| L(s)  = 1 | + (1.98 + 1.14i)2-s   + (1.31 − 2.26i)3-s   + (1.62 + 2.81i)4-s   + 1.31i·5-s   + (5.20 − 3.00i)6-s   + (−3.37 + 1.94i)7-s   + 2.87i·8-s   + (−1.93 − 3.35i)9-s   + (−1.50 + 2.61i)10-s   + (−0.635 − 0.366i)11-s   + 8.52·12-s   + (−1.24 − 3.38i)13-s   − 8.93·14-s   + (2.98 + 1.72i)15-s   + (−0.0405 + 0.0702i)16-s   + (−0.5 − 0.866i)17-s  + ⋯ | 
| L(s)  = 1 | + (1.40 + 0.810i)2-s   + (0.756 − 1.31i)3-s   + (0.813 + 1.40i)4-s   + 0.588i·5-s   + (2.12 − 1.22i)6-s   + (−1.27 + 0.736i)7-s   + 1.01i·8-s   + (−0.644 − 1.11i)9-s   + (−0.477 + 0.826i)10-s   + (−0.191 − 0.110i)11-s   + 2.46·12-s   + (−0.346 − 0.938i)13-s   − 2.38·14-s   + (0.771 + 0.445i)15-s   + (−0.0101 + 0.0175i)16-s   + (−0.121 − 0.210i)17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.358i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.933 - 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(2.61177 + 0.484438i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.61177 + 0.484438i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 13 | \( 1 + (1.24 + 3.38i)T \) | 
|  | 17 | \( 1 + (0.5 + 0.866i)T \) | 
| good | 2 | \( 1 + (-1.98 - 1.14i)T + (1 + 1.73i)T^{2} \) | 
|  | 3 | \( 1 + (-1.31 + 2.26i)T + (-1.5 - 2.59i)T^{2} \) | 
|  | 5 | \( 1 - 1.31iT - 5T^{2} \) | 
|  | 7 | \( 1 + (3.37 - 1.94i)T + (3.5 - 6.06i)T^{2} \) | 
|  | 11 | \( 1 + (0.635 + 0.366i)T + (5.5 + 9.52i)T^{2} \) | 
|  | 19 | \( 1 + (2.34 - 1.35i)T + (9.5 - 16.4i)T^{2} \) | 
|  | 23 | \( 1 + (-1.67 + 2.90i)T + (-11.5 - 19.9i)T^{2} \) | 
|  | 29 | \( 1 + (2.17 - 3.76i)T + (-14.5 - 25.1i)T^{2} \) | 
|  | 31 | \( 1 - 9.46iT - 31T^{2} \) | 
|  | 37 | \( 1 + (4.29 + 2.48i)T + (18.5 + 32.0i)T^{2} \) | 
|  | 41 | \( 1 + (4.15 + 2.39i)T + (20.5 + 35.5i)T^{2} \) | 
|  | 43 | \( 1 + (-4.07 - 7.05i)T + (-21.5 + 37.2i)T^{2} \) | 
|  | 47 | \( 1 - 9.05iT - 47T^{2} \) | 
|  | 53 | \( 1 - 5.23T + 53T^{2} \) | 
|  | 59 | \( 1 + (-9.40 + 5.42i)T + (29.5 - 51.0i)T^{2} \) | 
|  | 61 | \( 1 + (5.39 + 9.35i)T + (-30.5 + 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (-6.40 - 3.70i)T + (33.5 + 58.0i)T^{2} \) | 
|  | 71 | \( 1 + (4.13 - 2.39i)T + (35.5 - 61.4i)T^{2} \) | 
|  | 73 | \( 1 + 15.6iT - 73T^{2} \) | 
|  | 79 | \( 1 - 8.81T + 79T^{2} \) | 
|  | 83 | \( 1 + 4.05iT - 83T^{2} \) | 
|  | 89 | \( 1 + (11.0 + 6.37i)T + (44.5 + 77.0i)T^{2} \) | 
|  | 97 | \( 1 + (-0.831 + 0.480i)T + (48.5 - 84.0i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.67875295009812788223806371687, −12.25540465551958554769525876384, −10.53773293427570735743341912351, −9.016996288384257758332432681015, −7.897281045836579629295361764945, −6.86491857486186403716774702527, −6.45507864609765612344333561096, −5.27079513137578832937321512485, −3.29143317392540206512563403337, −2.71029763940332157946766095877, 
2.53989731424406611840691262310, 3.80164139146361371616322878595, 4.24147621072340207151984146266, 5.39940629131762269518288061872, 6.85241697405602191721795988725, 8.677847492920502827270018248416, 9.668816479819998524954049836876, 10.27916750963023639477297436971, 11.31261649095583972189622995720, 12.41634615468362662744811156285
