| L(s) = 1 | + (−0.544 − 0.314i)2-s + (1.63 − 2.83i)3-s + (−0.802 − 1.38i)4-s − 0.315i·5-s + (−1.78 + 1.03i)6-s + (−0.424 + 0.244i)7-s + 2.26i·8-s + (−3.87 − 6.70i)9-s + (−0.0991 + 0.171i)10-s + (3.92 + 2.26i)11-s − 5.25·12-s + (2.55 + 2.54i)13-s + 0.308·14-s + (−0.895 − 0.516i)15-s + (−0.892 + 1.54i)16-s + (−0.5 − 0.866i)17-s + ⋯ |
| L(s) = 1 | + (−0.385 − 0.222i)2-s + (0.946 − 1.63i)3-s + (−0.401 − 0.694i)4-s − 0.141i·5-s + (−0.728 + 0.420i)6-s + (−0.160 + 0.0925i)7-s + 0.801i·8-s + (−1.29 − 2.23i)9-s + (−0.0313 + 0.0543i)10-s + (1.18 + 0.682i)11-s − 1.51·12-s + (0.709 + 0.704i)13-s + 0.0823·14-s + (−0.231 − 0.133i)15-s + (−0.223 + 0.386i)16-s + (−0.121 − 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.471394 - 1.11306i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.471394 - 1.11306i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 + (-2.55 - 2.54i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (0.544 + 0.314i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.63 + 2.83i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 0.315iT - 5T^{2} \) |
| 7 | \( 1 + (0.424 - 0.244i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.92 - 2.26i)T + (5.5 + 9.52i)T^{2} \) |
| 19 | \( 1 + (6.11 - 3.53i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.82 + 4.89i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.00 + 1.74i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.65iT - 31T^{2} \) |
| 37 | \( 1 + (-2.52 - 1.45i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (5.36 + 3.09i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.23 - 3.86i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 0.456iT - 47T^{2} \) |
| 53 | \( 1 + 4.92T + 53T^{2} \) |
| 59 | \( 1 + (-0.127 + 0.0738i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.76 - 11.7i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.106 + 0.0611i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.2 + 5.89i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.45iT - 73T^{2} \) |
| 79 | \( 1 - 0.666T + 79T^{2} \) |
| 83 | \( 1 - 5.05iT - 83T^{2} \) |
| 89 | \( 1 + (-8.65 - 4.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9.50 - 5.49i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13483180286354402349747089327, −11.06789824461748571914182555224, −9.576602342355176307401710808475, −8.854239766135424418934841194547, −8.201828292158389458356664886675, −6.74802171344900327033421934925, −6.22604687807552024785535830105, −4.19187906323653294707993206629, −2.29700595082472380911235865310, −1.21490991255203133836497477634,
3.16802241155600352079212287893, 3.78688682653134856284831483078, 4.94469013720544920105004346791, 6.69335179362846966938176687200, 8.261130917461674488492259611079, 8.763006669948113836111207265303, 9.416987274185372405948626169440, 10.52584503041615587591005627361, 11.26489075659676330270119796825, 12.87681843185109610641412191683