(990\) 0 0
\(991\) 13735.8 0.440294 0.220147 0.975467i \(-0.429346\pi\)
0.220147 + 0.975467i \(0.429346\pi\)
\(992\) 35640.8 1.14072
\(993\) 0 0
\(994\) 12363.7 0.394519
\(995\) 0 0
\(996\) 0 0
\(997\) 35872.6 1.13952 0.569758 0.821813i \(-0.307037\pi\)
0.569758 + 0.821813i \(0.307037\pi\)
\(998\) 59355.3 1.88262
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bf.1.3 12
3.2 odd 2 2025.4.a.bj.1.10 12
5.4 even 2 2025.4.a.bi.1.10 12
9.4 even 3 225.4.e.f.151.10 yes 24
9.7 even 3 225.4.e.f.76.10 yes 24
15.14 odd 2 2025.4.a.be.1.3 12
45.4 even 6 225.4.e.e.151.3 yes 24
45.7 odd 12 225.4.k.e.49.6 48
45.13 odd 12 225.4.k.e.124.6 48
45.22 odd 12 225.4.k.e.124.19 48
45.34 even 6 225.4.e.e.76.3 24
45.43 odd 12 225.4.k.e.49.19 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.4.e.e.76.3 24 45.34 even 6
225.4.e.e.151.3 yes 24 45.4 even 6
225.4.e.f.76.10 yes 24 9.7 even 3
225.4.e.f.151.10 yes 24 9.4 even 3
225.4.k.e.49.6 48 45.7 odd 12
225.4.k.e.49.19 48 45.43 odd 12
225.4.k.e.124.6 48 45.13 odd 12
225.4.k.e.124.19 48 45.22 odd 12
2025.4.a.be.1.3 12 15.14 odd 2
2025.4.a.bf.1.3 12 1.1 even 1 trivial
2025.4.a.bi.1.10 12 5.4 even 2
2025.4.a.bj.1.10 12 3.2 odd 2