Defining parameters
| Level: | \( N \) | \(=\) | \( 221 = 13 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 221.m (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(42\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(221, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 36 | 12 |
| Cusp forms | 40 | 36 | 4 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(221, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 221.2.m.a | $2$ | $1.765$ | \(\Q(\sqrt{-3}) \) | None | \(3\) | \(1\) | \(0\) | \(-3\) | \(q+(1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
| 221.2.m.b | $12$ | $1.765$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-3\) | \(4\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(1+\beta _{1}+\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\) |
| 221.2.m.c | $22$ | $1.765$ | None | \(0\) | \(-3\) | \(0\) | \(-3\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(221, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(221, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)