| L(s)  = 1 | + (−0.990 − 0.572i)2-s   + (0.440 − 0.763i)3-s   + (−0.345 − 0.598i)4-s   + 4.00i·5-s   + (−0.873 + 0.504i)6-s   + (2.20 − 1.27i)7-s   + 3.07i·8-s   + (1.11 + 1.92i)9-s   + (2.28 − 3.96i)10-s   + (2.00 + 1.15i)11-s   − 0.609·12-s   + (0.556 − 3.56i)13-s   − 2.91·14-s   + (3.05 + 1.76i)15-s   + (1.07 − 1.85i)16-s   + (−0.5 − 0.866i)17-s  + ⋯ | 
| L(s)  = 1 | + (−0.700 − 0.404i)2-s   + (0.254 − 0.440i)3-s   + (−0.172 − 0.299i)4-s   + 1.79i·5-s   + (−0.356 + 0.205i)6-s   + (0.833 − 0.481i)7-s   + 1.08i·8-s   + (0.370 + 0.641i)9-s   + (0.724 − 1.25i)10-s   + (0.604 + 0.349i)11-s   − 0.175·12-s   + (0.154 − 0.988i)13-s   − 0.778·14-s   + (0.789 + 0.455i)15-s   + (0.267 − 0.463i)16-s   + (−0.121 − 0.210i)17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.141i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.972450 - 0.0692143i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.972450 - 0.0692143i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 13 | \( 1 + (-0.556 + 3.56i)T \) | 
|  | 17 | \( 1 + (0.5 + 0.866i)T \) | 
| good | 2 | \( 1 + (0.990 + 0.572i)T + (1 + 1.73i)T^{2} \) | 
|  | 3 | \( 1 + (-0.440 + 0.763i)T + (-1.5 - 2.59i)T^{2} \) | 
|  | 5 | \( 1 - 4.00iT - 5T^{2} \) | 
|  | 7 | \( 1 + (-2.20 + 1.27i)T + (3.5 - 6.06i)T^{2} \) | 
|  | 11 | \( 1 + (-2.00 - 1.15i)T + (5.5 + 9.52i)T^{2} \) | 
|  | 19 | \( 1 + (-1.88 + 1.08i)T + (9.5 - 16.4i)T^{2} \) | 
|  | 23 | \( 1 + (0.652 - 1.12i)T + (-11.5 - 19.9i)T^{2} \) | 
|  | 29 | \( 1 + (-1.93 + 3.35i)T + (-14.5 - 25.1i)T^{2} \) | 
|  | 31 | \( 1 - 7.83iT - 31T^{2} \) | 
|  | 37 | \( 1 + (-6.21 - 3.58i)T + (18.5 + 32.0i)T^{2} \) | 
|  | 41 | \( 1 + (4.43 + 2.56i)T + (20.5 + 35.5i)T^{2} \) | 
|  | 43 | \( 1 + (-1.95 - 3.37i)T + (-21.5 + 37.2i)T^{2} \) | 
|  | 47 | \( 1 + 5.28iT - 47T^{2} \) | 
|  | 53 | \( 1 + 12.7T + 53T^{2} \) | 
|  | 59 | \( 1 + (0.723 - 0.417i)T + (29.5 - 51.0i)T^{2} \) | 
|  | 61 | \( 1 + (4.54 + 7.87i)T + (-30.5 + 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (11.5 + 6.64i)T + (33.5 + 58.0i)T^{2} \) | 
|  | 71 | \( 1 + (0.916 - 0.529i)T + (35.5 - 61.4i)T^{2} \) | 
|  | 73 | \( 1 + 8.95iT - 73T^{2} \) | 
|  | 79 | \( 1 - 7.80T + 79T^{2} \) | 
|  | 83 | \( 1 + 2.32iT - 83T^{2} \) | 
|  | 89 | \( 1 + (-1.79 - 1.03i)T + (44.5 + 77.0i)T^{2} \) | 
|  | 97 | \( 1 + (-5.35 + 3.09i)T + (48.5 - 84.0i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.87004153887507056044569319424, −10.88466061370838550745274333086, −10.53351264110984036506314417336, −9.596322635630342800792487510717, −8.093016478718893807536453613982, −7.49260059389312416007772495095, −6.37886937946341327100722434327, −4.82298070684918344922367473929, −2.99405074123929645311766137483, −1.66744496023607139272122436645, 
1.26367336396354373132790590537, 3.96539222455499480090683310845, 4.67610797562295516563809515542, 6.17869705341788279148135304739, 7.71895842170946559710697742229, 8.657114570432324477145839557484, 9.071599089795789459477846855426, 9.753693884035813502828383058941, 11.55053985557251745357258200531, 12.27548582770311110904293525449
