Properties

Label 221.2.m
Level $221$
Weight $2$
Character orbit 221.m
Rep. character $\chi_{221}(69,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $3$
Sturm bound $42$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 221 = 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 221.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(42\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(221, [\chi])\).

Total New Old
Modular forms 48 36 12
Cusp forms 40 36 4
Eisenstein series 8 0 8

Trace form

\( 36 q + 2 q^{3} + 16 q^{4} - 18 q^{6} - 6 q^{7} - 16 q^{9} + 4 q^{10} - 12 q^{11} + 4 q^{12} + 6 q^{13} - 8 q^{14} + 6 q^{15} - 20 q^{16} - 4 q^{17} + 6 q^{19} + 6 q^{22} - 12 q^{23} + 12 q^{24} - 40 q^{25}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(221, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
221.2.m.a 221.m 13.e $2$ $1.765$ \(\Q(\sqrt{-3}) \) None 221.2.m.a \(3\) \(1\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
221.2.m.b 221.m 13.e $12$ $1.765$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 221.2.m.b \(-3\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{2}+(1+\beta _{1}+\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\)
221.2.m.c 221.m 13.e $22$ $1.765$ None 221.2.m.c \(0\) \(-3\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(221, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(221, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)