Newspace parameters
| Level: | \( N \) | \(=\) | \( 221 = 13 \cdot 17 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 221.m (of order \(6\), degree \(2\), minimal) | 
Newform invariants
| Self dual: | no | 
| Analytic conductor: | \(1.76469388467\) | 
| Analytic rank: | \(0\) | 
| Dimension: | \(22\) | 
| Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) | 
| Twist minimal: | yes | 
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ | 
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 69.1 | −2.39781 | − | 1.38438i | −0.0844000 | + | 0.146185i | 2.83300 | + | 4.90689i | − | 2.08714i | 0.404751 | − | 0.233683i | −2.66656 | + | 1.53954i | − | 10.1502i | 1.48575 | + | 2.57340i | −2.88938 | + | 5.00456i | ||
| 69.2 | −2.10061 | − | 1.21279i | −1.10523 | + | 1.91432i | 1.94171 | + | 3.36314i | 3.27693i | 4.64332 | − | 2.68082i | 0.415698 | − | 0.240003i | − | 4.56836i | −0.943072 | − | 1.63345i | 3.97422 | − | 6.88355i | |||
| 69.3 | −1.60408 | − | 0.926118i | 0.634338 | − | 1.09871i | 0.715389 | + | 1.23909i | − | 4.17850i | −2.03506 | + | 1.17494i | 3.61684 | − | 2.08819i | 1.05433i | 0.695230 | + | 1.20417i | −3.86978 | + | 6.70266i | |||
| 69.4 | −0.990812 | − | 0.572046i | 0.440946 | − | 0.763741i | −0.345527 | − | 0.598471i | 4.00280i | −0.873790 | + | 0.504483i | 2.20607 | − | 1.27368i | 3.07881i | 1.11113 | + | 1.92454i | 2.28979 | − | 3.96603i | ||||
| 69.5 | −0.544554 | − | 0.314398i | 1.63897 | − | 2.83878i | −0.802307 | − | 1.38964i | − | 0.315403i | −1.78502 | + | 1.03058i | −0.424278 | + | 0.244957i | 2.26657i | −3.87245 | − | 6.70728i | −0.0991621 | + | 0.171754i | |||
| 69.6 | 0.445025 | + | 0.256935i | −1.43985 | + | 2.49389i | −0.867969 | − | 1.50337i | − | 3.95509i | −1.28154 | + | 0.739896i | −2.83913 | + | 1.63917i | − | 1.91979i | −2.64633 | − | 4.58358i | 1.01620 | − | 1.76011i | ||
| 69.7 | 0.486078 | + | 0.280637i | −0.531774 | + | 0.921059i | −0.842486 | − | 1.45923i | 2.54634i | −0.516967 | + | 0.298471i | −4.09319 | + | 2.36320i | − | 2.06828i | 0.934433 | + | 1.61849i | −0.714598 | + | 1.23772i | |||
| 69.8 | 0.720682 | + | 0.416086i | −0.251133 | + | 0.434974i | −0.653745 | − | 1.13232i | − | 1.03543i | −0.361974 | + | 0.208986i | 2.58322 | − | 1.49142i | − | 2.75240i | 1.37386 | + | 2.37960i | 0.430827 | − | 0.746214i | ||
| 69.9 | 1.79032 | + | 1.03364i | −1.71618 | + | 2.97252i | 1.13683 | + | 1.96904i | 0.855003i | −6.14503 | + | 3.54783i | 2.31756 | − | 1.33804i | 0.565718i | −4.39057 | − | 7.60469i | −0.883766 | + | 1.53073i | ||||
| 69.10 | 1.98509 | + | 1.14609i | 1.31039 | − | 2.26966i | 1.62706 | + | 2.81816i | 1.31703i | 5.20249 | − | 3.00366i | −3.37658 | + | 1.94947i | 2.87469i | −1.93424 | − | 3.35020i | −1.50944 | + | 2.61442i | ||||
| 69.11 | 2.21067 | + | 1.27633i | −0.396074 | + | 0.686021i | 2.25805 | + | 3.91106i | − | 2.15860i | −1.75118 | + | 1.01105i | 0.760332 | − | 0.438978i | 6.42278i | 1.18625 | + | 2.05465i | 2.75509 | − | 4.77196i | |||
| 205.1 | −2.39781 | + | 1.38438i | −0.0844000 | − | 0.146185i | 2.83300 | − | 4.90689i | 2.08714i | 0.404751 | + | 0.233683i | −2.66656 | − | 1.53954i | 10.1502i | 1.48575 | − | 2.57340i | −2.88938 | − | 5.00456i | ||||
| 205.2 | −2.10061 | + | 1.21279i | −1.10523 | − | 1.91432i | 1.94171 | − | 3.36314i | − | 3.27693i | 4.64332 | + | 2.68082i | 0.415698 | + | 0.240003i | 4.56836i | −0.943072 | + | 1.63345i | 3.97422 | + | 6.88355i | |||
| 205.3 | −1.60408 | + | 0.926118i | 0.634338 | + | 1.09871i | 0.715389 | − | 1.23909i | 4.17850i | −2.03506 | − | 1.17494i | 3.61684 | + | 2.08819i | − | 1.05433i | 0.695230 | − | 1.20417i | −3.86978 | − | 6.70266i | |||
| 205.4 | −0.990812 | + | 0.572046i | 0.440946 | + | 0.763741i | −0.345527 | + | 0.598471i | − | 4.00280i | −0.873790 | − | 0.504483i | 2.20607 | + | 1.27368i | − | 3.07881i | 1.11113 | − | 1.92454i | 2.28979 | + | 3.96603i | ||
| 205.5 | −0.544554 | + | 0.314398i | 1.63897 | + | 2.83878i | −0.802307 | + | 1.38964i | 0.315403i | −1.78502 | − | 1.03058i | −0.424278 | − | 0.244957i | − | 2.26657i | −3.87245 | + | 6.70728i | −0.0991621 | − | 0.171754i | |||
| 205.6 | 0.445025 | − | 0.256935i | −1.43985 | − | 2.49389i | −0.867969 | + | 1.50337i | 3.95509i | −1.28154 | − | 0.739896i | −2.83913 | − | 1.63917i | 1.91979i | −2.64633 | + | 4.58358i | 1.01620 | + | 1.76011i | ||||
| 205.7 | 0.486078 | − | 0.280637i | −0.531774 | − | 0.921059i | −0.842486 | + | 1.45923i | − | 2.54634i | −0.516967 | − | 0.298471i | −4.09319 | − | 2.36320i | 2.06828i | 0.934433 | − | 1.61849i | −0.714598 | − | 1.23772i | |||
| 205.8 | 0.720682 | − | 0.416086i | −0.251133 | − | 0.434974i | −0.653745 | + | 1.13232i | 1.03543i | −0.361974 | − | 0.208986i | 2.58322 | + | 1.49142i | 2.75240i | 1.37386 | − | 2.37960i | 0.430827 | + | 0.746214i | ||||
| 205.9 | 1.79032 | − | 1.03364i | −1.71618 | − | 2.97252i | 1.13683 | − | 1.96904i | − | 0.855003i | −6.14503 | − | 3.54783i | 2.31756 | + | 1.33804i | − | 0.565718i | −4.39057 | + | 7.60469i | −0.883766 | − | 1.53073i | ||
| See all 22 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type | 
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial | 
| 13.e | even | 6 | 1 | inner | 
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim | 
| 1.a | even | 1 | 1 | trivial | 221.2.m.c | ✓ | 22 | 
| 13.e | even | 6 | 1 | inner | 221.2.m.c | ✓ | 22 | 
| 13.f | odd | 12 | 2 | 2873.2.a.x | 22 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type | 
| 221.2.m.c | ✓ | 22 | 1.a | even | 1 | 1 | trivial | 
| 221.2.m.c | ✓ | 22 | 13.e | even | 6 | 1 | inner | 
| 2873.2.a.x | 22 | 13.f | odd | 12 | 2 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator 
    \( T_{2}^{22} - 18 T_{2}^{20} + 211 T_{2}^{18} - 21 T_{2}^{17} - 1455 T_{2}^{16} + 225 T_{2}^{15} + \cdots  + 675 \)
    
    acting on \(S_{2}^{\mathrm{new}}(221, [\chi])\).
    
        
    
    
        
    
            
