Newspace parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.2754297513\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 | −2.42567 | − | 4.20138i | 4.79753 | − | 1.99591i | −7.76772 | + | 13.4541i | 0 | −20.0228 | − | 15.3148i | 8.11924 | + | 14.0629i | 36.5569 | 19.0327 | − | 19.1509i | 0 | ||||||
76.2 | −2.16773 | − | 3.75461i | −0.193913 | + | 5.19253i | −5.39807 | + | 9.34974i | 0 | 19.9163 | − | 10.5279i | −6.50075 | − | 11.2596i | 12.1226 | −26.9248 | − | 2.01380i | 0 | ||||||
76.3 | −1.90831 | − | 3.30529i | −2.77901 | − | 4.39057i | −3.28331 | + | 5.68685i | 0 | −9.20891 | + | 17.5640i | −4.99402 | − | 8.64990i | −5.47071 | −11.5542 | + | 24.4029i | 0 | ||||||
76.4 | −0.832171 | − | 1.44136i | −4.88113 | + | 1.78172i | 2.61498 | − | 4.52928i | 0 | 6.63004 | + | 5.55278i | 5.28358 | + | 9.15142i | −22.0192 | 20.6509 | − | 17.3936i | 0 | ||||||
76.5 | −0.669825 | − | 1.16017i | 4.26770 | + | 2.96424i | 3.10267 | − | 5.37398i | 0 | 0.580411 | − | 6.93678i | 11.1645 | + | 19.3375i | −19.0302 | 9.42656 | + | 25.3010i | 0 | ||||||
76.6 | −0.238017 | − | 0.412258i | 3.09012 | − | 4.17746i | 3.88670 | − | 6.73195i | 0 | −2.45769 | − | 0.279619i | −6.34045 | − | 10.9820i | −7.50869 | −7.90234 | − | 25.8177i | 0 | ||||||
76.7 | 0.694136 | + | 1.20228i | 0.900797 | + | 5.11748i | 3.03635 | − | 5.25911i | 0 | −5.52736 | + | 4.63523i | −13.2166 | − | 22.8919i | 19.5367 | −25.3771 | + | 9.21962i | 0 | ||||||
76.8 | 1.07290 | + | 1.85832i | −2.66146 | − | 4.46280i | 1.69777 | − | 2.94063i | 0 | 5.43782 | − | 9.73398i | 11.6282 | + | 20.1406i | 24.4526 | −12.8333 | + | 23.7552i | 0 | ||||||
76.9 | 1.48830 | + | 2.57780i | −5.14295 | + | 0.741698i | −0.430049 | + | 0.744867i | 0 | −9.56618 | − | 12.1536i | −12.4826 | − | 21.6204i | 21.2526 | 25.8998 | − | 7.62902i | 0 | ||||||
76.10 | 1.81989 | + | 3.15215i | 5.18137 | + | 0.391700i | −2.62402 | + | 4.54493i | 0 | 8.19483 | + | 17.0453i | 1.86027 | + | 3.22208i | 10.0166 | 26.6931 | + | 4.05909i | 0 | ||||||
76.11 | 2.39440 | + | 4.14722i | −1.75824 | + | 4.88964i | −7.46632 | + | 12.9320i | 0 | −24.4884 | + | 4.41595i | 15.3349 | + | 26.5609i | −33.1990 | −20.8172 | − | 17.1943i | 0 | ||||||
76.12 | 2.77209 | + | 4.80141i | −0.320819 | − | 5.18624i | −11.3690 | + | 19.6917i | 0 | 24.0119 | − | 15.9171i | −12.8563 | − | 22.2678i | −81.7101 | −26.7942 | + | 3.32769i | 0 | ||||||
151.1 | −2.42567 | + | 4.20138i | 4.79753 | + | 1.99591i | −7.76772 | − | 13.4541i | 0 | −20.0228 | + | 15.3148i | 8.11924 | − | 14.0629i | 36.5569 | 19.0327 | + | 19.1509i | 0 | ||||||
151.2 | −2.16773 | + | 3.75461i | −0.193913 | − | 5.19253i | −5.39807 | − | 9.34974i | 0 | 19.9163 | + | 10.5279i | −6.50075 | + | 11.2596i | 12.1226 | −26.9248 | + | 2.01380i | 0 | ||||||
151.3 | −1.90831 | + | 3.30529i | −2.77901 | + | 4.39057i | −3.28331 | − | 5.68685i | 0 | −9.20891 | − | 17.5640i | −4.99402 | + | 8.64990i | −5.47071 | −11.5542 | − | 24.4029i | 0 | ||||||
151.4 | −0.832171 | + | 1.44136i | −4.88113 | − | 1.78172i | 2.61498 | + | 4.52928i | 0 | 6.63004 | − | 5.55278i | 5.28358 | − | 9.15142i | −22.0192 | 20.6509 | + | 17.3936i | 0 | ||||||
151.5 | −0.669825 | + | 1.16017i | 4.26770 | − | 2.96424i | 3.10267 | + | 5.37398i | 0 | 0.580411 | + | 6.93678i | 11.1645 | − | 19.3375i | −19.0302 | 9.42656 | − | 25.3010i | 0 | ||||||
151.6 | −0.238017 | + | 0.412258i | 3.09012 | + | 4.17746i | 3.88670 | + | 6.73195i | 0 | −2.45769 | + | 0.279619i | −6.34045 | + | 10.9820i | −7.50869 | −7.90234 | + | 25.8177i | 0 | ||||||
151.7 | 0.694136 | − | 1.20228i | 0.900797 | − | 5.11748i | 3.03635 | + | 5.25911i | 0 | −5.52736 | − | 4.63523i | −13.2166 | + | 22.8919i | 19.5367 | −25.3771 | − | 9.21962i | 0 | ||||||
151.8 | 1.07290 | − | 1.85832i | −2.66146 | + | 4.46280i | 1.69777 | + | 2.94063i | 0 | 5.43782 | + | 9.73398i | 11.6282 | − | 20.1406i | 24.4526 | −12.8333 | − | 23.7552i | 0 | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.4.e.f | yes | 24 |
5.b | even | 2 | 1 | 225.4.e.e | ✓ | 24 | |
5.c | odd | 4 | 2 | 225.4.k.e | 48 | ||
9.c | even | 3 | 1 | inner | 225.4.e.f | yes | 24 |
9.c | even | 3 | 1 | 2025.4.a.bf | 12 | ||
9.d | odd | 6 | 1 | 2025.4.a.bj | 12 | ||
45.h | odd | 6 | 1 | 2025.4.a.be | 12 | ||
45.j | even | 6 | 1 | 225.4.e.e | ✓ | 24 | |
45.j | even | 6 | 1 | 2025.4.a.bi | 12 | ||
45.k | odd | 12 | 2 | 225.4.k.e | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
225.4.e.e | ✓ | 24 | 5.b | even | 2 | 1 | |
225.4.e.e | ✓ | 24 | 45.j | even | 6 | 1 | |
225.4.e.f | yes | 24 | 1.a | even | 1 | 1 | trivial |
225.4.e.f | yes | 24 | 9.c | even | 3 | 1 | inner |
225.4.k.e | 48 | 5.c | odd | 4 | 2 | ||
225.4.k.e | 48 | 45.k | odd | 12 | 2 | ||
2025.4.a.be | 12 | 45.h | odd | 6 | 1 | ||
2025.4.a.bf | 12 | 9.c | even | 3 | 1 | ||
2025.4.a.bi | 12 | 45.j | even | 6 | 1 | ||
2025.4.a.bj | 12 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} - 4 T_{2}^{23} + 80 T_{2}^{22} - 226 T_{2}^{21} + 3608 T_{2}^{20} - 8938 T_{2}^{19} + 102821 T_{2}^{18} - 206125 T_{2}^{17} + 2044613 T_{2}^{16} - 3598036 T_{2}^{15} + 28276085 T_{2}^{14} + \cdots + 5330168064 \)
acting on \(S_{4}^{\mathrm{new}}(225, [\chi])\).