Properties

Label 225.4.k.e.49.19
Level $225$
Weight $4$
Character 225.49
Analytic conductor $13.275$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(49,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.19
Character \(\chi\) \(=\) 225.49
Dual form 225.4.k.e.124.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.15215 - 1.81989i) q^{2} +(-0.391700 + 5.18137i) q^{3} +(2.62402 - 4.54493i) q^{4} +(8.19483 + 17.0453i) q^{6} +(3.22208 - 1.86027i) q^{7} +10.0166i q^{8} +(-26.6931 - 4.05909i) q^{9} +(14.0066 + 24.2602i) q^{11} +(22.5211 + 15.3762i) q^{12} +(37.7951 + 21.8210i) q^{13} +(6.77099 - 11.7277i) q^{14} +(39.2212 + 67.9331i) q^{16} +87.3128i q^{17} +(-91.5278 + 35.7838i) q^{18} -38.5062 q^{19} +(8.37666 + 17.4235i) q^{21} +(88.3019 + 50.9811i) q^{22} +(-100.413 - 57.9733i) q^{23} +(-51.8995 - 3.92349i) q^{24} +158.848 q^{26} +(31.4873 - 136.717i) q^{27} -19.5255i q^{28} +(98.0246 + 169.784i) q^{29} +(-86.7675 + 150.286i) q^{31} +(177.865 + 102.690i) q^{32} +(-131.187 + 63.0708i) q^{33} +(158.900 + 275.223i) q^{34} +(-88.4915 + 110.667i) q^{36} -181.738i q^{37} +(-121.377 + 70.0772i) q^{38} +(-127.867 + 187.283i) q^{39} +(124.893 - 216.320i) q^{41} +(58.1133 + 39.6767i) q^{42} +(398.985 - 230.354i) q^{43} +147.015 q^{44} -422.021 q^{46} +(284.395 - 164.196i) q^{47} +(-367.349 + 176.610i) q^{48} +(-164.579 + 285.059i) q^{49} +(-452.400 - 34.2005i) q^{51} +(198.350 - 114.517i) q^{52} -667.821i q^{53} +(-149.558 - 488.256i) q^{54} +(18.6335 + 32.2742i) q^{56} +(15.0829 - 199.515i) q^{57} +(617.976 + 356.788i) q^{58} +(55.5587 - 96.2305i) q^{59} +(-218.973 - 379.272i) q^{61} +631.630i q^{62} +(-93.5586 + 36.5778i) q^{63} +120.003 q^{64} +(-298.740 + 437.555i) q^{66} +(-134.100 - 77.4225i) q^{67} +(396.831 + 229.110i) q^{68} +(339.713 - 497.567i) q^{69} +912.989 q^{71} +(40.6581 - 267.374i) q^{72} -975.779i q^{73} +(-330.743 - 572.863i) q^{74} +(-101.041 + 175.008i) q^{76} +(90.2611 + 52.1123i) q^{77} +(-62.2207 + 823.048i) q^{78} +(428.020 + 741.352i) q^{79} +(696.048 + 216.700i) q^{81} -909.164i q^{82} +(-59.2542 + 34.2104i) q^{83} +(101.169 + 7.64816i) q^{84} +(838.439 - 1452.22i) q^{86} +(-918.107 + 441.397i) q^{87} +(-243.004 + 140.298i) q^{88} -665.452 q^{89} +162.372 q^{91} +(-526.970 + 304.246i) q^{92} +(-744.699 - 508.441i) q^{93} +(597.637 - 1035.14i) q^{94} +(-601.747 + 881.361i) q^{96} +(-1215.62 + 701.837i) q^{97} +1198.06i q^{98} +(-275.407 - 704.435i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 96 q^{4} - 26 q^{6} + 122 q^{9} - 58 q^{11} - 138 q^{14} - 384 q^{16} + 300 q^{19} - 120 q^{21} - 684 q^{24} - 616 q^{26} + 212 q^{29} - 120 q^{31} - 216 q^{34} + 2606 q^{36} + 820 q^{39} + 706 q^{41}+ \cdots + 3394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.15215 1.81989i 1.11445 0.643429i 0.174473 0.984662i \(-0.444178\pi\)
0.939979 + 0.341233i \(0.110844\pi\)
\(3\) −0.391700 + 5.18137i −0.0753828 + 0.997155i
\(4\) 2.62402 4.54493i 0.328002 0.568116i
\(5\) 0 0
\(6\) 8.19483 + 17.0453i 0.557588 + 1.15978i
\(7\) 3.22208 1.86027i 0.173976 0.100445i −0.410483 0.911868i \(-0.634640\pi\)
0.584459 + 0.811423i \(0.301307\pi\)
\(8\) 10.0166i 0.442674i
\(9\) −26.6931 4.05909i −0.988635 0.150337i
\(10\) 0 0
\(11\) 14.0066 + 24.2602i 0.383923 + 0.664975i 0.991619 0.129195i \(-0.0412393\pi\)
−0.607696 + 0.794170i \(0.707906\pi\)
\(12\) 22.5211 + 15.3762i 0.541774 + 0.369895i
\(13\) 37.7951 + 21.8210i 0.806344 + 0.465543i 0.845685 0.533683i \(-0.179192\pi\)
−0.0393404 + 0.999226i \(0.512526\pi\)
\(14\) 6.77099 11.7277i 0.129259 0.223883i
\(15\) 0 0
\(16\) 39.2212 + 67.9331i 0.612831 + 1.06146i
\(17\) 87.3128i 1.24567i 0.782351 + 0.622837i \(0.214020\pi\)
−0.782351 + 0.622837i \(0.785980\pi\)
\(18\) −91.5278 + 35.7838i −1.19852 + 0.468574i
\(19\) −38.5062 −0.464944 −0.232472 0.972603i \(-0.574681\pi\)
−0.232472 + 0.972603i \(0.574681\pi\)
\(20\) 0 0
\(21\) 8.37666 + 17.4235i 0.0870446 + 0.181053i
\(22\) 88.3019 + 50.9811i 0.855728 + 0.494055i
\(23\) −100.413 57.9733i −0.910327 0.525577i −0.0297904 0.999556i \(-0.509484\pi\)
−0.880536 + 0.473979i \(0.842817\pi\)
\(24\) −51.8995 3.92349i −0.441414 0.0333700i
\(25\) 0 0
\(26\) 158.848 1.19818
\(27\) 31.4873 136.717i 0.224435 0.974489i
\(28\) 19.5255i 0.131785i
\(29\) 98.0246 + 169.784i 0.627679 + 1.08717i 0.988016 + 0.154350i \(0.0493285\pi\)
−0.360337 + 0.932822i \(0.617338\pi\)
\(30\) 0 0
\(31\) −86.7675 + 150.286i −0.502707 + 0.870713i 0.497289 + 0.867585i \(0.334329\pi\)
−0.999995 + 0.00312811i \(0.999004\pi\)
\(32\) 177.865 + 102.690i 0.982575 + 0.567290i
\(33\) −131.187 + 63.0708i −0.692024 + 0.332703i
\(34\) 158.900 + 275.223i 0.801503 + 1.38824i
\(35\) 0 0
\(36\) −88.4915 + 110.667i −0.409683 + 0.512349i
\(37\) 181.738i 0.807499i −0.914870 0.403749i \(-0.867707\pi\)
0.914870 0.403749i \(-0.132293\pi\)
\(38\) −121.377 + 70.0772i −0.518158 + 0.299159i
\(39\) −127.867 + 187.283i −0.525003 + 0.768956i
\(40\) 0 0
\(41\) 124.893 216.320i 0.475730 0.823989i −0.523883 0.851790i \(-0.675517\pi\)
0.999613 + 0.0278012i \(0.00885054\pi\)
\(42\) 58.1133 + 39.6767i 0.213502 + 0.145768i
\(43\) 398.985 230.354i 1.41499 0.816945i 0.419138 0.907923i \(-0.362332\pi\)
0.995853 + 0.0909774i \(0.0289991\pi\)
\(44\) 147.015 0.503711
\(45\) 0 0
\(46\) −422.021 −1.35269
\(47\) 284.395 164.196i 0.882624 0.509583i 0.0111016 0.999938i \(-0.496466\pi\)
0.871523 + 0.490355i \(0.163133\pi\)
\(48\) −367.349 + 176.610i −1.10463 + 0.531072i
\(49\) −164.579 + 285.059i −0.479822 + 0.831075i
\(50\) 0 0
\(51\) −452.400 34.2005i −1.24213 0.0939024i
\(52\) 198.350 114.517i 0.528965 0.305398i
\(53\) 667.821i 1.73080i −0.501083 0.865399i \(-0.667065\pi\)
0.501083 0.865399i \(-0.332935\pi\)
\(54\) −149.558 488.256i −0.376893 1.23043i
\(55\) 0 0
\(56\) 18.6335 + 32.2742i 0.0444645 + 0.0770147i
\(57\) 15.0829 199.515i 0.0350488 0.463621i
\(58\) 617.976 + 356.788i 1.39904 + 0.807735i
\(59\) 55.5587 96.2305i 0.122595 0.212341i −0.798195 0.602399i \(-0.794212\pi\)
0.920790 + 0.390058i \(0.127545\pi\)
\(60\) 0 0
\(61\) −218.973 379.272i −0.459617 0.796080i 0.539324 0.842098i \(-0.318680\pi\)
−0.998941 + 0.0460189i \(0.985347\pi\)
\(62\) 631.630i 1.29382i
\(63\) −93.5586 + 36.5778i −0.187100 + 0.0731487i
\(64\) 120.003 0.234381
\(65\) 0 0
\(66\) −298.740 + 437.555i −0.557156 + 0.816050i
\(67\) −134.100 77.4225i −0.244521 0.141174i 0.372732 0.927939i \(-0.378421\pi\)
−0.617253 + 0.786765i \(0.711754\pi\)
\(68\) 396.831 + 229.110i 0.707688 + 0.408584i
\(69\) 339.713 497.567i 0.592705 0.868117i
\(70\) 0 0
\(71\) 912.989 1.52608 0.763041 0.646350i \(-0.223705\pi\)
0.763041 + 0.646350i \(0.223705\pi\)
\(72\) 40.6581 267.374i 0.0665501 0.437643i
\(73\) 975.779i 1.56447i −0.622984 0.782234i \(-0.714080\pi\)
0.622984 0.782234i \(-0.285920\pi\)
\(74\) −330.743 572.863i −0.519568 0.899919i
\(75\) 0 0
\(76\) −101.041 + 175.008i −0.152503 + 0.264142i
\(77\) 90.2611 + 52.1123i 0.133587 + 0.0771265i
\(78\) −62.2207 + 823.048i −0.0903218 + 1.19477i
\(79\) 428.020 + 741.352i 0.609570 + 1.05581i 0.991311 + 0.131536i \(0.0419910\pi\)
−0.381742 + 0.924269i \(0.624676\pi\)
\(80\) 0 0
\(81\) 696.048 + 216.700i 0.954798 + 0.297256i
\(82\) 909.164i 1.22439i
\(83\) −59.2542 + 34.2104i −0.0783614 + 0.0452420i −0.538669 0.842518i \(-0.681073\pi\)
0.460307 + 0.887760i \(0.347739\pi\)
\(84\) 101.169 + 7.64816i 0.131410 + 0.00993431i
\(85\) 0 0
\(86\) 838.439 1452.22i 1.05129 1.82089i
\(87\) −918.107 + 441.397i −1.13140 + 0.543939i
\(88\) −243.004 + 140.298i −0.294367 + 0.169953i
\(89\) −665.452 −0.792559 −0.396280 0.918130i \(-0.629699\pi\)
−0.396280 + 0.918130i \(0.629699\pi\)
\(90\) 0 0
\(91\) 162.372 0.187046
\(92\) −526.970 + 304.246i −0.597178 + 0.344781i
\(93\) −744.699 508.441i −0.830340 0.566913i
\(94\) 597.637 1035.14i 0.655762 1.13581i
\(95\) 0 0
\(96\) −601.747 + 881.361i −0.639745 + 0.937016i
\(97\) −1215.62 + 701.837i −1.27245 + 0.734646i −0.975448 0.220232i \(-0.929319\pi\)
−0.296997 + 0.954878i \(0.595985\pi\)
\(98\) 1198.06i 1.23492i
\(99\) −275.407 704.435i −0.279590 0.715135i
\(100\) 0 0
\(101\) 327.589 + 567.401i 0.322736 + 0.558995i 0.981051 0.193747i \(-0.0620641\pi\)
−0.658316 + 0.752742i \(0.728731\pi\)
\(102\) −1488.27 + 715.514i −1.44471 + 0.694573i
\(103\) 219.557 + 126.762i 0.210035 + 0.121264i 0.601328 0.799002i \(-0.294639\pi\)
−0.391293 + 0.920266i \(0.627972\pi\)
\(104\) −218.572 + 378.577i −0.206084 + 0.356948i
\(105\) 0 0
\(106\) −1215.36 2105.07i −1.11365 1.92889i
\(107\) 1132.73i 1.02341i 0.859161 + 0.511706i \(0.170986\pi\)
−0.859161 + 0.511706i \(0.829014\pi\)
\(108\) −538.746 501.856i −0.480008 0.447140i
\(109\) −1514.68 −1.33101 −0.665506 0.746392i \(-0.731784\pi\)
−0.665506 + 0.746392i \(0.731784\pi\)
\(110\) 0 0
\(111\) 941.649 + 71.1866i 0.805201 + 0.0608715i
\(112\) 252.748 + 145.924i 0.213236 + 0.123112i
\(113\) 1448.02 + 836.016i 1.20547 + 0.695980i 0.961767 0.273869i \(-0.0883034\pi\)
0.243706 + 0.969849i \(0.421637\pi\)
\(114\) −315.552 656.350i −0.259247 0.539235i
\(115\) 0 0
\(116\) 1028.87 0.823521
\(117\) −920.297 735.885i −0.727192 0.581475i
\(118\) 404.443i 0.315526i
\(119\) 162.426 + 281.329i 0.125122 + 0.216718i
\(120\) 0 0
\(121\) 273.129 473.073i 0.205206 0.355427i
\(122\) −1380.47 797.015i −1.02444 0.591462i
\(123\) 1071.91 + 731.847i 0.785782 + 0.536491i
\(124\) 455.359 + 788.705i 0.329778 + 0.571192i
\(125\) 0 0
\(126\) −228.343 + 285.565i −0.161447 + 0.201906i
\(127\) 547.016i 0.382203i −0.981570 0.191102i \(-0.938794\pi\)
0.981570 0.191102i \(-0.0612060\pi\)
\(128\) −1044.65 + 603.131i −0.721369 + 0.416482i
\(129\) 1037.27 + 2157.52i 0.707955 + 1.47255i
\(130\) 0 0
\(131\) −633.985 + 1098.09i −0.422836 + 0.732374i −0.996216 0.0869161i \(-0.972299\pi\)
0.573379 + 0.819290i \(0.305632\pi\)
\(132\) −57.5856 + 761.736i −0.0379711 + 0.502277i
\(133\) −124.070 + 71.6321i −0.0808892 + 0.0467014i
\(134\) −563.602 −0.363342
\(135\) 0 0
\(136\) −874.575 −0.551428
\(137\) 805.788 465.222i 0.502504 0.290121i −0.227243 0.973838i \(-0.572971\pi\)
0.729747 + 0.683717i \(0.239638\pi\)
\(138\) 165.306 2186.65i 0.101969 1.34884i
\(139\) 1565.13 2710.89i 0.955057 1.65421i 0.220818 0.975315i \(-0.429127\pi\)
0.734238 0.678892i \(-0.237539\pi\)
\(140\) 0 0
\(141\) 739.361 + 1537.87i 0.441599 + 0.918527i
\(142\) 2877.87 1661.54i 1.70075 0.981926i
\(143\) 1222.56i 0.714932i
\(144\) −771.191 1972.55i −0.446291 1.14152i
\(145\) 0 0
\(146\) −1775.81 3075.80i −1.00662 1.74353i
\(147\) −1412.53 964.401i −0.792540 0.541105i
\(148\) −825.984 476.882i −0.458753 0.264861i
\(149\) −815.678 + 1412.80i −0.448476 + 0.776784i −0.998287 0.0585055i \(-0.981366\pi\)
0.549811 + 0.835289i \(0.314700\pi\)
\(150\) 0 0
\(151\) −910.818 1577.58i −0.490870 0.850211i 0.509075 0.860722i \(-0.329988\pi\)
−0.999945 + 0.0105108i \(0.996654\pi\)
\(152\) 385.700i 0.205819i
\(153\) 354.410 2330.65i 0.187270 1.23152i
\(154\) 379.355 0.198502
\(155\) 0 0
\(156\) 515.663 + 1072.58i 0.264654 + 0.550482i
\(157\) 2455.34 + 1417.59i 1.24814 + 0.720612i 0.970738 0.240142i \(-0.0771941\pi\)
0.277400 + 0.960755i \(0.410527\pi\)
\(158\) 2698.36 + 1557.90i 1.35867 + 0.784430i
\(159\) 3460.23 + 261.586i 1.72587 + 0.130472i
\(160\) 0 0
\(161\) −431.385 −0.211167
\(162\) 2588.41 583.663i 1.25534 0.283067i
\(163\) 3048.62i 1.46495i −0.680796 0.732473i \(-0.738366\pi\)
0.680796 0.732473i \(-0.261634\pi\)
\(164\) −655.440 1135.26i −0.312081 0.540540i
\(165\) 0 0
\(166\) −124.519 + 215.673i −0.0582200 + 0.100840i
\(167\) 2457.71 + 1418.96i 1.13882 + 0.657500i 0.946139 0.323761i \(-0.104947\pi\)
0.192685 + 0.981261i \(0.438281\pi\)
\(168\) −174.523 + 83.9053i −0.0801474 + 0.0385324i
\(169\) −146.186 253.202i −0.0665391 0.115249i
\(170\) 0 0
\(171\) 1027.85 + 156.300i 0.459660 + 0.0698981i
\(172\) 2417.81i 1.07184i
\(173\) −442.135 + 255.267i −0.194306 + 0.112183i −0.593997 0.804467i \(-0.702451\pi\)
0.399691 + 0.916650i \(0.369117\pi\)
\(174\) −2090.71 + 3062.20i −0.910900 + 1.33417i
\(175\) 0 0
\(176\) −1098.71 + 1903.03i −0.470561 + 0.815035i
\(177\) 476.843 + 325.563i 0.202496 + 0.138253i
\(178\) −2097.60 + 1211.05i −0.883269 + 0.509956i
\(179\) 2274.36 0.949687 0.474843 0.880070i \(-0.342505\pi\)
0.474843 + 0.880070i \(0.342505\pi\)
\(180\) 0 0
\(181\) −975.489 −0.400594 −0.200297 0.979735i \(-0.564191\pi\)
−0.200297 + 0.979735i \(0.564191\pi\)
\(182\) 511.820 295.500i 0.208454 0.120351i
\(183\) 2050.92 986.019i 0.828462 0.398298i
\(184\) 580.694 1005.79i 0.232659 0.402978i
\(185\) 0 0
\(186\) −3272.71 247.410i −1.29014 0.0975321i
\(187\) −2118.23 + 1222.96i −0.828342 + 0.478244i
\(188\) 1723.41i 0.668578i
\(189\) −152.876 499.089i −0.0588364 0.192081i
\(190\) 0 0
\(191\) 940.013 + 1628.15i 0.356110 + 0.616800i 0.987307 0.158822i \(-0.0507696\pi\)
−0.631198 + 0.775622i \(0.717436\pi\)
\(192\) −47.0053 + 621.781i −0.0176683 + 0.233714i
\(193\) −531.360 306.781i −0.198177 0.114418i 0.397628 0.917547i \(-0.369834\pi\)
−0.595805 + 0.803129i \(0.703167\pi\)
\(194\) −2554.53 + 4424.58i −0.945386 + 1.63746i
\(195\) 0 0
\(196\) 863.715 + 1496.00i 0.314765 + 0.545189i
\(197\) 68.3454i 0.0247178i −0.999924 0.0123589i \(-0.996066\pi\)
0.999924 0.0123589i \(-0.00393406\pi\)
\(198\) −2150.12 1719.27i −0.771728 0.617087i
\(199\) −2174.87 −0.774736 −0.387368 0.921925i \(-0.626616\pi\)
−0.387368 + 0.921925i \(0.626616\pi\)
\(200\) 0 0
\(201\) 453.681 664.493i 0.159205 0.233183i
\(202\) 2065.22 + 1192.35i 0.719347 + 0.415315i
\(203\) 631.687 + 364.705i 0.218403 + 0.126095i
\(204\) −1342.54 + 1966.38i −0.460769 + 0.674874i
\(205\) 0 0
\(206\) 922.769 0.312099
\(207\) 2445.01 + 1955.08i 0.820967 + 0.656459i
\(208\) 3423.39i 1.14120i
\(209\) −539.343 934.169i −0.178503 0.309176i
\(210\) 0 0
\(211\) 237.521 411.398i 0.0774957 0.134227i −0.824673 0.565610i \(-0.808641\pi\)
0.902169 + 0.431383i \(0.141974\pi\)
\(212\) −3035.20 1752.37i −0.983295 0.567705i
\(213\) −357.618 + 4730.53i −0.115040 + 1.52174i
\(214\) 2061.44 + 3570.53i 0.658493 + 1.14054i
\(215\) 0 0
\(216\) 1369.44 + 315.395i 0.431381 + 0.0993514i
\(217\) 645.644i 0.201978i
\(218\) −4774.50 + 2756.56i −1.48335 + 0.856412i
\(219\) 5055.87 + 382.213i 1.56002 + 0.117934i
\(220\) 0 0
\(221\) −1905.25 + 3300.00i −0.579915 + 1.00444i
\(222\) 3097.77 1489.31i 0.936525 0.450252i
\(223\) −2568.93 + 1483.17i −0.771427 + 0.445384i −0.833384 0.552695i \(-0.813599\pi\)
0.0619561 + 0.998079i \(0.480266\pi\)
\(224\) 764.129 0.227926
\(225\) 0 0
\(226\) 6085.84 1.79126
\(227\) 2452.78 1416.11i 0.717167 0.414056i −0.0965423 0.995329i \(-0.530778\pi\)
0.813709 + 0.581273i \(0.197445\pi\)
\(228\) −867.204 592.081i −0.251895 0.171980i
\(229\) −2146.22 + 3717.37i −0.619330 + 1.07271i 0.370278 + 0.928921i \(0.379262\pi\)
−0.989608 + 0.143790i \(0.954071\pi\)
\(230\) 0 0
\(231\) −305.368 + 447.263i −0.0869772 + 0.127393i
\(232\) −1700.65 + 981.870i −0.481263 + 0.277857i
\(233\) 4267.52i 1.19989i −0.800041 0.599945i \(-0.795189\pi\)
0.800041 0.599945i \(-0.204811\pi\)
\(234\) −4240.14 644.776i −1.18456 0.180130i
\(235\) 0 0
\(236\) −291.574 505.021i −0.0804231 0.139297i
\(237\) −4008.87 + 1927.34i −1.09875 + 0.528246i
\(238\) 1023.98 + 591.194i 0.278885 + 0.161014i
\(239\) 1292.52 2238.70i 0.349816 0.605898i −0.636401 0.771358i \(-0.719578\pi\)
0.986216 + 0.165460i \(0.0529109\pi\)
\(240\) 0 0
\(241\) 1952.49 + 3381.82i 0.521872 + 0.903909i 0.999676 + 0.0254427i \(0.00809954\pi\)
−0.477804 + 0.878466i \(0.658567\pi\)
\(242\) 1988.26i 0.528141i
\(243\) −1395.44 + 3521.60i −0.368385 + 0.929673i
\(244\) −2298.36 −0.603021
\(245\) 0 0
\(246\) 4710.71 + 356.120i 1.22091 + 0.0922983i
\(247\) −1455.35 840.245i −0.374905 0.216452i
\(248\) −1505.35 869.112i −0.385442 0.222535i
\(249\) −154.047 320.418i −0.0392062 0.0815489i
\(250\) 0 0
\(251\) 1466.63 0.368815 0.184408 0.982850i \(-0.440963\pi\)
0.184408 + 0.982850i \(0.440963\pi\)
\(252\) −79.2558 + 521.198i −0.0198121 + 0.130287i
\(253\) 3248.04i 0.807126i
\(254\) −995.510 1724.27i −0.245921 0.425947i
\(255\) 0 0
\(256\) −2675.28 + 4633.72i −0.653144 + 1.13128i
\(257\) 3851.51 + 2223.67i 0.934828 + 0.539723i 0.888335 0.459195i \(-0.151862\pi\)
0.0464928 + 0.998919i \(0.485196\pi\)
\(258\) 7196.06 + 4913.09i 1.73646 + 1.18557i
\(259\) −338.081 585.574i −0.0811094 0.140486i
\(260\) 0 0
\(261\) −1927.42 4929.95i −0.457104 1.16918i
\(262\) 4615.14i 1.08826i
\(263\) 1520.00 877.572i 0.356377 0.205754i −0.311113 0.950373i \(-0.600702\pi\)
0.667490 + 0.744618i \(0.267369\pi\)
\(264\) −631.752 1314.05i −0.147279 0.306341i
\(265\) 0 0
\(266\) −260.725 + 451.589i −0.0600981 + 0.104093i
\(267\) 260.658 3447.95i 0.0597453 0.790304i
\(268\) −703.760 + 406.316i −0.160407 + 0.0926108i
\(269\) 3412.93 0.773569 0.386785 0.922170i \(-0.373586\pi\)
0.386785 + 0.922170i \(0.373586\pi\)
\(270\) 0 0
\(271\) 206.271 0.0462365 0.0231183 0.999733i \(-0.492641\pi\)
0.0231183 + 0.999733i \(0.492641\pi\)
\(272\) −5931.43 + 3424.51i −1.32223 + 0.763388i
\(273\) −63.6012 + 841.309i −0.0141001 + 0.186514i
\(274\) 1693.31 2932.89i 0.373345 0.646652i
\(275\) 0 0
\(276\) −1370.00 2849.60i −0.298783 0.621469i
\(277\) −4593.09 + 2651.82i −0.996289 + 0.575208i −0.907148 0.420811i \(-0.861746\pi\)
−0.0891411 + 0.996019i \(0.528412\pi\)
\(278\) 11393.5i 2.45805i
\(279\) 2926.12 3659.40i 0.627893 0.785242i
\(280\) 0 0
\(281\) −1424.58 2467.44i −0.302431 0.523825i 0.674255 0.738498i \(-0.264465\pi\)
−0.976686 + 0.214673i \(0.931131\pi\)
\(282\) 5129.34 + 3502.04i 1.08315 + 0.739516i
\(283\) 6993.19 + 4037.52i 1.46891 + 0.848077i 0.999393 0.0348448i \(-0.0110937\pi\)
0.469520 + 0.882922i \(0.344427\pi\)
\(284\) 2395.70 4149.47i 0.500558 0.866992i
\(285\) 0 0
\(286\) 2224.92 + 3853.67i 0.460008 + 0.796757i
\(287\) 929.336i 0.191139i
\(288\) −4330.95 3463.10i −0.886124 0.708560i
\(289\) −2710.53 −0.551705
\(290\) 0 0
\(291\) −3160.32 6573.47i −0.636636 1.32420i
\(292\) −4434.85 2560.46i −0.888800 0.513149i
\(293\) −2271.46 1311.43i −0.452900 0.261482i 0.256154 0.966636i \(-0.417545\pi\)
−0.709054 + 0.705154i \(0.750878\pi\)
\(294\) −6207.60 469.282i −1.23141 0.0930920i
\(295\) 0 0
\(296\) 1820.39 0.357459
\(297\) 3757.81 1151.06i 0.734176 0.224886i
\(298\) 5937.79i 1.15425i
\(299\) −2530.07 4382.22i −0.489358 0.847593i
\(300\) 0 0
\(301\) 857.042 1484.44i 0.164116 0.284258i
\(302\) −5742.06 3315.18i −1.09410 0.631680i
\(303\) −3068.23 + 1475.11i −0.581733 + 0.279679i
\(304\) −1510.26 2615.85i −0.284932 0.493517i
\(305\) 0 0
\(306\) −3124.39 7991.55i −0.583690 1.49296i
\(307\) 1699.16i 0.315883i −0.987448 0.157941i \(-0.949514\pi\)
0.987448 0.157941i \(-0.0504857\pi\)
\(308\) 473.693 273.487i 0.0876337 0.0505953i
\(309\) −742.799 + 1087.96i −0.136752 + 0.200296i
\(310\) 0 0
\(311\) −2409.47 + 4173.32i −0.439319 + 0.760924i −0.997637 0.0687036i \(-0.978114\pi\)
0.558318 + 0.829627i \(0.311447\pi\)
\(312\) −1875.93 1280.79i −0.340397 0.232405i
\(313\) 5210.40 3008.23i 0.940925 0.543243i 0.0506747 0.998715i \(-0.483863\pi\)
0.890250 + 0.455472i \(0.150529\pi\)
\(314\) 10319.5 1.85465
\(315\) 0 0
\(316\) 4492.52 0.799760
\(317\) 6301.82 3638.36i 1.11655 0.644639i 0.176030 0.984385i \(-0.443674\pi\)
0.940517 + 0.339746i \(0.110341\pi\)
\(318\) 11383.2 5472.69i 2.00735 0.965072i
\(319\) −2745.99 + 4756.19i −0.481962 + 0.834782i
\(320\) 0 0
\(321\) −5869.08 443.690i −1.02050 0.0771476i
\(322\) −1359.79 + 785.074i −0.235335 + 0.135871i
\(323\) 3362.09i 0.579169i
\(324\) 2811.33 2594.86i 0.482052 0.444936i
\(325\) 0 0
\(326\) −5548.16 9609.69i −0.942589 1.63261i
\(327\) 593.302 7848.13i 0.100335 1.32723i
\(328\) 2166.79 + 1250.99i 0.364758 + 0.210593i
\(329\) 610.898 1058.11i 0.102370 0.177311i
\(330\) 0 0
\(331\) 797.088 + 1380.60i 0.132362 + 0.229258i 0.924587 0.380972i \(-0.124410\pi\)
−0.792224 + 0.610230i \(0.791077\pi\)
\(332\) 359.075i 0.0593579i
\(333\) −737.688 + 4851.15i −0.121397 + 0.798322i
\(334\) 10329.4 1.69222
\(335\) 0 0
\(336\) −855.088 + 1252.42i −0.138836 + 0.203349i
\(337\) −7271.96 4198.47i −1.17546 0.678650i −0.220497 0.975388i \(-0.570768\pi\)
−0.954959 + 0.296738i \(0.904101\pi\)
\(338\) −921.602 532.087i −0.148309 0.0856264i
\(339\) −4898.90 + 7175.27i −0.784872 + 1.14958i
\(340\) 0 0
\(341\) −4861.28 −0.772003
\(342\) 3524.39 1377.90i 0.557243 0.217861i
\(343\) 2500.79i 0.393673i
\(344\) 2307.36 + 3996.46i 0.361640 + 0.626379i
\(345\) 0 0
\(346\) −929.117 + 1609.28i −0.144363 + 0.250044i
\(347\) −9024.74 5210.44i −1.39618 0.806083i −0.402188 0.915557i \(-0.631750\pi\)
−0.993990 + 0.109474i \(0.965083\pi\)
\(348\) −403.010 + 5330.97i −0.0620793 + 0.821178i
\(349\) −3953.71 6848.03i −0.606411 1.05033i −0.991827 0.127591i \(-0.959275\pi\)
0.385416 0.922743i \(-0.374058\pi\)
\(350\) 0 0
\(351\) 4173.37 4480.15i 0.634639 0.681290i
\(352\) 5753.39i 0.871184i
\(353\) −4333.56 + 2501.98i −0.653406 + 0.377244i −0.789760 0.613416i \(-0.789795\pi\)
0.136354 + 0.990660i \(0.456462\pi\)
\(354\) 2095.57 + 158.421i 0.314628 + 0.0237852i
\(355\) 0 0
\(356\) −1746.16 + 3024.43i −0.259961 + 0.450266i
\(357\) −1521.29 + 731.390i −0.225533 + 0.108429i
\(358\) 7169.13 4139.10i 1.05838 0.611056i
\(359\) 2385.12 0.350646 0.175323 0.984511i \(-0.443903\pi\)
0.175323 + 0.984511i \(0.443903\pi\)
\(360\) 0 0
\(361\) −5376.27 −0.783827
\(362\) −3074.88 + 1775.28i −0.446443 + 0.257754i
\(363\) 2344.18 + 1600.48i 0.338946 + 0.231415i
\(364\) 426.067 737.970i 0.0613516 0.106264i
\(365\) 0 0
\(366\) 4670.36 6840.53i 0.667004 0.976941i
\(367\) 1565.78 904.006i 0.222706 0.128580i −0.384496 0.923126i \(-0.625625\pi\)
0.607203 + 0.794547i \(0.292292\pi\)
\(368\) 9095.14i 1.28836i
\(369\) −4211.84 + 5267.32i −0.594199 + 0.743104i
\(370\) 0 0
\(371\) −1242.33 2151.78i −0.173850 0.301118i
\(372\) −4264.93 + 2050.45i −0.594426 + 0.285781i
\(373\) −10854.5 6266.85i −1.50677 0.869933i −0.999969 0.00786860i \(-0.997495\pi\)
−0.506799 0.862064i \(-0.669171\pi\)
\(374\) −4451.30 + 7709.89i −0.615432 + 1.06596i
\(375\) 0 0
\(376\) 1644.68 + 2848.67i 0.225579 + 0.390715i
\(377\) 8555.98i 1.16885i
\(378\) −1390.18 1294.98i −0.189161 0.176208i
\(379\) −5221.98 −0.707745 −0.353872 0.935294i \(-0.615135\pi\)
−0.353872 + 0.935294i \(0.615135\pi\)
\(380\) 0 0
\(381\) 2834.29 + 214.266i 0.381116 + 0.0288115i
\(382\) 5926.12 + 3421.44i 0.793734 + 0.458263i
\(383\) 7411.18 + 4278.85i 0.988756 + 0.570859i 0.904902 0.425619i \(-0.139944\pi\)
0.0838538 + 0.996478i \(0.473277\pi\)
\(384\) −2715.85 5648.98i −0.360919 0.750712i
\(385\) 0 0
\(386\) −2233.23 −0.294478
\(387\) −11585.2 + 4529.36i −1.52173 + 0.594936i
\(388\) 7366.52i 0.963862i
\(389\) −2730.66 4729.65i −0.355913 0.616459i 0.631361 0.775489i \(-0.282497\pi\)
−0.987274 + 0.159030i \(0.949163\pi\)
\(390\) 0 0
\(391\) 5061.82 8767.32i 0.654698 1.13397i
\(392\) −2855.31 1648.51i −0.367895 0.212404i
\(393\) −5441.30 3715.04i −0.698416 0.476842i
\(394\) −124.381 215.435i −0.0159042 0.0275468i
\(395\) 0 0
\(396\) −3924.28 596.745i −0.497986 0.0757261i
\(397\) 1998.55i 0.252656i 0.991989 + 0.126328i \(0.0403191\pi\)
−0.991989 + 0.126328i \(0.959681\pi\)
\(398\) −6855.51 + 3958.03i −0.863406 + 0.498488i
\(399\) −322.554 670.912i −0.0404709 0.0841795i
\(400\) 0 0
\(401\) 246.083 426.228i 0.0306454 0.0530793i −0.850296 0.526305i \(-0.823577\pi\)
0.880941 + 0.473225i \(0.156910\pi\)
\(402\) 220.763 2920.23i 0.0273897 0.362308i
\(403\) −6558.78 + 3786.71i −0.810709 + 0.468063i
\(404\) 3438.40 0.423432
\(405\) 0 0
\(406\) 2654.89 0.324532
\(407\) 4408.99 2545.53i 0.536966 0.310018i
\(408\) 342.571 4531.49i 0.0415681 0.549859i
\(409\) −4000.23 + 6928.60i −0.483615 + 0.837646i −0.999823 0.0188177i \(-0.994010\pi\)
0.516208 + 0.856463i \(0.327343\pi\)
\(410\) 0 0
\(411\) 2094.86 + 4357.31i 0.251415 + 0.522945i
\(412\) 1152.24 665.249i 0.137784 0.0795496i
\(413\) 413.417i 0.0492565i
\(414\) 11265.1 + 1713.02i 1.33731 + 0.203358i
\(415\) 0 0
\(416\) 4481.62 + 7762.40i 0.528196 + 0.914863i
\(417\) 13433.1 + 9171.39i 1.57751 + 1.07704i
\(418\) −3400.17 1963.09i −0.397866 0.229708i
\(419\) 2752.47 4767.41i 0.320923 0.555855i −0.659756 0.751480i \(-0.729340\pi\)
0.980679 + 0.195625i \(0.0626735\pi\)
\(420\) 0 0
\(421\) 5202.28 + 9010.61i 0.602241 + 1.04311i 0.992481 + 0.122399i \(0.0390588\pi\)
−0.390240 + 0.920713i \(0.627608\pi\)
\(422\) 1729.05i 0.199452i
\(423\) −8257.89 + 3228.52i −0.949202 + 0.371101i
\(424\) 6689.28 0.766179
\(425\) 0 0
\(426\) 7481.79 + 15562.1i 0.850925 + 1.76993i
\(427\) −1411.10 814.698i −0.159925 0.0923326i
\(428\) 5148.17 + 2972.30i 0.581417 + 0.335681i
\(429\) −6334.51 478.875i −0.712897 0.0538935i
\(430\) 0 0
\(431\) 6446.05 0.720406 0.360203 0.932874i \(-0.382707\pi\)
0.360203 + 0.932874i \(0.382707\pi\)
\(432\) 10522.6 3223.17i 1.17192 0.358970i
\(433\) 6307.26i 0.700018i 0.936746 + 0.350009i \(0.113821\pi\)
−0.936746 + 0.350009i \(0.886179\pi\)
\(434\) 1175.00 + 2035.17i 0.129958 + 0.225095i
\(435\) 0 0
\(436\) −3974.56 + 6884.13i −0.436575 + 0.756170i
\(437\) 3866.52 + 2232.34i 0.423251 + 0.244364i
\(438\) 16632.4 7996.34i 1.81445 0.872329i
\(439\) −3947.14 6836.64i −0.429127 0.743269i 0.567669 0.823257i \(-0.307845\pi\)
−0.996796 + 0.0799877i \(0.974512\pi\)
\(440\) 0 0
\(441\) 5550.20 6941.08i 0.599309 0.749495i
\(442\) 13869.4i 1.49254i
\(443\) −7602.99 + 4389.59i −0.815415 + 0.470780i −0.848833 0.528661i \(-0.822694\pi\)
0.0334178 + 0.999441i \(0.489361\pi\)
\(444\) 2794.44 4092.93i 0.298690 0.437482i
\(445\) 0 0
\(446\) −5398.43 + 9350.36i −0.573146 + 0.992718i
\(447\) −7000.71 4779.72i −0.740766 0.505756i
\(448\) 386.661 223.239i 0.0407768 0.0235425i
\(449\) −16514.2 −1.73575 −0.867874 0.496784i \(-0.834514\pi\)
−0.867874 + 0.496784i \(0.834514\pi\)
\(450\) 0 0
\(451\) 6997.29 0.730576
\(452\) 7599.27 4387.44i 0.790796 0.456566i
\(453\) 8530.81 4101.34i 0.884795 0.425382i
\(454\) 5154.35 8927.60i 0.532832 0.922892i
\(455\) 0 0
\(456\) 1998.46 + 151.079i 0.205233 + 0.0155152i
\(457\) 13420.7 7748.44i 1.37373 0.793121i 0.382332 0.924025i \(-0.375121\pi\)
0.991395 + 0.130904i \(0.0417879\pi\)
\(458\) 15623.6i 1.59398i
\(459\) 11937.1 + 2749.25i 1.21390 + 0.279573i
\(460\) 0 0
\(461\) 7641.45 + 13235.4i 0.772012 + 1.33716i 0.936459 + 0.350778i \(0.114083\pi\)
−0.164446 + 0.986386i \(0.552584\pi\)
\(462\) −148.593 + 1965.58i −0.0149636 + 0.197937i
\(463\) −11821.0 6824.87i −1.18654 0.685051i −0.229025 0.973421i \(-0.573554\pi\)
−0.957519 + 0.288369i \(0.906887\pi\)
\(464\) −7689.28 + 13318.2i −0.769323 + 1.33251i
\(465\) 0 0
\(466\) −7766.42 13451.8i −0.772044 1.33722i
\(467\) 6841.24i 0.677891i −0.940806 0.338945i \(-0.889930\pi\)
0.940806 0.338945i \(-0.110070\pi\)
\(468\) −5759.42 + 2251.71i −0.568866 + 0.222405i
\(469\) −576.107 −0.0567210
\(470\) 0 0
\(471\) −8306.82 + 12166.8i −0.812650 + 1.19026i
\(472\) 963.899 + 556.507i 0.0939980 + 0.0542698i
\(473\) 11176.9 + 6452.96i 1.08650 + 0.627289i
\(474\) −9129.00 + 13371.0i −0.884618 + 1.29567i
\(475\) 0 0
\(476\) 1704.83 0.164161
\(477\) −2710.74 + 17826.2i −0.260202 + 1.71113i
\(478\) 9408.96i 0.900326i
\(479\) −2888.63 5003.25i −0.275542 0.477254i 0.694729 0.719271i \(-0.255524\pi\)
−0.970272 + 0.242018i \(0.922191\pi\)
\(480\) 0 0
\(481\) 3965.70 6868.79i 0.375926 0.651122i
\(482\) 12309.1 + 7106.66i 1.16320 + 0.671576i
\(483\) 168.974 2235.16i 0.0159183 0.210566i
\(484\) −1433.39 2482.70i −0.134616 0.233161i
\(485\) 0 0
\(486\) 2010.29 + 13640.1i 0.187631 + 1.27311i
\(487\) 17699.8i 1.64693i −0.567370 0.823463i \(-0.692039\pi\)
0.567370 0.823463i \(-0.307961\pi\)
\(488\) 3799.01 2193.36i 0.352404 0.203460i
\(489\) 15796.0 + 1194.15i 1.46078 + 0.110432i
\(490\) 0 0
\(491\) 6045.50 10471.1i 0.555661 0.962433i −0.442191 0.896921i \(-0.645799\pi\)
0.997852 0.0655120i \(-0.0208681\pi\)
\(492\) 6138.91 2951.40i 0.562528 0.270446i
\(493\) −14824.3 + 8558.80i −1.35426 + 0.781884i
\(494\) −6116.63 −0.557085
\(495\) 0 0
\(496\) −13612.5 −1.23230
\(497\) 2941.73 1698.41i 0.265502 0.153288i
\(498\) −1068.71 729.656i −0.0961643 0.0656560i
\(499\) −8153.68 + 14122.6i −0.731481 + 1.26696i 0.224769 + 0.974412i \(0.427837\pi\)
−0.956250 + 0.292550i \(0.905496\pi\)
\(500\) 0 0
\(501\) −8314.85 + 12178.5i −0.741477 + 1.08602i
\(502\) 4623.02 2669.10i 0.411027 0.237307i
\(503\) 8574.88i 0.760109i 0.924964 + 0.380054i \(0.124095\pi\)
−0.924964 + 0.380054i \(0.875905\pi\)
\(504\) −366.384 937.135i −0.0323810 0.0828241i
\(505\) 0 0
\(506\) −5911.09 10238.3i −0.519328 0.899503i
\(507\) 1369.20 658.266i 0.119937 0.0576620i
\(508\) −2486.15 1435.38i −0.217136 0.125364i
\(509\) 2027.21 3511.23i 0.176532 0.305762i −0.764159 0.645028i \(-0.776846\pi\)
0.940690 + 0.339267i \(0.110179\pi\)
\(510\) 0 0
\(511\) −1815.21 3144.04i −0.157143 0.272180i
\(512\) 9824.79i 0.848044i
\(513\) −1212.46 + 5264.46i −0.104350 + 0.453083i
\(514\) 16187.4 1.38909
\(515\) 0 0
\(516\) 12527.6 + 947.057i 1.06879 + 0.0807982i
\(517\) 7966.84 + 4599.66i 0.677720 + 0.391282i
\(518\) −2131.36 1230.54i −0.180785 0.104376i
\(519\) −1149.45 2390.85i −0.0972161 0.202210i
\(520\) 0 0
\(521\) −22757.9 −1.91371 −0.956854 0.290570i \(-0.906155\pi\)
−0.956854 + 0.290570i \(0.906155\pi\)
\(522\) −15047.5 12032.2i −1.26170 1.00888i
\(523\) 12468.0i 1.04242i −0.853428 0.521211i \(-0.825480\pi\)
0.853428 0.521211i \(-0.174520\pi\)
\(524\) 3327.18 + 5762.84i 0.277382 + 0.480440i
\(525\) 0 0
\(526\) 3194.17 5532.47i 0.264777 0.458607i
\(527\) −13121.9 7575.92i −1.08463 0.626209i
\(528\) −9429.92 6438.26i −0.777244 0.530661i
\(529\) 638.318 + 1105.60i 0.0524631 + 0.0908687i
\(530\) 0 0
\(531\) −1873.64 + 2343.18i −0.153125 + 0.191498i
\(532\) 751.855i 0.0612726i
\(533\) 9440.65 5450.56i 0.767205 0.442946i
\(534\) −5453.27 11342.8i −0.441921 0.919198i
\(535\) 0 0
\(536\) 775.507 1343.22i 0.0624941 0.108243i
\(537\) −890.869 + 11784.3i −0.0715900 + 0.946985i
\(538\) 10758.1 6211.17i 0.862106 0.497737i
\(539\) −9220.77 −0.736859
\(540\) 0 0
\(541\) −22965.1 −1.82504 −0.912519 0.409034i \(-0.865866\pi\)
−0.912519 + 0.409034i \(0.865866\pi\)
\(542\) 650.198 375.392i 0.0515284 0.0297499i
\(543\) 382.099 5054.37i 0.0301979 0.399454i
\(544\) −8966.20 + 15529.9i −0.706659 + 1.22397i
\(545\) 0 0
\(546\) 1330.61 + 2767.68i 0.104295 + 0.216933i
\(547\) 8818.73 5091.50i 0.689327 0.397983i −0.114033 0.993477i \(-0.536377\pi\)
0.803360 + 0.595494i \(0.203044\pi\)
\(548\) 4883.00i 0.380641i
\(549\) 4305.58 + 11012.8i 0.334713 + 0.856129i
\(550\) 0 0
\(551\) −3774.56 6537.73i −0.291836 0.505475i
\(552\) 4983.92 + 3402.76i 0.384293 + 0.262375i
\(553\) 2758.23 + 1592.47i 0.212101 + 0.122457i
\(554\) −9652.07 + 16717.9i −0.740211 + 1.28208i
\(555\) 0 0
\(556\) −8213.87 14226.8i −0.626521 1.08517i
\(557\) 4498.86i 0.342231i 0.985251 + 0.171116i \(0.0547372\pi\)
−0.985251 + 0.171116i \(0.945263\pi\)
\(558\) 2563.84 16860.2i 0.194509 1.27912i
\(559\) 20106.2 1.52129
\(560\) 0 0
\(561\) −5506.89 11454.3i −0.414440 0.862037i
\(562\) −8980.94 5185.15i −0.674089 0.389186i
\(563\) 10428.8 + 6021.09i 0.780680 + 0.450726i 0.836671 0.547705i \(-0.184498\pi\)
−0.0559910 + 0.998431i \(0.517832\pi\)
\(564\) 8929.62 + 675.060i 0.666675 + 0.0503992i
\(565\) 0 0
\(566\) 29391.4 2.18271
\(567\) 2645.84 596.613i 0.195970 0.0441894i
\(568\) 9145.01i 0.675557i
\(569\) 1745.67 + 3023.58i 0.128615 + 0.222768i 0.923140 0.384463i \(-0.125613\pi\)
−0.794525 + 0.607231i \(0.792280\pi\)
\(570\) 0 0
\(571\) 8050.10 13943.2i 0.589993 1.02190i −0.404239 0.914653i \(-0.632464\pi\)
0.994233 0.107245i \(-0.0342029\pi\)
\(572\) 5556.43 + 3208.01i 0.406164 + 0.234499i
\(573\) −8804.25 + 4232.81i −0.641890 + 0.308600i
\(574\) −1691.29 2929.40i −0.122985 0.213016i
\(575\) 0 0
\(576\) −3203.26 487.104i −0.231718 0.0352361i
\(577\) 5196.41i 0.374921i −0.982272 0.187460i \(-0.939974\pi\)
0.982272 0.187460i \(-0.0600256\pi\)
\(578\) −8543.98 + 4932.87i −0.614849 + 0.354983i
\(579\) 1797.68 2633.01i 0.129031 0.188988i
\(580\) 0 0
\(581\) −127.281 + 220.458i −0.00908868 + 0.0157421i
\(582\) −21924.8 14969.1i −1.56153 1.06613i
\(583\) 16201.5 9353.92i 1.15094 0.664494i
\(584\) 9773.95 0.692550
\(585\) 0 0
\(586\) −9546.61 −0.672981
\(587\) −3375.07 + 1948.60i −0.237315 + 0.137014i −0.613942 0.789351i \(-0.710417\pi\)
0.376627 + 0.926365i \(0.377084\pi\)
\(588\) −8089.63 + 3889.24i −0.567365 + 0.272771i
\(589\) 3341.09 5786.94i 0.233730 0.404833i
\(590\) 0 0
\(591\) 354.123 + 26.7709i 0.0246475 + 0.00186330i
\(592\) 12346.0 7127.96i 0.857124 0.494861i
\(593\) 3023.70i 0.209390i 0.994504 + 0.104695i \(0.0333867\pi\)
−0.994504 + 0.104695i \(0.966613\pi\)
\(594\) 9750.38 10467.1i 0.673506 0.723015i
\(595\) 0 0
\(596\) 4280.71 + 7414.40i 0.294202 + 0.509573i
\(597\) 851.897 11268.8i 0.0584017 0.772532i
\(598\) −15950.3 9208.93i −1.09073 0.629734i
\(599\) 8314.74 14401.6i 0.567164 0.982356i −0.429681 0.902981i \(-0.641374\pi\)
0.996845 0.0793757i \(-0.0252927\pi\)
\(600\) 0 0
\(601\) 1479.34 + 2562.29i 0.100405 + 0.173907i 0.911852 0.410520i \(-0.134653\pi\)
−0.811446 + 0.584427i \(0.801319\pi\)
\(602\) 6238.89i 0.422389i
\(603\) 3265.28 + 2610.97i 0.220518 + 0.176330i
\(604\) −9560.01 −0.644025
\(605\) 0 0
\(606\) −6986.97 + 10233.6i −0.468360 + 0.685993i
\(607\) −6072.88 3506.18i −0.406080 0.234451i 0.283024 0.959113i \(-0.408662\pi\)
−0.689104 + 0.724662i \(0.741996\pi\)
\(608\) −6848.92 3954.22i −0.456843 0.263758i
\(609\) −2137.10 + 3130.15i −0.142200 + 0.208276i
\(610\) 0 0
\(611\) 14331.7 0.948932
\(612\) −9662.68 7726.44i −0.638220 0.510332i
\(613\) 8462.75i 0.557597i −0.960350 0.278799i \(-0.910064\pi\)
0.960350 0.278799i \(-0.0899362\pi\)
\(614\) −3092.28 5355.99i −0.203248 0.352036i
\(615\) 0 0
\(616\) −521.986 + 904.106i −0.0341419 + 0.0591355i
\(617\) 7286.24 + 4206.71i 0.475418 + 0.274483i 0.718505 0.695522i \(-0.244827\pi\)
−0.243087 + 0.970005i \(0.578160\pi\)
\(618\) −361.449 + 4781.21i −0.0235269 + 0.311211i
\(619\) −560.233 970.351i −0.0363775 0.0630076i 0.847263 0.531173i \(-0.178249\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(620\) 0 0
\(621\) −11087.7 + 11902.7i −0.716478 + 0.769146i
\(622\) 17539.9i 1.13068i
\(623\) −2144.14 + 1237.92i −0.137886 + 0.0796088i
\(624\) −17737.8 1340.94i −1.13795 0.0860266i
\(625\) 0 0
\(626\) 10949.3 18964.7i 0.699077 1.21084i
\(627\) 5051.53 2428.62i 0.321752 0.154688i
\(628\) 12885.7 7439.57i 0.818783 0.472725i
\(629\) 15868.0 1.00588
\(630\) 0 0
\(631\) 7709.69 0.486399 0.243200 0.969976i \(-0.421803\pi\)
0.243200 + 0.969976i \(0.421803\pi\)
\(632\) −7425.80 + 4287.29i −0.467377 + 0.269840i
\(633\) 2038.57 + 1391.83i 0.128003 + 0.0873936i
\(634\) 13242.8 22937.3i 0.829559 1.43684i
\(635\) 0 0
\(636\) 10268.6 15040.1i 0.640214 0.937702i
\(637\) −12440.5 + 7182.55i −0.773803 + 0.446755i
\(638\) 19989.6i 1.24043i
\(639\) −24370.5 3705.90i −1.50874 0.229426i
\(640\) 0 0
\(641\) −10149.8 17580.0i −0.625419 1.08326i −0.988460 0.151484i \(-0.951595\pi\)
0.363041 0.931773i \(-0.381739\pi\)
\(642\) −19307.7 + 9282.53i −1.18694 + 0.570642i
\(643\) 27596.1 + 15932.6i 1.69251 + 0.977169i 0.952484 + 0.304587i \(0.0985186\pi\)
0.740023 + 0.672582i \(0.234815\pi\)
\(644\) −1131.96 + 1960.61i −0.0692632 + 0.119967i
\(645\) 0 0
\(646\) −6118.64 10597.8i −0.372654 0.645456i
\(647\) 22400.4i 1.36113i 0.732689 + 0.680563i \(0.238265\pi\)
−0.732689 + 0.680563i \(0.761735\pi\)
\(648\) −2170.59 + 6972.01i −0.131587 + 0.422664i
\(649\) 3112.76 0.188269
\(650\) 0 0
\(651\) −3345.32 252.899i −0.201403 0.0152257i
\(652\) −13855.8 7999.63i −0.832260 0.480506i
\(653\) 8956.65 + 5171.12i 0.536755 + 0.309895i 0.743763 0.668444i \(-0.233039\pi\)
−0.207008 + 0.978339i \(0.566373\pi\)
\(654\) −12412.6 25818.2i −0.742157 1.54369i
\(655\) 0 0
\(656\) 19593.7 1.16617
\(657\) −3960.77 + 26046.6i −0.235197 + 1.54669i
\(658\) 4447.07i 0.263472i
\(659\) 118.705 + 205.603i 0.00701682 + 0.0121535i 0.869512 0.493911i \(-0.164433\pi\)
−0.862496 + 0.506064i \(0.831100\pi\)
\(660\) 0 0
\(661\) −14411.8 + 24962.0i −0.848042 + 1.46885i 0.0349116 + 0.999390i \(0.488885\pi\)
−0.882953 + 0.469461i \(0.844448\pi\)
\(662\) 5025.08 + 2901.23i 0.295023 + 0.170332i
\(663\) −16352.2 11164.4i −0.957869 0.653983i
\(664\) −342.671 593.524i −0.0200274 0.0346885i
\(665\) 0 0
\(666\) 6503.26 + 16634.0i 0.378373 + 0.967801i
\(667\) 22731.2i 1.31958i
\(668\) 12898.2 7446.76i 0.747073 0.431323i
\(669\) −6678.61 13891.5i −0.385964 0.802807i
\(670\) 0 0
\(671\) 6134.15 10624.7i 0.352915 0.611267i
\(672\) −299.309 + 3959.23i −0.0171817 + 0.227278i
\(673\) 6721.08 3880.42i 0.384961 0.222257i −0.295014 0.955493i \(-0.595324\pi\)
0.679974 + 0.733236i \(0.261991\pi\)
\(674\) −30563.0 −1.74665
\(675\) 0 0
\(676\) −1534.38 −0.0872998
\(677\) −20432.4 + 11796.7i −1.15994 + 0.669693i −0.951290 0.308296i \(-0.900241\pi\)
−0.208653 + 0.977990i \(0.566908\pi\)
\(678\) −2383.82 + 31533.0i −0.135030 + 1.78616i
\(679\) −2611.21 + 4522.75i −0.147583 + 0.255622i
\(680\) 0 0
\(681\) 6376.65 + 13263.5i 0.358816 + 0.746339i
\(682\) −15323.5 + 8847.01i −0.860361 + 0.496729i
\(683\) 4383.39i 0.245572i −0.992433 0.122786i \(-0.960817\pi\)
0.992433 0.122786i \(-0.0391829\pi\)
\(684\) 3407.48 4261.38i 0.190480 0.238214i
\(685\) 0 0
\(686\) 4551.17 + 7882.86i 0.253301 + 0.438730i
\(687\) −18420.4 12576.5i −1.02297 0.698432i
\(688\) 31297.3 + 18069.5i 1.73430 + 1.00130i
\(689\) 14572.5 25240.4i 0.805761 1.39562i
\(690\) 0 0
\(691\) 8876.26 + 15374.1i 0.488667 + 0.846396i 0.999915 0.0130375i \(-0.00415008\pi\)
−0.511248 + 0.859433i \(0.670817\pi\)
\(692\) 2679.30i 0.147185i
\(693\) −2197.82 1757.42i −0.120474 0.0963330i
\(694\) −37929.7 −2.07463
\(695\) 0 0
\(696\) −4421.28 9196.28i −0.240788 0.500839i
\(697\) 18887.5 + 10904.7i 1.02642 + 0.592605i
\(698\) −24925.3 14390.7i −1.35163 0.780364i
\(699\) 22111.6 + 1671.59i 1.19648 + 0.0904510i
\(700\) 0 0
\(701\) 15650.2 0.843223 0.421611 0.906777i \(-0.361465\pi\)
0.421611 + 0.906777i \(0.361465\pi\)
\(702\) 5001.69 21717.2i 0.268912 1.16761i
\(703\) 6998.03i 0.375442i
\(704\) 1680.84 + 2911.30i 0.0899845 + 0.155858i
\(705\) 0 0
\(706\) −9106.68 + 15773.2i −0.485460 + 0.840841i
\(707\) 2111.04 + 1218.81i 0.112297 + 0.0648345i
\(708\) 2730.91 1312.93i 0.144963 0.0696936i
\(709\) 6608.80 + 11446.8i 0.350069 + 0.606337i 0.986261 0.165194i \(-0.0528249\pi\)
−0.636192 + 0.771530i \(0.719492\pi\)
\(710\) 0 0
\(711\) −8415.98 21526.4i −0.443916 1.13545i
\(712\) 6665.54i 0.350845i
\(713\) 17425.1 10060.4i 0.915254 0.528422i
\(714\) −3464.29 + 5074.04i −0.181579 + 0.265954i
\(715\) 0 0
\(716\) 5967.97 10336.8i 0.311499 0.539533i
\(717\) 11093.3 + 7573.90i 0.577804 + 0.394495i
\(718\) 7518.26 4340.67i 0.390779 0.225616i
\(719\) 14824.5 0.768932 0.384466 0.923139i \(-0.374386\pi\)
0.384466 + 0.923139i \(0.374386\pi\)
\(720\) 0 0
\(721\) 943.243 0.0487215
\(722\) −16946.8 + 9784.23i −0.873537 + 0.504337i
\(723\) −18287.2 + 8791.93i −0.940677 + 0.452248i
\(724\) −2559.70 + 4433.53i −0.131396 + 0.227584i
\(725\) 0 0
\(726\) 10301.9 + 778.802i 0.526639 + 0.0398127i
\(727\) −6252.78 + 3610.05i −0.318986 + 0.184167i −0.650941 0.759129i \(-0.725625\pi\)
0.331954 + 0.943295i \(0.392292\pi\)
\(728\) 1626.41i 0.0828005i
\(729\) −17700.1 8609.71i −0.899258 0.437419i
\(730\) 0 0
\(731\) 20112.9 + 34836.5i 1.01765 + 1.76262i
\(732\) 900.267 11908.6i 0.0454574 0.601305i
\(733\) −1612.51 930.981i −0.0812542 0.0469121i 0.458822 0.888528i \(-0.348271\pi\)
−0.540077 + 0.841616i \(0.681605\pi\)
\(734\) 3290.39 5699.12i 0.165464 0.286592i
\(735\) 0 0
\(736\) −11906.6 20622.9i −0.596310 1.03284i
\(737\) 4337.71i 0.216800i
\(738\) −3690.38 + 24268.4i −0.184071 + 1.21048i
\(739\) 29412.7 1.46409 0.732046 0.681255i \(-0.238566\pi\)
0.732046 + 0.681255i \(0.238566\pi\)
\(740\) 0 0
\(741\) 4923.68 7211.57i 0.244097 0.357522i
\(742\) −7832.00 4521.81i −0.387496 0.223721i
\(743\) −29810.5 17211.1i −1.47192 0.849816i −0.472422 0.881373i \(-0.656620\pi\)
−0.999502 + 0.0315568i \(0.989953\pi\)
\(744\) 5092.84 7459.32i 0.250958 0.367570i
\(745\) 0 0
\(746\) −45619.9 −2.23896
\(747\) 1720.54 672.666i 0.0842724 0.0329472i
\(748\) 12836.3i 0.627460i
\(749\) 2107.18 + 3649.75i 0.102797 + 0.178049i
\(750\) 0 0
\(751\) 14688.2 25440.7i 0.713689 1.23615i −0.249773 0.968304i \(-0.580356\pi\)
0.963463 0.267842i \(-0.0863105\pi\)
\(752\) 22308.7 + 12879.9i 1.08180 + 0.624577i
\(753\) −574.478 + 7599.13i −0.0278023 + 0.367766i
\(754\) 15571.0 + 26969.7i 0.752071 + 1.30262i
\(755\) 0 0
\(756\) −2669.47 614.807i −0.128423 0.0295771i
\(757\) 6235.27i 0.299372i −0.988734 0.149686i \(-0.952174\pi\)
0.988734 0.149686i \(-0.0478263\pi\)
\(758\) −16460.5 + 9503.45i −0.788748 + 0.455384i
\(759\) 16829.3 + 1272.26i 0.804829 + 0.0608434i
\(760\) 0 0
\(761\) 13985.1 24222.9i 0.666176 1.15385i −0.312789 0.949823i \(-0.601263\pi\)
0.978965 0.204028i \(-0.0654034\pi\)
\(762\) 9324.04 4482.71i 0.443274 0.213112i
\(763\) −4880.44 + 2817.72i −0.231565 + 0.133694i
\(764\) 9866.44 0.467219
\(765\) 0 0
\(766\) 31148.2 1.46923
\(767\) 4199.69 2424.69i 0.197708 0.114147i
\(768\) −22961.1 15676.6i −1.07882 0.736565i
\(769\) −4534.05 + 7853.21i −0.212616 + 0.368263i −0.952533 0.304437i \(-0.901532\pi\)
0.739916 + 0.672699i \(0.234865\pi\)
\(770\) 0 0
\(771\) −13030.3 + 19085.1i −0.608658 + 0.891482i
\(772\) −2788.60 + 1610.00i −0.130005 + 0.0750584i
\(773\) 31339.8i 1.45823i −0.684389 0.729117i \(-0.739931\pi\)
0.684389 0.729117i \(-0.260069\pi\)
\(774\) −28275.2 + 35361.0i −1.31309 + 1.64215i
\(775\) 0 0
\(776\) −7029.99 12176.3i −0.325209 0.563278i
\(777\) 3166.50 1522.35i 0.146200 0.0702884i
\(778\) −17214.9 9939.03i −0.793296 0.458010i
\(779\) −4809.14 + 8329.68i −0.221188 + 0.383109i
\(780\) 0 0
\(781\) 12787.9 + 22149.3i 0.585899 + 1.01481i
\(782\) 36847.8i 1.68501i
\(783\) 26298.8 8055.60i 1.20031 0.367667i
\(784\) −25819.9 −1.17620
\(785\) 0 0
\(786\) −23912.7 1807.75i −1.08516 0.0820361i
\(787\) 8729.01 + 5039.70i 0.395369 + 0.228267i 0.684484 0.729028i \(-0.260028\pi\)
−0.289115 + 0.957294i \(0.593361\pi\)
\(788\) −310.625 179.340i −0.0140426 0.00810750i
\(789\) 3951.64 + 8219.42i 0.178304 + 0.370873i
\(790\) 0 0
\(791\) 6220.87 0.279632
\(792\) 7056.02 2758.63i 0.316572 0.123767i
\(793\) 19112.9i 0.855886i
\(794\) 3637.15 + 6299.72i 0.162566 + 0.281573i
\(795\) 0 0
\(796\) −5706.90 + 9884.63i −0.254115 + 0.440140i
\(797\) −6608.47 3815.40i −0.293706 0.169571i 0.345906 0.938269i \(-0.387572\pi\)
−0.639612 + 0.768698i \(0.720905\pi\)
\(798\) −2237.72 1527.80i −0.0992664 0.0677739i
\(799\) 14336.4 + 24831.4i 0.634775 + 1.09946i
\(800\) 0 0
\(801\) 17763.0 + 2701.13i 0.783552 + 0.119151i
\(802\) 1791.38i 0.0788725i
\(803\) 23672.6 13667.4i 1.04033 0.600636i
\(804\) −1829.61 3805.59i −0.0802554 0.166931i
\(805\) 0 0
\(806\) −13782.8 + 23872.5i −0.602331 + 1.04327i
\(807\) −1336.85 + 17683.7i −0.0583138 + 0.771368i
\(808\) −5683.41 + 3281.32i −0.247452 + 0.142867i
\(809\) 2066.39 0.0898028 0.0449014 0.998991i \(-0.485703\pi\)
0.0449014 + 0.998991i \(0.485703\pi\)
\(810\) 0 0
\(811\) −27700.4 −1.19937 −0.599687 0.800235i \(-0.704708\pi\)
−0.599687 + 0.800235i \(0.704708\pi\)
\(812\) 3315.11 1913.98i 0.143273 0.0827187i
\(813\) −80.7966 + 1068.77i −0.00348544 + 0.0461049i
\(814\) 9265.18 16047.8i 0.398949 0.691000i
\(815\) 0 0
\(816\) −15420.3 32074.3i −0.661543 1.37601i
\(817\) −15363.4 + 8870.06i −0.657892 + 0.379834i
\(818\) 29119.9i 1.24469i
\(819\) −4334.22 659.082i −0.184921 0.0281199i
\(820\) 0 0
\(821\) −8551.54 14811.7i −0.363521 0.629637i 0.625017 0.780612i \(-0.285092\pi\)
−0.988538 + 0.150974i \(0.951759\pi\)
\(822\) 14533.1 + 9922.46i 0.616668 + 0.421029i
\(823\) 7958.91 + 4595.08i 0.337096 + 0.194623i 0.658987 0.752154i \(-0.270985\pi\)
−0.321891 + 0.946777i \(0.604318\pi\)
\(824\) −1269.72 + 2199.21i −0.0536804 + 0.0929771i
\(825\) 0 0
\(826\) −752.374 1303.15i −0.0316930 0.0548940i
\(827\) 9902.35i 0.416371i −0.978089 0.208185i \(-0.933244\pi\)
0.978089 0.208185i \(-0.0667557\pi\)
\(828\) 15301.4 5982.27i 0.642224 0.251085i
\(829\) −26858.5 −1.12525 −0.562626 0.826711i \(-0.690209\pi\)
−0.562626 + 0.826711i \(0.690209\pi\)
\(830\) 0 0
\(831\) −11941.0 24837.2i −0.498468 1.03682i
\(832\) 4535.54 + 2618.59i 0.188992 + 0.109115i
\(833\) −24889.3 14369.8i −1.03525 0.597701i
\(834\) 59033.9 + 4462.84i 2.45105 + 0.185294i
\(835\) 0 0
\(836\) −5660.98 −0.234197
\(837\) 17814.5 + 16594.7i 0.735676 + 0.685300i
\(838\) 20036.8i 0.825965i
\(839\) −4650.27 8054.51i −0.191353 0.331433i 0.754346 0.656477i \(-0.227954\pi\)
−0.945699 + 0.325044i \(0.894621\pi\)
\(840\) 0 0
\(841\) −7023.13 + 12164.4i −0.287963 + 0.498767i
\(842\) 32796.7 + 18935.2i 1.34234 + 0.774999i
\(843\) 13342.7 6414.75i 0.545133 0.262083i
\(844\) −1246.52 2159.03i −0.0508375 0.0880532i
\(845\) 0 0
\(846\) −20154.5 + 25205.2i −0.819063 + 1.02432i
\(847\) 2032.37i 0.0824477i
\(848\) 45367.2 26192.8i 1.83716 1.06069i
\(849\) −23659.1 + 34652.8i −0.956395 + 1.40080i
\(850\) 0 0
\(851\) −10535.9 + 18248.8i −0.424403 + 0.735088i
\(852\) 20561.5 + 14038.3i 0.826792 + 0.564490i
\(853\) −19238.4 + 11107.3i −0.772227 + 0.445845i −0.833668 0.552265i \(-0.813764\pi\)
0.0614415 + 0.998111i \(0.480430\pi\)
\(854\) −5930.65 −0.237638
\(855\) 0 0
\(856\) −11346.1 −0.453037
\(857\) 29746.2 17174.0i 1.18566 0.684541i 0.228343 0.973581i \(-0.426669\pi\)
0.957317 + 0.289040i \(0.0933360\pi\)
\(858\) −20838.8 + 10018.6i −0.829167 + 0.398637i
\(859\) 5589.12 9680.65i 0.222001 0.384516i −0.733415 0.679781i \(-0.762075\pi\)
0.955415 + 0.295265i \(0.0954080\pi\)
\(860\) 0 0
\(861\) 4815.23 + 364.021i 0.190595 + 0.0144086i
\(862\) 20318.9 11731.1i 0.802858 0.463531i
\(863\) 33684.0i 1.32864i 0.747448 + 0.664321i \(0.231279\pi\)
−0.747448 + 0.664321i \(0.768721\pi\)
\(864\) 19640.0 21083.7i 0.773342 0.830189i
\(865\) 0 0
\(866\) 11478.5 + 19881.4i 0.450412 + 0.780136i
\(867\) 1061.71 14044.2i 0.0415891 0.550135i
\(868\) 2934.41 + 1694.18i 0.114747 + 0.0662492i
\(869\) −11990.2 + 20767.7i −0.468056 + 0.810697i
\(870\) 0 0
\(871\) −3378.87 5852.38i −0.131445 0.227670i
\(872\) 15171.9i 0.589204i
\(873\) 35297.4 13799.9i 1.36843 0.535002i
\(874\) 16250.4 0.628924
\(875\) 0 0
\(876\) 15003.8 21975.6i 0.578689 0.847589i
\(877\) −4684.60 2704.66i −0.180374 0.104139i 0.407095 0.913386i \(-0.366542\pi\)
−0.587468 + 0.809247i \(0.699875\pi\)
\(878\) −24883.9 14366.7i −0.956482 0.552225i
\(879\) 7684.71 11255.6i 0.294879 0.431901i
\(880\) 0 0
\(881\) −41501.3 −1.58708 −0.793538 0.608520i \(-0.791763\pi\)
−0.793538 + 0.608520i \(0.791763\pi\)
\(882\) 4863.04 31980.1i 0.185654 1.22089i
\(883\) 10532.8i 0.401423i −0.979650 0.200711i \(-0.935675\pi\)
0.979650 0.200711i \(-0.0643253\pi\)
\(884\) 9998.84 + 17318.5i 0.380427 + 0.658919i
\(885\) 0 0
\(886\) −15977.2 + 27673.2i −0.605827 + 1.04932i
\(887\) −25982.9 15001.2i −0.983564 0.567861i −0.0802195 0.996777i \(-0.525562\pi\)
−0.903344 + 0.428916i \(0.858895\pi\)
\(888\) −713.046 + 9432.09i −0.0269462 + 0.356442i
\(889\) −1017.60 1762.53i −0.0383905 0.0664943i
\(890\) 0 0
\(891\) 4492.11 + 19921.5i 0.168902 + 0.749040i
\(892\) 15567.5i 0.584347i
\(893\) −10951.0 + 6322.56i −0.410371 + 0.236928i
\(894\) −30765.9 2325.83i −1.15097 0.0870106i
\(895\) 0 0
\(896\) −2243.97 + 3886.68i −0.0836673 + 0.144916i
\(897\) 23696.9 11392.7i 0.882070 0.424072i
\(898\) −52055.0 + 30054.0i −1.93441 + 1.11683i
\(899\) −34021.4 −1.26215
\(900\) 0 0
\(901\) 58309.4 2.15601
\(902\) 22056.5 12734.3i 0.814192 0.470074i
\(903\) 7355.72 + 5022.10i 0.271078 + 0.185078i
\(904\) −8374.01 + 14504.2i −0.308092 + 0.533632i
\(905\) 0 0
\(906\) 19426.3 28453.2i 0.712359 1.04337i
\(907\) 951.200 549.175i 0.0348226 0.0201048i −0.482488 0.875903i \(-0.660267\pi\)
0.517310 + 0.855798i \(0.326933\pi\)
\(908\) 14863.6i 0.543245i
\(909\) −6441.25 16475.4i −0.235031 0.601161i
\(910\) 0 0
\(911\) 18420.8 + 31905.7i 0.669931 + 1.16036i 0.977923 + 0.208966i \(0.0670098\pi\)
−0.307992 + 0.951389i \(0.599657\pi\)
\(912\) 14145.2 6800.59i 0.513592 0.246919i
\(913\) −1659.90 958.346i −0.0601696 0.0347389i
\(914\) 28202.6 48848.4i 1.02063 1.76779i
\(915\) 0 0
\(916\) 11263.5 + 19508.9i 0.406283 + 0.703703i
\(917\) 4717.54i 0.169888i
\(918\) 42631.0 13058.3i 1.53271 0.469486i
\(919\) −46004.8 −1.65131 −0.825657 0.564172i \(-0.809196\pi\)
−0.825657 + 0.564172i \(0.809196\pi\)
\(920\) 0 0
\(921\) 8803.96 + 665.561i 0.314984 + 0.0238121i
\(922\) 48173.9 + 27813.2i 1.72074 + 0.993470i
\(923\) 34506.5 + 19922.3i 1.23055 + 0.710457i
\(924\) 1231.49 + 2561.50i 0.0438453 + 0.0911983i
\(925\) 0 0
\(926\) −49682.1 −1.76313
\(927\) −5346.14 4274.87i −0.189418 0.151462i
\(928\) 40264.8i 1.42431i
\(929\) 25451.4 + 44083.2i 0.898853 + 1.55686i 0.828963 + 0.559304i \(0.188932\pi\)
0.0698903 + 0.997555i \(0.477735\pi\)
\(930\) 0 0
\(931\) 6337.31 10976.5i 0.223090 0.386404i
\(932\) −19395.6 11198.0i −0.681677 0.393566i
\(933\) −20679.7 14119.0i −0.725641 0.495430i
\(934\) −12450.3 21564.6i −0.436175 0.755477i
\(935\) 0 0
\(936\) 7371.04 9218.21i 0.257404 0.321909i
\(937\) 26913.6i 0.938343i 0.883107 + 0.469172i \(0.155447\pi\)
−0.883107 + 0.469172i \(0.844553\pi\)
\(938\) −1815.97 + 1048.45i −0.0632129 + 0.0364960i
\(939\) 13545.8 + 28175.3i 0.470768 + 0.979199i
\(940\) 0 0
\(941\) −10780.5 + 18672.3i −0.373468 + 0.646865i −0.990096 0.140389i \(-0.955165\pi\)
0.616629 + 0.787254i \(0.288498\pi\)
\(942\) −4042.14 + 53468.9i −0.139809 + 1.84938i
\(943\) −25081.6 + 14480.9i −0.866140 + 0.500066i
\(944\) 8716.32 0.300521
\(945\) 0 0
\(946\) 46974.8 1.61446
\(947\) −24741.5 + 14284.5i −0.848987 + 0.490163i −0.860309 0.509773i \(-0.829729\pi\)
0.0113221 + 0.999936i \(0.496396\pi\)
\(948\) −1759.72 + 23277.4i −0.0602881 + 0.797485i
\(949\) 21292.5 36879.7i 0.728328 1.26150i
\(950\) 0 0
\(951\) 16383.2 + 34077.2i 0.558636 + 1.16196i
\(952\) −2817.95 + 1626.95i −0.0959353 + 0.0553883i
\(953\) 3807.33i 0.129414i −0.997904 0.0647069i \(-0.979389\pi\)
0.997904 0.0647069i \(-0.0206113\pi\)
\(954\) 23897.2 + 61124.2i 0.811006 + 2.07439i
\(955\) 0 0
\(956\) −6783.17 11748.8i −0.229480 0.397472i
\(957\) −23568.0 16091.0i −0.796075 0.543519i
\(958\) −18210.8 10514.0i −0.614158 0.354584i
\(959\) 1730.88 2997.97i 0.0582825 0.100948i
\(960\) 0 0
\(961\) −161.700 280.072i −0.00542781 0.00940124i
\(962\) 28868.6i 0.967526i
\(963\) 4597.84 30236.1i 0.153856 1.01178i
\(964\) 20493.5 0.684701
\(965\) 0 0
\(966\) −3535.13 7353.07i −0.117744 0.244908i
\(967\) 15506.5 + 8952.67i 0.515672 + 0.297723i 0.735162 0.677891i \(-0.237106\pi\)
−0.219490 + 0.975615i \(0.570439\pi\)
\(968\) 4738.57 + 2735.81i 0.157338 + 0.0908392i
\(969\) 17420.2 + 1316.93i 0.577521 + 0.0436594i
\(970\) 0 0
\(971\) −8567.95 −0.283170 −0.141585 0.989926i \(-0.545220\pi\)
−0.141585 + 0.989926i \(0.545220\pi\)
\(972\) 12343.8 + 15582.9i 0.407331 + 0.514221i
\(973\) 11646.3i 0.383723i
\(974\) −32211.7 55792.2i −1.05968 1.83542i
\(975\) 0 0
\(976\) 17176.8 29751.0i 0.563335 0.975725i
\(977\) −16991.7 9810.17i −0.556411 0.321244i 0.195293 0.980745i \(-0.437434\pi\)
−0.751704 + 0.659501i \(0.770768\pi\)
\(978\) 51964.6 24982.9i 1.69902 0.816837i
\(979\) −9320.74 16144.0i −0.304282 0.527032i
\(980\) 0 0
\(981\) 40431.7 + 6148.23i 1.31589 + 0.200100i
\(982\) 44008.6i 1.43011i
\(983\) −40994.4 + 23668.1i −1.33013 + 0.767951i −0.985319 0.170721i \(-0.945390\pi\)
−0.344811 + 0.938672i \(0.612057\pi\)
\(984\) −7330.59 + 10736.9i −0.237491 + 0.347845i
\(985\) 0 0
\(986\) −31152.2 + 53957.2i −1.00617 + 1.74275i
\(987\) 5243.14 + 3579.74i 0.169089 + 0.115445i
\(988\) −7637.71 + 4409.64i −0.245939 + 0.141993i
\(989\) −53417.6 −1.71747
\(990\) 0 0
\(991\) 13735.8 0.440294 0.220147 0.975467i \(-0.429346\pi\)
0.220147 + 0.975467i \(0.429346\pi\)
\(992\) −30865.8 + 17820.4i −0.987894 + 0.570361i
\(993\) −7465.60 + 3589.23i −0.238584 + 0.114704i
\(994\) 6181.84 10707.3i 0.197259 0.341663i
\(995\) 0 0
\(996\) −1860.50 140.650i −0.0591890 0.00447456i
\(997\) −31066.6 + 17936.3i −0.986850 + 0.569758i −0.904331 0.426831i \(-0.859630\pi\)
−0.0825187 + 0.996590i \(0.526296\pi\)
\(998\) 59355.3i 1.88262i
\(999\) −24846.6 5722.43i −0.786899 0.181231i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.k.e.49.19 48
5.2 odd 4 225.4.e.f.76.10 yes 24
5.3 odd 4 225.4.e.e.76.3 24
5.4 even 2 inner 225.4.k.e.49.6 48
9.7 even 3 inner 225.4.k.e.124.6 48
45.7 odd 12 225.4.e.f.151.10 yes 24
45.13 odd 12 2025.4.a.bi.1.10 12
45.22 odd 12 2025.4.a.bf.1.3 12
45.23 even 12 2025.4.a.be.1.3 12
45.32 even 12 2025.4.a.bj.1.10 12
45.34 even 6 inner 225.4.k.e.124.19 48
45.43 odd 12 225.4.e.e.151.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.4.e.e.76.3 24 5.3 odd 4
225.4.e.e.151.3 yes 24 45.43 odd 12
225.4.e.f.76.10 yes 24 5.2 odd 4
225.4.e.f.151.10 yes 24 45.7 odd 12
225.4.k.e.49.6 48 5.4 even 2 inner
225.4.k.e.49.19 48 1.1 even 1 trivial
225.4.k.e.124.6 48 9.7 even 3 inner
225.4.k.e.124.19 48 45.34 even 6 inner
2025.4.a.be.1.3 12 45.23 even 12
2025.4.a.bf.1.3 12 45.22 odd 12
2025.4.a.bi.1.10 12 45.13 odd 12
2025.4.a.bj.1.10 12 45.32 even 12