Properties

Label 2106.2.b.c.649.4
Level $2106$
Weight $2$
Character 2106.649
Analytic conductor $16.816$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2106,2,Mod(649,2106)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2106, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2106.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,0,0,0,0,0,0,0,0,-2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 34x^{12} + 435x^{10} + 2617x^{8} + 7651x^{6} + 10260x^{4} + 5589x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(1.04629i\) of defining polynomial
Character \(\chi\) \(=\) 2106.649
Dual form 2106.2.b.c.649.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -0.484256i q^{5} -5.05438i q^{7} +1.00000i q^{8} -0.484256 q^{10} +3.21153i q^{11} +(3.42035 + 1.14069i) q^{13} -5.05438 q^{14} +1.00000 q^{16} +4.20245 q^{17} +3.21153i q^{19} +0.484256i q^{20} +3.21153 q^{22} +6.27217 q^{23} +4.76550 q^{25} +(1.14069 - 3.42035i) q^{26} +5.05438i q^{28} +4.59254 q^{29} -6.48369i q^{31} -1.00000i q^{32} -4.20245i q^{34} -2.44761 q^{35} -2.08429i q^{37} +3.21153 q^{38} +0.484256 q^{40} -11.0540i q^{41} -9.46735 q^{43} -3.21153i q^{44} -6.27217i q^{46} +5.28124i q^{47} -18.5467 q^{49} -4.76550i q^{50} +(-3.42035 - 1.14069i) q^{52} +6.41990 q^{53} +1.55520 q^{55} +5.05438 q^{56} -4.59254i q^{58} +3.62311i q^{59} -1.00173 q^{61} -6.48369 q^{62} -1.00000 q^{64} +(0.552388 - 1.65633i) q^{65} +1.08194i q^{67} -4.20245 q^{68} +2.44761i q^{70} +4.63041i q^{71} -0.325525i q^{73} -2.08429 q^{74} -3.21153i q^{76} +16.2323 q^{77} -7.83637 q^{79} -0.484256i q^{80} -11.0540 q^{82} +5.86613i q^{83} -2.03506i q^{85} +9.46735i q^{86} -3.21153 q^{88} -8.42912i q^{89} +(5.76550 - 17.2878i) q^{91} -6.27217 q^{92} +5.28124 q^{94} +1.55520 q^{95} -13.0505i q^{97} +18.5467i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 2 q^{13} - 8 q^{14} + 14 q^{16} + 8 q^{17} + 8 q^{23} - 14 q^{25} + 4 q^{26} + 16 q^{29} - 34 q^{35} + 4 q^{43} - 10 q^{49} + 2 q^{52} - 60 q^{53} + 8 q^{56} - 28 q^{61} + 34 q^{62} - 14 q^{64}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.484256i 0.216566i −0.994120 0.108283i \(-0.965465\pi\)
0.994120 0.108283i \(-0.0345352\pi\)
\(6\) 0 0
\(7\) 5.05438i 1.91038i −0.296001 0.955188i \(-0.595653\pi\)
0.296001 0.955188i \(-0.404347\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.484256 −0.153135
\(11\) 3.21153i 0.968312i 0.874982 + 0.484156i \(0.160873\pi\)
−0.874982 + 0.484156i \(0.839127\pi\)
\(12\) 0 0
\(13\) 3.42035 + 1.14069i 0.948635 + 0.316371i
\(14\) −5.05438 −1.35084
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.20245 1.01924 0.509622 0.860398i \(-0.329785\pi\)
0.509622 + 0.860398i \(0.329785\pi\)
\(18\) 0 0
\(19\) 3.21153i 0.736775i 0.929672 + 0.368388i \(0.120090\pi\)
−0.929672 + 0.368388i \(0.879910\pi\)
\(20\) 0.484256i 0.108283i
\(21\) 0 0
\(22\) 3.21153 0.684700
\(23\) 6.27217 1.30784 0.653919 0.756565i \(-0.273124\pi\)
0.653919 + 0.756565i \(0.273124\pi\)
\(24\) 0 0
\(25\) 4.76550 0.953099
\(26\) 1.14069 3.42035i 0.223708 0.670787i
\(27\) 0 0
\(28\) 5.05438i 0.955188i
\(29\) 4.59254 0.852812 0.426406 0.904532i \(-0.359779\pi\)
0.426406 + 0.904532i \(0.359779\pi\)
\(30\) 0 0
\(31\) 6.48369i 1.16451i −0.813008 0.582253i \(-0.802171\pi\)
0.813008 0.582253i \(-0.197829\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.20245i 0.720715i
\(35\) −2.44761 −0.413722
\(36\) 0 0
\(37\) 2.08429i 0.342654i −0.985214 0.171327i \(-0.945194\pi\)
0.985214 0.171327i \(-0.0548055\pi\)
\(38\) 3.21153 0.520979
\(39\) 0 0
\(40\) 0.484256 0.0765676
\(41\) 11.0540i 1.72634i −0.504914 0.863169i \(-0.668476\pi\)
0.504914 0.863169i \(-0.331524\pi\)
\(42\) 0 0
\(43\) −9.46735 −1.44376 −0.721879 0.692020i \(-0.756721\pi\)
−0.721879 + 0.692020i \(0.756721\pi\)
\(44\) 3.21153i 0.484156i
\(45\) 0 0
\(46\) 6.27217i 0.924780i
\(47\) 5.28124i 0.770348i 0.922844 + 0.385174i \(0.125859\pi\)
−0.922844 + 0.385174i \(0.874141\pi\)
\(48\) 0 0
\(49\) −18.5467 −2.64953
\(50\) 4.76550i 0.673943i
\(51\) 0 0
\(52\) −3.42035 1.14069i −0.474318 0.158186i
\(53\) 6.41990 0.881841 0.440921 0.897546i \(-0.354652\pi\)
0.440921 + 0.897546i \(0.354652\pi\)
\(54\) 0 0
\(55\) 1.55520 0.209703
\(56\) 5.05438 0.675420
\(57\) 0 0
\(58\) 4.59254i 0.603029i
\(59\) 3.62311i 0.471689i 0.971791 + 0.235844i \(0.0757856\pi\)
−0.971791 + 0.235844i \(0.924214\pi\)
\(60\) 0 0
\(61\) −1.00173 −0.128258 −0.0641290 0.997942i \(-0.520427\pi\)
−0.0641290 + 0.997942i \(0.520427\pi\)
\(62\) −6.48369 −0.823430
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.552388 1.65633i 0.0685153 0.205442i
\(66\) 0 0
\(67\) 1.08194i 0.132180i 0.997814 + 0.0660900i \(0.0210524\pi\)
−0.997814 + 0.0660900i \(0.978948\pi\)
\(68\) −4.20245 −0.509622
\(69\) 0 0
\(70\) 2.44761i 0.292546i
\(71\) 4.63041i 0.549529i 0.961512 + 0.274764i \(0.0885999\pi\)
−0.961512 + 0.274764i \(0.911400\pi\)
\(72\) 0 0
\(73\) 0.325525i 0.0380998i −0.999819 0.0190499i \(-0.993936\pi\)
0.999819 0.0190499i \(-0.00606414\pi\)
\(74\) −2.08429 −0.242293
\(75\) 0 0
\(76\) 3.21153i 0.368388i
\(77\) 16.2323 1.84984
\(78\) 0 0
\(79\) −7.83637 −0.881660 −0.440830 0.897591i \(-0.645316\pi\)
−0.440830 + 0.897591i \(0.645316\pi\)
\(80\) 0.484256i 0.0541415i
\(81\) 0 0
\(82\) −11.0540 −1.22071
\(83\) 5.86613i 0.643891i 0.946758 + 0.321946i \(0.104337\pi\)
−0.946758 + 0.321946i \(0.895663\pi\)
\(84\) 0 0
\(85\) 2.03506i 0.220734i
\(86\) 9.46735i 1.02089i
\(87\) 0 0
\(88\) −3.21153 −0.342350
\(89\) 8.42912i 0.893485i −0.894662 0.446743i \(-0.852584\pi\)
0.894662 0.446743i \(-0.147416\pi\)
\(90\) 0 0
\(91\) 5.76550 17.2878i 0.604388 1.81225i
\(92\) −6.27217 −0.653919
\(93\) 0 0
\(94\) 5.28124 0.544718
\(95\) 1.55520 0.159560
\(96\) 0 0
\(97\) 13.0505i 1.32508i −0.749027 0.662539i \(-0.769479\pi\)
0.749027 0.662539i \(-0.230521\pi\)
\(98\) 18.5467i 1.87350i
\(99\) 0 0
\(100\) −4.76550 −0.476550
\(101\) −6.84702 −0.681304 −0.340652 0.940189i \(-0.610648\pi\)
−0.340652 + 0.940189i \(0.610648\pi\)
\(102\) 0 0
\(103\) 3.55520 0.350304 0.175152 0.984541i \(-0.443958\pi\)
0.175152 + 0.984541i \(0.443958\pi\)
\(104\) −1.14069 + 3.42035i −0.111854 + 0.335393i
\(105\) 0 0
\(106\) 6.41990i 0.623556i
\(107\) 1.41392 0.136689 0.0683445 0.997662i \(-0.478228\pi\)
0.0683445 + 0.997662i \(0.478228\pi\)
\(108\) 0 0
\(109\) 4.97525i 0.476543i −0.971199 0.238271i \(-0.923419\pi\)
0.971199 0.238271i \(-0.0765808\pi\)
\(110\) 1.55520i 0.148283i
\(111\) 0 0
\(112\) 5.05438i 0.477594i
\(113\) −13.0883 −1.23124 −0.615622 0.788041i \(-0.711095\pi\)
−0.615622 + 0.788041i \(0.711095\pi\)
\(114\) 0 0
\(115\) 3.03733i 0.283233i
\(116\) −4.59254 −0.426406
\(117\) 0 0
\(118\) 3.62311 0.333534
\(119\) 21.2408i 1.94714i
\(120\) 0 0
\(121\) 0.686087 0.0623716
\(122\) 1.00173i 0.0906921i
\(123\) 0 0
\(124\) 6.48369i 0.582253i
\(125\) 4.72900i 0.422975i
\(126\) 0 0
\(127\) −4.56300 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −1.65633 0.552388i −0.145269 0.0484476i
\(131\) 2.46946 0.215758 0.107879 0.994164i \(-0.465594\pi\)
0.107879 + 0.994164i \(0.465594\pi\)
\(132\) 0 0
\(133\) 16.2323 1.40752
\(134\) 1.08194 0.0934654
\(135\) 0 0
\(136\) 4.20245i 0.360357i
\(137\) 19.6104i 1.67543i −0.546110 0.837714i \(-0.683892\pi\)
0.546110 0.837714i \(-0.316108\pi\)
\(138\) 0 0
\(139\) −0.387396 −0.0328585 −0.0164293 0.999865i \(-0.505230\pi\)
−0.0164293 + 0.999865i \(0.505230\pi\)
\(140\) 2.44761 0.206861
\(141\) 0 0
\(142\) 4.63041 0.388576
\(143\) −3.66337 + 10.9846i −0.306346 + 0.918575i
\(144\) 0 0
\(145\) 2.22396i 0.184690i
\(146\) −0.325525 −0.0269406
\(147\) 0 0
\(148\) 2.08429i 0.171327i
\(149\) 9.45874i 0.774890i 0.921893 + 0.387445i \(0.126642\pi\)
−0.921893 + 0.387445i \(0.873358\pi\)
\(150\) 0 0
\(151\) 1.33164i 0.108367i −0.998531 0.0541836i \(-0.982744\pi\)
0.998531 0.0541836i \(-0.0172556\pi\)
\(152\) −3.21153 −0.260489
\(153\) 0 0
\(154\) 16.2323i 1.30803i
\(155\) −3.13977 −0.252192
\(156\) 0 0
\(157\) −5.84243 −0.466277 −0.233139 0.972444i \(-0.574900\pi\)
−0.233139 + 0.972444i \(0.574900\pi\)
\(158\) 7.83637i 0.623428i
\(159\) 0 0
\(160\) −0.484256 −0.0382838
\(161\) 31.7019i 2.49846i
\(162\) 0 0
\(163\) 15.1340i 1.18538i −0.805430 0.592691i \(-0.798065\pi\)
0.805430 0.592691i \(-0.201935\pi\)
\(164\) 11.0540i 0.863169i
\(165\) 0 0
\(166\) 5.86613 0.455300
\(167\) 12.0268i 0.930663i 0.885137 + 0.465331i \(0.154065\pi\)
−0.885137 + 0.465331i \(0.845935\pi\)
\(168\) 0 0
\(169\) 10.3976 + 7.80315i 0.799818 + 0.600242i
\(170\) −2.03506 −0.156082
\(171\) 0 0
\(172\) 9.46735 0.721879
\(173\) 8.85863 0.673509 0.336755 0.941592i \(-0.390671\pi\)
0.336755 + 0.941592i \(0.390671\pi\)
\(174\) 0 0
\(175\) 24.0866i 1.82078i
\(176\) 3.21153i 0.242078i
\(177\) 0 0
\(178\) −8.42912 −0.631790
\(179\) 10.3704 0.775121 0.387561 0.921844i \(-0.373318\pi\)
0.387561 + 0.921844i \(0.373318\pi\)
\(180\) 0 0
\(181\) 10.8407 0.805783 0.402892 0.915248i \(-0.368005\pi\)
0.402892 + 0.915248i \(0.368005\pi\)
\(182\) −17.2878 5.76550i −1.28145 0.427367i
\(183\) 0 0
\(184\) 6.27217i 0.462390i
\(185\) −1.00933 −0.0742072
\(186\) 0 0
\(187\) 13.4963i 0.986947i
\(188\) 5.28124i 0.385174i
\(189\) 0 0
\(190\) 1.55520i 0.112826i
\(191\) 11.2580 0.814600 0.407300 0.913294i \(-0.366470\pi\)
0.407300 + 0.913294i \(0.366470\pi\)
\(192\) 0 0
\(193\) 7.62566i 0.548907i 0.961600 + 0.274453i \(0.0884969\pi\)
−0.961600 + 0.274453i \(0.911503\pi\)
\(194\) −13.0505 −0.936972
\(195\) 0 0
\(196\) 18.5467 1.32477
\(197\) 24.5170i 1.74677i 0.487035 + 0.873383i \(0.338079\pi\)
−0.487035 + 0.873383i \(0.661921\pi\)
\(198\) 0 0
\(199\) −13.5310 −0.959187 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(200\) 4.76550i 0.336971i
\(201\) 0 0
\(202\) 6.84702i 0.481755i
\(203\) 23.2124i 1.62919i
\(204\) 0 0
\(205\) −5.35295 −0.373866
\(206\) 3.55520i 0.247703i
\(207\) 0 0
\(208\) 3.42035 + 1.14069i 0.237159 + 0.0790929i
\(209\) −10.3139 −0.713428
\(210\) 0 0
\(211\) 23.8692 1.64322 0.821610 0.570050i \(-0.193076\pi\)
0.821610 + 0.570050i \(0.193076\pi\)
\(212\) −6.41990 −0.440921
\(213\) 0 0
\(214\) 1.41392i 0.0966537i
\(215\) 4.58462i 0.312668i
\(216\) 0 0
\(217\) −32.7710 −2.22464
\(218\) −4.97525 −0.336967
\(219\) 0 0
\(220\) −1.55520 −0.104852
\(221\) 14.3739 + 4.79371i 0.966892 + 0.322460i
\(222\) 0 0
\(223\) 12.8698i 0.861825i 0.902394 + 0.430913i \(0.141808\pi\)
−0.902394 + 0.430913i \(0.858192\pi\)
\(224\) −5.05438 −0.337710
\(225\) 0 0
\(226\) 13.0883i 0.870621i
\(227\) 18.0552i 1.19836i 0.800613 + 0.599182i \(0.204507\pi\)
−0.800613 + 0.599182i \(0.795493\pi\)
\(228\) 0 0
\(229\) 21.1737i 1.39920i −0.714536 0.699599i \(-0.753362\pi\)
0.714536 0.699599i \(-0.246638\pi\)
\(230\) −3.03733 −0.200276
\(231\) 0 0
\(232\) 4.59254i 0.301515i
\(233\) 29.0610 1.90385 0.951923 0.306337i \(-0.0991033\pi\)
0.951923 + 0.306337i \(0.0991033\pi\)
\(234\) 0 0
\(235\) 2.55747 0.166831
\(236\) 3.62311i 0.235844i
\(237\) 0 0
\(238\) −21.2408 −1.37684
\(239\) 7.26902i 0.470194i 0.971972 + 0.235097i \(0.0755408\pi\)
−0.971972 + 0.235097i \(0.924459\pi\)
\(240\) 0 0
\(241\) 17.9104i 1.15371i −0.816846 0.576856i \(-0.804279\pi\)
0.816846 0.576856i \(-0.195721\pi\)
\(242\) 0.686087i 0.0441034i
\(243\) 0 0
\(244\) 1.00173 0.0641290
\(245\) 8.98136i 0.573798i
\(246\) 0 0
\(247\) −3.66337 + 10.9846i −0.233095 + 0.698931i
\(248\) 6.48369 0.411715
\(249\) 0 0
\(250\) −4.72900 −0.299088
\(251\) −3.84702 −0.242822 −0.121411 0.992602i \(-0.538742\pi\)
−0.121411 + 0.992602i \(0.538742\pi\)
\(252\) 0 0
\(253\) 20.1432i 1.26639i
\(254\) 4.56300i 0.286308i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −14.7675 −0.921172 −0.460586 0.887615i \(-0.652361\pi\)
−0.460586 + 0.887615i \(0.652361\pi\)
\(258\) 0 0
\(259\) −10.5348 −0.654598
\(260\) −0.552388 + 1.65633i −0.0342576 + 0.102721i
\(261\) 0 0
\(262\) 2.46946i 0.152564i
\(263\) 8.76248 0.540318 0.270159 0.962816i \(-0.412924\pi\)
0.270159 + 0.962816i \(0.412924\pi\)
\(264\) 0 0
\(265\) 3.10888i 0.190977i
\(266\) 16.2323i 0.995265i
\(267\) 0 0
\(268\) 1.08194i 0.0660900i
\(269\) −8.90736 −0.543091 −0.271546 0.962426i \(-0.587535\pi\)
−0.271546 + 0.962426i \(0.587535\pi\)
\(270\) 0 0
\(271\) 3.58551i 0.217804i 0.994052 + 0.108902i \(0.0347335\pi\)
−0.994052 + 0.108902i \(0.965266\pi\)
\(272\) 4.20245 0.254811
\(273\) 0 0
\(274\) −19.6104 −1.18471
\(275\) 15.3045i 0.922898i
\(276\) 0 0
\(277\) −14.8793 −0.894012 −0.447006 0.894531i \(-0.647510\pi\)
−0.447006 + 0.894531i \(0.647510\pi\)
\(278\) 0.387396i 0.0232345i
\(279\) 0 0
\(280\) 2.44761i 0.146273i
\(281\) 16.5116i 0.985002i −0.870312 0.492501i \(-0.836083\pi\)
0.870312 0.492501i \(-0.163917\pi\)
\(282\) 0 0
\(283\) −0.535666 −0.0318420 −0.0159210 0.999873i \(-0.505068\pi\)
−0.0159210 + 0.999873i \(0.505068\pi\)
\(284\) 4.63041i 0.274764i
\(285\) 0 0
\(286\) 10.9846 + 3.66337i 0.649531 + 0.216620i
\(287\) −55.8709 −3.29795
\(288\) 0 0
\(289\) 0.660618 0.0388599
\(290\) −2.22396 −0.130596
\(291\) 0 0
\(292\) 0.325525i 0.0190499i
\(293\) 19.5896i 1.14444i −0.820100 0.572220i \(-0.806082\pi\)
0.820100 0.572220i \(-0.193918\pi\)
\(294\) 0 0
\(295\) 1.75451 0.102152
\(296\) 2.08429 0.121147
\(297\) 0 0
\(298\) 9.45874 0.547930
\(299\) 21.4530 + 7.15462i 1.24066 + 0.413762i
\(300\) 0 0
\(301\) 47.8516i 2.75812i
\(302\) −1.33164 −0.0766272
\(303\) 0 0
\(304\) 3.21153i 0.184194i
\(305\) 0.485092i 0.0277763i
\(306\) 0 0
\(307\) 1.26064i 0.0719485i −0.999353 0.0359743i \(-0.988547\pi\)
0.999353 0.0359743i \(-0.0114534\pi\)
\(308\) −16.2323 −0.924920
\(309\) 0 0
\(310\) 3.13977i 0.178327i
\(311\) −17.5844 −0.997122 −0.498561 0.866855i \(-0.666138\pi\)
−0.498561 + 0.866855i \(0.666138\pi\)
\(312\) 0 0
\(313\) 0.205411 0.0116105 0.00580526 0.999983i \(-0.498152\pi\)
0.00580526 + 0.999983i \(0.498152\pi\)
\(314\) 5.84243i 0.329708i
\(315\) 0 0
\(316\) 7.83637 0.440830
\(317\) 18.0806i 1.01551i 0.861502 + 0.507754i \(0.169524\pi\)
−0.861502 + 0.507754i \(0.830476\pi\)
\(318\) 0 0
\(319\) 14.7491i 0.825789i
\(320\) 0.484256i 0.0270707i
\(321\) 0 0
\(322\) −31.7019 −1.76668
\(323\) 13.4963i 0.750954i
\(324\) 0 0
\(325\) 16.2997 + 5.43597i 0.904144 + 0.301533i
\(326\) −15.1340 −0.838192
\(327\) 0 0
\(328\) 11.0540 0.610353
\(329\) 26.6934 1.47165
\(330\) 0 0
\(331\) 4.19502i 0.230579i −0.993332 0.115290i \(-0.963220\pi\)
0.993332 0.115290i \(-0.0367796\pi\)
\(332\) 5.86613i 0.321946i
\(333\) 0 0
\(334\) 12.0268 0.658078
\(335\) 0.523936 0.0286257
\(336\) 0 0
\(337\) 13.7608 0.749600 0.374800 0.927106i \(-0.377711\pi\)
0.374800 + 0.927106i \(0.377711\pi\)
\(338\) 7.80315 10.3976i 0.424435 0.565557i
\(339\) 0 0
\(340\) 2.03506i 0.110367i
\(341\) 20.8226 1.12761
\(342\) 0 0
\(343\) 58.3615i 3.15123i
\(344\) 9.46735i 0.510445i
\(345\) 0 0
\(346\) 8.85863i 0.476243i
\(347\) −23.8702 −1.28142 −0.640710 0.767783i \(-0.721360\pi\)
−0.640710 + 0.767783i \(0.721360\pi\)
\(348\) 0 0
\(349\) 19.3478i 1.03567i 0.855482 + 0.517833i \(0.173261\pi\)
−0.855482 + 0.517833i \(0.826739\pi\)
\(350\) −24.0866 −1.28748
\(351\) 0 0
\(352\) 3.21153 0.171175
\(353\) 27.7828i 1.47873i 0.673305 + 0.739365i \(0.264874\pi\)
−0.673305 + 0.739365i \(0.735126\pi\)
\(354\) 0 0
\(355\) 2.24230 0.119009
\(356\) 8.42912i 0.446743i
\(357\) 0 0
\(358\) 10.3704i 0.548093i
\(359\) 23.8304i 1.25772i −0.777517 0.628861i \(-0.783521\pi\)
0.777517 0.628861i \(-0.216479\pi\)
\(360\) 0 0
\(361\) 8.68609 0.457162
\(362\) 10.8407i 0.569775i
\(363\) 0 0
\(364\) −5.76550 + 17.2878i −0.302194 + 0.906125i
\(365\) −0.157637 −0.00825112
\(366\) 0 0
\(367\) −10.0929 −0.526843 −0.263421 0.964681i \(-0.584851\pi\)
−0.263421 + 0.964681i \(0.584851\pi\)
\(368\) 6.27217 0.326959
\(369\) 0 0
\(370\) 1.00933i 0.0524724i
\(371\) 32.4486i 1.68465i
\(372\) 0 0
\(373\) −8.54741 −0.442568 −0.221284 0.975209i \(-0.571025\pi\)
−0.221284 + 0.975209i \(0.571025\pi\)
\(374\) 13.4963 0.697877
\(375\) 0 0
\(376\) −5.28124 −0.272359
\(377\) 15.7081 + 5.23868i 0.809008 + 0.269806i
\(378\) 0 0
\(379\) 30.7125i 1.57760i 0.614653 + 0.788798i \(0.289296\pi\)
−0.614653 + 0.788798i \(0.710704\pi\)
\(380\) −1.55520 −0.0797802
\(381\) 0 0
\(382\) 11.2580i 0.576009i
\(383\) 2.88551i 0.147442i −0.997279 0.0737212i \(-0.976512\pi\)
0.997279 0.0737212i \(-0.0234875\pi\)
\(384\) 0 0
\(385\) 7.86058i 0.400612i
\(386\) 7.62566 0.388136
\(387\) 0 0
\(388\) 13.0505i 0.662539i
\(389\) −11.8955 −0.603127 −0.301564 0.953446i \(-0.597509\pi\)
−0.301564 + 0.953446i \(0.597509\pi\)
\(390\) 0 0
\(391\) 26.3585 1.33301
\(392\) 18.5467i 0.936751i
\(393\) 0 0
\(394\) 24.5170 1.23515
\(395\) 3.79481i 0.190937i
\(396\) 0 0
\(397\) 23.8021i 1.19459i −0.802020 0.597297i \(-0.796241\pi\)
0.802020 0.597297i \(-0.203759\pi\)
\(398\) 13.5310i 0.678247i
\(399\) 0 0
\(400\) 4.76550 0.238275
\(401\) 8.99705i 0.449291i −0.974441 0.224646i \(-0.927878\pi\)
0.974441 0.224646i \(-0.0721225\pi\)
\(402\) 0 0
\(403\) 7.39591 22.1765i 0.368416 1.10469i
\(404\) 6.84702 0.340652
\(405\) 0 0
\(406\) −23.2124 −1.15201
\(407\) 6.69374 0.331796
\(408\) 0 0
\(409\) 32.1404i 1.58924i −0.607107 0.794620i \(-0.707670\pi\)
0.607107 0.794620i \(-0.292330\pi\)
\(410\) 5.35295i 0.264363i
\(411\) 0 0
\(412\) −3.55520 −0.175152
\(413\) 18.3126 0.901103
\(414\) 0 0
\(415\) 2.84071 0.139445
\(416\) 1.14069 3.42035i 0.0559271 0.167697i
\(417\) 0 0
\(418\) 10.3139i 0.504470i
\(419\) 3.37377 0.164820 0.0824098 0.996599i \(-0.473738\pi\)
0.0824098 + 0.996599i \(0.473738\pi\)
\(420\) 0 0
\(421\) 2.61685i 0.127537i 0.997965 + 0.0637687i \(0.0203120\pi\)
−0.997965 + 0.0637687i \(0.979688\pi\)
\(422\) 23.8692i 1.16193i
\(423\) 0 0
\(424\) 6.41990i 0.311778i
\(425\) 20.0268 0.971441
\(426\) 0 0
\(427\) 5.06311i 0.245021i
\(428\) −1.41392 −0.0683445
\(429\) 0 0
\(430\) 4.58462 0.221090
\(431\) 1.25113i 0.0602647i −0.999546 0.0301324i \(-0.990407\pi\)
0.999546 0.0301324i \(-0.00959288\pi\)
\(432\) 0 0
\(433\) −4.77117 −0.229288 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(434\) 32.7710i 1.57306i
\(435\) 0 0
\(436\) 4.97525i 0.238271i
\(437\) 20.1432i 0.963582i
\(438\) 0 0
\(439\) 33.7019 1.60850 0.804252 0.594289i \(-0.202566\pi\)
0.804252 + 0.594289i \(0.202566\pi\)
\(440\) 1.55520i 0.0741413i
\(441\) 0 0
\(442\) 4.79371 14.3739i 0.228014 0.683696i
\(443\) −5.37751 −0.255493 −0.127747 0.991807i \(-0.540774\pi\)
−0.127747 + 0.991807i \(0.540774\pi\)
\(444\) 0 0
\(445\) −4.08185 −0.193498
\(446\) 12.8698 0.609403
\(447\) 0 0
\(448\) 5.05438i 0.238797i
\(449\) 16.7813i 0.791958i 0.918260 + 0.395979i \(0.129595\pi\)
−0.918260 + 0.395979i \(0.870405\pi\)
\(450\) 0 0
\(451\) 35.5001 1.67163
\(452\) 13.0883 0.615622
\(453\) 0 0
\(454\) 18.0552 0.847371
\(455\) −8.37170 2.79198i −0.392471 0.130890i
\(456\) 0 0
\(457\) 23.6791i 1.10766i 0.832629 + 0.553831i \(0.186835\pi\)
−0.832629 + 0.553831i \(0.813165\pi\)
\(458\) −21.1737 −0.989383
\(459\) 0 0
\(460\) 3.03733i 0.141616i
\(461\) 34.4622i 1.60507i 0.596608 + 0.802533i \(0.296515\pi\)
−0.596608 + 0.802533i \(0.703485\pi\)
\(462\) 0 0
\(463\) 22.4773i 1.04461i 0.852759 + 0.522304i \(0.174927\pi\)
−0.852759 + 0.522304i \(0.825073\pi\)
\(464\) 4.59254 0.213203
\(465\) 0 0
\(466\) 29.0610i 1.34622i
\(467\) −4.43632 −0.205288 −0.102644 0.994718i \(-0.532730\pi\)
−0.102644 + 0.994718i \(0.532730\pi\)
\(468\) 0 0
\(469\) 5.46853 0.252513
\(470\) 2.55747i 0.117967i
\(471\) 0 0
\(472\) −3.62311 −0.166767
\(473\) 30.4047i 1.39801i
\(474\) 0 0
\(475\) 15.3045i 0.702220i
\(476\) 21.2408i 0.973570i
\(477\) 0 0
\(478\) 7.26902 0.332477
\(479\) 11.8165i 0.539912i −0.962873 0.269956i \(-0.912991\pi\)
0.962873 0.269956i \(-0.0870091\pi\)
\(480\) 0 0
\(481\) 2.37753 7.12899i 0.108406 0.325054i
\(482\) −17.9104 −0.815798
\(483\) 0 0
\(484\) −0.686087 −0.0311858
\(485\) −6.31979 −0.286967
\(486\) 0 0
\(487\) 25.8373i 1.17080i −0.810745 0.585400i \(-0.800938\pi\)
0.810745 0.585400i \(-0.199062\pi\)
\(488\) 1.00173i 0.0453461i
\(489\) 0 0
\(490\) 8.98136 0.405737
\(491\) 11.1999 0.505444 0.252722 0.967539i \(-0.418674\pi\)
0.252722 + 0.967539i \(0.418674\pi\)
\(492\) 0 0
\(493\) 19.2999 0.869225
\(494\) 10.9846 + 3.66337i 0.494219 + 0.164823i
\(495\) 0 0
\(496\) 6.48369i 0.291126i
\(497\) 23.4039 1.04981
\(498\) 0 0
\(499\) 15.4596i 0.692069i −0.938222 0.346034i \(-0.887528\pi\)
0.938222 0.346034i \(-0.112472\pi\)
\(500\) 4.72900i 0.211487i
\(501\) 0 0
\(502\) 3.84702i 0.171701i
\(503\) −6.00330 −0.267674 −0.133837 0.991003i \(-0.542730\pi\)
−0.133837 + 0.991003i \(0.542730\pi\)
\(504\) 0 0
\(505\) 3.31571i 0.147547i
\(506\) 20.1432 0.895476
\(507\) 0 0
\(508\) 4.56300 0.202450
\(509\) 21.5699i 0.956068i 0.878341 + 0.478034i \(0.158650\pi\)
−0.878341 + 0.478034i \(0.841350\pi\)
\(510\) 0 0
\(511\) −1.64533 −0.0727849
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 14.7675i 0.651367i
\(515\) 1.72163i 0.0758640i
\(516\) 0 0
\(517\) −16.9609 −0.745937
\(518\) 10.5348i 0.462871i
\(519\) 0 0
\(520\) 1.65633 + 0.552388i 0.0726347 + 0.0242238i
\(521\) 24.0543 1.05384 0.526918 0.849916i \(-0.323347\pi\)
0.526918 + 0.849916i \(0.323347\pi\)
\(522\) 0 0
\(523\) −10.8449 −0.474215 −0.237107 0.971483i \(-0.576199\pi\)
−0.237107 + 0.971483i \(0.576199\pi\)
\(524\) −2.46946 −0.107879
\(525\) 0 0
\(526\) 8.76248i 0.382062i
\(527\) 27.2474i 1.18692i
\(528\) 0 0
\(529\) 16.3401 0.710438
\(530\) −3.10888 −0.135041
\(531\) 0 0
\(532\) −16.2323 −0.703758
\(533\) 12.6092 37.8085i 0.546164 1.63767i
\(534\) 0 0
\(535\) 0.684700i 0.0296022i
\(536\) −1.08194 −0.0467327
\(537\) 0 0
\(538\) 8.90736i 0.384024i
\(539\) 59.5633i 2.56558i
\(540\) 0 0
\(541\) 12.2998i 0.528808i 0.964412 + 0.264404i \(0.0851753\pi\)
−0.964412 + 0.264404i \(0.914825\pi\)
\(542\) 3.58551 0.154011
\(543\) 0 0
\(544\) 4.20245i 0.180179i
\(545\) −2.40930 −0.103203
\(546\) 0 0
\(547\) −20.6903 −0.884655 −0.442327 0.896854i \(-0.645847\pi\)
−0.442327 + 0.896854i \(0.645847\pi\)
\(548\) 19.6104i 0.837714i
\(549\) 0 0
\(550\) 15.3045 0.652587
\(551\) 14.7491i 0.628331i
\(552\) 0 0
\(553\) 39.6080i 1.68430i
\(554\) 14.8793i 0.632162i
\(555\) 0 0
\(556\) 0.387396 0.0164293
\(557\) 14.2838i 0.605226i 0.953114 + 0.302613i \(0.0978589\pi\)
−0.953114 + 0.302613i \(0.902141\pi\)
\(558\) 0 0
\(559\) −32.3817 10.7993i −1.36960 0.456764i
\(560\) −2.44761 −0.103430
\(561\) 0 0
\(562\) −16.5116 −0.696501
\(563\) −35.9346 −1.51446 −0.757231 0.653147i \(-0.773448\pi\)
−0.757231 + 0.653147i \(0.773448\pi\)
\(564\) 0 0
\(565\) 6.33809i 0.266646i
\(566\) 0.535666i 0.0225157i
\(567\) 0 0
\(568\) −4.63041 −0.194288
\(569\) −37.0631 −1.55376 −0.776882 0.629646i \(-0.783200\pi\)
−0.776882 + 0.629646i \(0.783200\pi\)
\(570\) 0 0
\(571\) −46.3464 −1.93954 −0.969769 0.244026i \(-0.921532\pi\)
−0.969769 + 0.244026i \(0.921532\pi\)
\(572\) 3.66337 10.9846i 0.153173 0.459288i
\(573\) 0 0
\(574\) 55.8709i 2.33201i
\(575\) 29.8900 1.24650
\(576\) 0 0
\(577\) 31.4447i 1.30906i 0.756036 + 0.654530i \(0.227134\pi\)
−0.756036 + 0.654530i \(0.772866\pi\)
\(578\) 0.660618i 0.0274781i
\(579\) 0 0
\(580\) 2.22396i 0.0923450i
\(581\) 29.6496 1.23007
\(582\) 0 0
\(583\) 20.6177i 0.853898i
\(584\) 0.325525 0.0134703
\(585\) 0 0
\(586\) −19.5896 −0.809241
\(587\) 31.2506i 1.28985i −0.764247 0.644924i \(-0.776889\pi\)
0.764247 0.644924i \(-0.223111\pi\)
\(588\) 0 0
\(589\) 20.8226 0.857979
\(590\) 1.75451i 0.0722322i
\(591\) 0 0
\(592\) 2.08429i 0.0856636i
\(593\) 26.3978i 1.08403i −0.840370 0.542013i \(-0.817662\pi\)
0.840370 0.542013i \(-0.182338\pi\)
\(594\) 0 0
\(595\) −10.2860 −0.421684
\(596\) 9.45874i 0.387445i
\(597\) 0 0
\(598\) 7.15462 21.4530i 0.292574 0.877279i
\(599\) −6.81049 −0.278269 −0.139135 0.990273i \(-0.544432\pi\)
−0.139135 + 0.990273i \(0.544432\pi\)
\(600\) 0 0
\(601\) 9.65032 0.393645 0.196822 0.980439i \(-0.436938\pi\)
0.196822 + 0.980439i \(0.436938\pi\)
\(602\) 47.8516 1.95028
\(603\) 0 0
\(604\) 1.33164i 0.0541836i
\(605\) 0.332242i 0.0135075i
\(606\) 0 0
\(607\) 27.5792 1.11940 0.559702 0.828694i \(-0.310916\pi\)
0.559702 + 0.828694i \(0.310916\pi\)
\(608\) 3.21153 0.130245
\(609\) 0 0
\(610\) 0.485092 0.0196408
\(611\) −6.02428 + 18.0637i −0.243716 + 0.730779i
\(612\) 0 0
\(613\) 16.0314i 0.647502i −0.946142 0.323751i \(-0.895056\pi\)
0.946142 0.323751i \(-0.104944\pi\)
\(614\) −1.26064 −0.0508753
\(615\) 0 0
\(616\) 16.2323i 0.654017i
\(617\) 13.2054i 0.531628i 0.964024 + 0.265814i \(0.0856408\pi\)
−0.964024 + 0.265814i \(0.914359\pi\)
\(618\) 0 0
\(619\) 1.77418i 0.0713104i −0.999364 0.0356552i \(-0.988648\pi\)
0.999364 0.0356552i \(-0.0113518\pi\)
\(620\) 3.13977 0.126096
\(621\) 0 0
\(622\) 17.5844i 0.705072i
\(623\) −42.6040 −1.70689
\(624\) 0 0
\(625\) 21.5374 0.861497
\(626\) 0.205411i 0.00820988i
\(627\) 0 0
\(628\) 5.84243 0.233139
\(629\) 8.75911i 0.349249i
\(630\) 0 0
\(631\) 30.2211i 1.20308i −0.798841 0.601542i \(-0.794553\pi\)
0.798841 0.601542i \(-0.205447\pi\)
\(632\) 7.83637i 0.311714i
\(633\) 0 0
\(634\) 18.0806 0.718072
\(635\) 2.20966i 0.0876876i
\(636\) 0 0
\(637\) −63.4364 21.1561i −2.51344 0.838237i
\(638\) 14.7491 0.583921
\(639\) 0 0
\(640\) 0.484256 0.0191419
\(641\) −0.603345 −0.0238307 −0.0119154 0.999929i \(-0.503793\pi\)
−0.0119154 + 0.999929i \(0.503793\pi\)
\(642\) 0 0
\(643\) 31.2057i 1.23063i 0.788280 + 0.615317i \(0.210972\pi\)
−0.788280 + 0.615317i \(0.789028\pi\)
\(644\) 31.7019i 1.24923i
\(645\) 0 0
\(646\) 13.4963 0.531005
\(647\) −48.8937 −1.92221 −0.961105 0.276182i \(-0.910931\pi\)
−0.961105 + 0.276182i \(0.910931\pi\)
\(648\) 0 0
\(649\) −11.6357 −0.456742
\(650\) 5.43597 16.2997i 0.213216 0.639326i
\(651\) 0 0
\(652\) 15.1340i 0.592691i
\(653\) 38.3888 1.50227 0.751135 0.660149i \(-0.229507\pi\)
0.751135 + 0.660149i \(0.229507\pi\)
\(654\) 0 0
\(655\) 1.19585i 0.0467258i
\(656\) 11.0540i 0.431585i
\(657\) 0 0
\(658\) 26.6934i 1.04062i
\(659\) −41.9136 −1.63272 −0.816362 0.577541i \(-0.804012\pi\)
−0.816362 + 0.577541i \(0.804012\pi\)
\(660\) 0 0
\(661\) 12.1484i 0.472516i 0.971690 + 0.236258i \(0.0759211\pi\)
−0.971690 + 0.236258i \(0.924079\pi\)
\(662\) −4.19502 −0.163044
\(663\) 0 0
\(664\) −5.86613 −0.227650
\(665\) 7.86058i 0.304820i
\(666\) 0 0
\(667\) 28.8051 1.11534
\(668\) 12.0268i 0.465331i
\(669\) 0 0
\(670\) 0.523936i 0.0202414i
\(671\) 3.21708i 0.124194i
\(672\) 0 0
\(673\) 36.6505 1.41277 0.706386 0.707827i \(-0.250324\pi\)
0.706386 + 0.707827i \(0.250324\pi\)
\(674\) 13.7608i 0.530047i
\(675\) 0 0
\(676\) −10.3976 7.80315i −0.399909 0.300121i
\(677\) 38.5927 1.48324 0.741620 0.670820i \(-0.234058\pi\)
0.741620 + 0.670820i \(0.234058\pi\)
\(678\) 0 0
\(679\) −65.9622 −2.53140
\(680\) 2.03506 0.0780411
\(681\) 0 0
\(682\) 20.8226i 0.797337i
\(683\) 31.4038i 1.20163i 0.799387 + 0.600816i \(0.205158\pi\)
−0.799387 + 0.600816i \(0.794842\pi\)
\(684\) 0 0
\(685\) −9.49644 −0.362840
\(686\) 58.3615 2.22825
\(687\) 0 0
\(688\) −9.46735 −0.360939
\(689\) 21.9583 + 7.32314i 0.836546 + 0.278990i
\(690\) 0 0
\(691\) 19.2588i 0.732640i 0.930489 + 0.366320i \(0.119382\pi\)
−0.930489 + 0.366320i \(0.880618\pi\)
\(692\) −8.85863 −0.336755
\(693\) 0 0
\(694\) 23.8702i 0.906100i
\(695\) 0.187599i 0.00711603i
\(696\) 0 0
\(697\) 46.4538i 1.75956i
\(698\) 19.3478 0.732326
\(699\) 0 0
\(700\) 24.0866i 0.910389i
\(701\) −26.7781 −1.01139 −0.505697 0.862711i \(-0.668765\pi\)
−0.505697 + 0.862711i \(0.668765\pi\)
\(702\) 0 0
\(703\) 6.69374 0.252459
\(704\) 3.21153i 0.121039i
\(705\) 0 0
\(706\) 27.7828 1.04562
\(707\) 34.6074i 1.30155i
\(708\) 0 0
\(709\) 46.4696i 1.74520i 0.488433 + 0.872602i \(0.337569\pi\)
−0.488433 + 0.872602i \(0.662431\pi\)
\(710\) 2.24230i 0.0841522i
\(711\) 0 0
\(712\) 8.42912 0.315895
\(713\) 40.6668i 1.52298i
\(714\) 0 0
\(715\) 5.31934 + 1.77401i 0.198932 + 0.0663442i
\(716\) −10.3704 −0.387561
\(717\) 0 0
\(718\) −23.8304 −0.889344
\(719\) −4.81378 −0.179524 −0.0897619 0.995963i \(-0.528611\pi\)
−0.0897619 + 0.995963i \(0.528611\pi\)
\(720\) 0 0
\(721\) 17.9693i 0.669213i
\(722\) 8.68609i 0.323263i
\(723\) 0 0
\(724\) −10.8407 −0.402892
\(725\) 21.8857 0.812815
\(726\) 0 0
\(727\) 12.7183 0.471696 0.235848 0.971790i \(-0.424213\pi\)
0.235848 + 0.971790i \(0.424213\pi\)
\(728\) 17.2878 + 5.76550i 0.640727 + 0.213684i
\(729\) 0 0
\(730\) 0.157637i 0.00583442i
\(731\) −39.7861 −1.47154
\(732\) 0 0
\(733\) 4.25487i 0.157157i 0.996908 + 0.0785787i \(0.0250382\pi\)
−0.996908 + 0.0785787i \(0.974962\pi\)
\(734\) 10.0929i 0.372534i
\(735\) 0 0
\(736\) 6.27217i 0.231195i
\(737\) −3.47468 −0.127991
\(738\) 0 0
\(739\) 9.71484i 0.357366i 0.983907 + 0.178683i \(0.0571837\pi\)
−0.983907 + 0.178683i \(0.942816\pi\)
\(740\) 1.00933 0.0371036
\(741\) 0 0
\(742\) −32.4486 −1.19123
\(743\) 12.3252i 0.452168i −0.974108 0.226084i \(-0.927408\pi\)
0.974108 0.226084i \(-0.0725924\pi\)
\(744\) 0 0
\(745\) 4.58045 0.167815
\(746\) 8.54741i 0.312943i
\(747\) 0 0
\(748\) 13.4963i 0.493474i
\(749\) 7.14649i 0.261127i
\(750\) 0 0
\(751\) −2.86981 −0.104721 −0.0523603 0.998628i \(-0.516674\pi\)
−0.0523603 + 0.998628i \(0.516674\pi\)
\(752\) 5.28124i 0.192587i
\(753\) 0 0
\(754\) 5.23868 15.7081i 0.190781 0.572055i
\(755\) −0.644854 −0.0234686
\(756\) 0 0
\(757\) 33.1438 1.20463 0.602316 0.798258i \(-0.294245\pi\)
0.602316 + 0.798258i \(0.294245\pi\)
\(758\) 30.7125 1.11553
\(759\) 0 0
\(760\) 1.55520i 0.0564131i
\(761\) 42.7544i 1.54985i 0.632056 + 0.774923i \(0.282211\pi\)
−0.632056 + 0.774923i \(0.717789\pi\)
\(762\) 0 0
\(763\) −25.1468 −0.910375
\(764\) −11.2580 −0.407300
\(765\) 0 0
\(766\) −2.88551 −0.104258
\(767\) −4.13286 + 12.3923i −0.149229 + 0.447461i
\(768\) 0 0
\(769\) 48.1276i 1.73552i 0.496980 + 0.867762i \(0.334442\pi\)
−0.496980 + 0.867762i \(0.665558\pi\)
\(770\) −7.86058 −0.283275
\(771\) 0 0
\(772\) 7.62566i 0.274453i
\(773\) 21.3661i 0.768484i 0.923232 + 0.384242i \(0.125537\pi\)
−0.923232 + 0.384242i \(0.874463\pi\)
\(774\) 0 0
\(775\) 30.8980i 1.10989i
\(776\) 13.0505 0.468486
\(777\) 0 0
\(778\) 11.8955i 0.426475i
\(779\) 35.5001 1.27192
\(780\) 0 0
\(781\) −14.8707 −0.532115
\(782\) 26.3585i 0.942578i
\(783\) 0 0
\(784\) −18.5467 −0.662383
\(785\) 2.82923i 0.100980i
\(786\) 0 0
\(787\) 34.1708i 1.21806i −0.793148 0.609029i \(-0.791559\pi\)
0.793148 0.609029i \(-0.208441\pi\)
\(788\) 24.5170i 0.873383i
\(789\) 0 0
\(790\) 3.79481 0.135013
\(791\) 66.1533i 2.35214i
\(792\) 0 0
\(793\) −3.42626 1.14266i −0.121670 0.0405772i
\(794\) −23.8021 −0.844706
\(795\) 0 0
\(796\) 13.5310 0.479593
\(797\) 12.5383 0.444131 0.222066 0.975032i \(-0.428720\pi\)
0.222066 + 0.975032i \(0.428720\pi\)
\(798\) 0 0
\(799\) 22.1942i 0.785173i
\(800\) 4.76550i 0.168486i
\(801\) 0 0
\(802\) −8.99705 −0.317697
\(803\) 1.04543 0.0368925
\(804\) 0 0
\(805\) −15.3518 −0.541081
\(806\) −22.1765 7.39591i −0.781135 0.260510i
\(807\) 0 0
\(808\) 6.84702i 0.240877i
\(809\) −23.7653 −0.835543 −0.417772 0.908552i \(-0.637189\pi\)
−0.417772 + 0.908552i \(0.637189\pi\)
\(810\) 0 0
\(811\) 12.1844i 0.427853i 0.976850 + 0.213926i \(0.0686253\pi\)
−0.976850 + 0.213926i \(0.931375\pi\)
\(812\) 23.2124i 0.814596i
\(813\) 0 0
\(814\) 6.69374i 0.234615i
\(815\) −7.32871 −0.256713
\(816\) 0 0
\(817\) 30.4047i 1.06372i
\(818\) −32.1404 −1.12376
\(819\) 0 0
\(820\) 5.35295 0.186933
\(821\) 17.1510i 0.598573i 0.954163 + 0.299287i \(0.0967486\pi\)
−0.954163 + 0.299287i \(0.903251\pi\)
\(822\) 0 0
\(823\) 38.1966 1.33145 0.665725 0.746197i \(-0.268122\pi\)
0.665725 + 0.746197i \(0.268122\pi\)
\(824\) 3.55520i 0.123851i
\(825\) 0 0
\(826\) 18.3126i 0.637176i
\(827\) 16.3182i 0.567441i 0.958907 + 0.283721i \(0.0915688\pi\)
−0.958907 + 0.283721i \(0.908431\pi\)
\(828\) 0 0
\(829\) 13.6052 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(830\) 2.84071i 0.0986024i
\(831\) 0 0
\(832\) −3.42035 1.14069i −0.118579 0.0395464i
\(833\) −77.9418 −2.70052
\(834\) 0 0
\(835\) 5.82406 0.201550
\(836\) 10.3139 0.356714
\(837\) 0 0
\(838\) 3.37377i 0.116545i
\(839\) 50.7828i 1.75322i 0.481204 + 0.876609i \(0.340200\pi\)
−0.481204 + 0.876609i \(0.659800\pi\)
\(840\) 0 0
\(841\) −7.90862 −0.272711
\(842\) 2.61685 0.0901826
\(843\) 0 0
\(844\) −23.8692 −0.821610
\(845\) 3.77872 5.03512i 0.129992 0.173213i
\(846\) 0 0
\(847\) 3.46774i 0.119153i
\(848\) 6.41990 0.220460
\(849\) 0 0
\(850\) 20.0268i 0.686913i
\(851\) 13.0730i 0.448136i
\(852\) 0 0
\(853\) 35.9527i 1.23100i −0.788138 0.615499i \(-0.788955\pi\)
0.788138 0.615499i \(-0.211045\pi\)
\(854\) 5.06311 0.173256
\(855\) 0 0
\(856\) 1.41392i 0.0483268i
\(857\) −4.57183 −0.156171 −0.0780853 0.996947i \(-0.524881\pi\)
−0.0780853 + 0.996947i \(0.524881\pi\)
\(858\) 0 0
\(859\) 11.6490 0.397459 0.198729 0.980054i \(-0.436319\pi\)
0.198729 + 0.980054i \(0.436319\pi\)
\(860\) 4.58462i 0.156334i
\(861\) 0 0
\(862\) −1.25113 −0.0426136
\(863\) 26.2523i 0.893640i −0.894624 0.446820i \(-0.852556\pi\)
0.894624 0.446820i \(-0.147444\pi\)
\(864\) 0 0
\(865\) 4.28985i 0.145859i
\(866\) 4.77117i 0.162131i
\(867\) 0 0
\(868\) 32.7710 1.11232
\(869\) 25.1667i 0.853722i
\(870\) 0 0
\(871\) −1.23416 + 3.70062i −0.0418180 + 0.125391i
\(872\) 4.97525 0.168483
\(873\) 0 0
\(874\) 20.1432 0.681355
\(875\) −23.9021 −0.808040
\(876\) 0 0
\(877\) 46.7822i 1.57972i −0.613284 0.789862i \(-0.710152\pi\)
0.613284 0.789862i \(-0.289848\pi\)
\(878\) 33.7019i 1.13738i
\(879\) 0 0
\(880\) 1.55520 0.0524258
\(881\) 52.3698 1.76438 0.882192 0.470889i \(-0.156067\pi\)
0.882192 + 0.470889i \(0.156067\pi\)
\(882\) 0 0
\(883\) −28.7233 −0.966617 −0.483309 0.875450i \(-0.660565\pi\)
−0.483309 + 0.875450i \(0.660565\pi\)
\(884\) −14.3739 4.79371i −0.483446 0.161230i
\(885\) 0 0
\(886\) 5.37751i 0.180661i
\(887\) 12.0238 0.403719 0.201859 0.979415i \(-0.435302\pi\)
0.201859 + 0.979415i \(0.435302\pi\)
\(888\) 0 0
\(889\) 23.0631i 0.773512i
\(890\) 4.08185i 0.136824i
\(891\) 0 0
\(892\) 12.8698i 0.430913i
\(893\) −16.9609 −0.567573
\(894\) 0 0
\(895\) 5.02193i 0.167865i
\(896\) 5.05438 0.168855
\(897\) 0 0
\(898\) 16.7813 0.559999
\(899\) 29.7766i 0.993105i
\(900\) 0 0
\(901\) 26.9793 0.898812
\(902\) 35.5001i 1.18202i
\(903\) 0 0
\(904\) 13.0883i 0.435311i
\(905\) 5.24968i 0.174505i
\(906\) 0 0
\(907\) 27.7948 0.922912 0.461456 0.887163i \(-0.347327\pi\)
0.461456 + 0.887163i \(0.347327\pi\)
\(908\) 18.0552i 0.599182i
\(909\) 0 0
\(910\) −2.79198 + 8.37170i −0.0925531 + 0.277519i
\(911\) −20.6592 −0.684470 −0.342235 0.939614i \(-0.611184\pi\)
−0.342235 + 0.939614i \(0.611184\pi\)
\(912\) 0 0
\(913\) −18.8392 −0.623488
\(914\) 23.6791 0.783235
\(915\) 0 0
\(916\) 21.1737i 0.699599i
\(917\) 12.4816i 0.412179i
\(918\) 0 0
\(919\) 56.3658 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(920\) 3.03733 0.100138
\(921\) 0 0
\(922\) 34.4622 1.13495
\(923\) −5.28188 + 15.8376i −0.173855 + 0.521303i
\(924\) 0 0
\(925\) 9.93265i 0.326584i
\(926\) 22.4773 0.738649
\(927\) 0 0
\(928\) 4.59254i 0.150757i
\(929\) 2.02201i 0.0663399i 0.999450 + 0.0331699i \(0.0105603\pi\)
−0.999450 + 0.0331699i \(0.989440\pi\)
\(930\) 0 0
\(931\) 59.5633i 1.95211i
\(932\) −29.0610 −0.951923
\(933\) 0 0
\(934\) 4.43632i 0.145161i
\(935\) 6.53566 0.213739
\(936\) 0 0
\(937\) −15.3243 −0.500622 −0.250311 0.968166i \(-0.580533\pi\)
−0.250311 + 0.968166i \(0.580533\pi\)
\(938\) 5.46853i 0.178554i
\(939\) 0 0
\(940\) −2.55747 −0.0834155
\(941\) 41.4208i 1.35028i −0.737691 0.675139i \(-0.764084\pi\)
0.737691 0.675139i \(-0.235916\pi\)
\(942\) 0 0
\(943\) 69.3323i 2.25777i
\(944\) 3.62311i 0.117922i
\(945\) 0 0
\(946\) −30.4047 −0.988541
\(947\) 56.8875i 1.84859i 0.381673 + 0.924297i \(0.375348\pi\)
−0.381673 + 0.924297i \(0.624652\pi\)
\(948\) 0 0
\(949\) 0.371324 1.11341i 0.0120537 0.0361428i
\(950\) 15.3045 0.496544
\(951\) 0 0
\(952\) 21.2408 0.688418
\(953\) −40.5931 −1.31494 −0.657470 0.753481i \(-0.728373\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(954\) 0 0
\(955\) 5.45175i 0.176415i
\(956\) 7.26902i 0.235097i
\(957\) 0 0
\(958\) −11.8165 −0.381775
\(959\) −99.1182 −3.20069
\(960\) 0 0
\(961\) −11.0383 −0.356074
\(962\) −7.12899 2.37753i −0.229848 0.0766547i
\(963\) 0 0
\(964\) 17.9104i 0.576856i
\(965\) 3.69277 0.118874
\(966\) 0 0
\(967\) 49.9936i 1.60769i 0.594841 + 0.803844i \(0.297215\pi\)
−0.594841 + 0.803844i \(0.702785\pi\)
\(968\) 0.686087i 0.0220517i
\(969\) 0 0
\(970\) 6.31979i 0.202916i
\(971\) −31.1467 −0.999546 −0.499773 0.866156i \(-0.666583\pi\)
−0.499773 + 0.866156i \(0.666583\pi\)
\(972\) 0 0
\(973\) 1.95805i 0.0627721i
\(974\) −25.8373 −0.827880
\(975\) 0 0
\(976\) −1.00173 −0.0320645
\(977\) 6.90009i 0.220753i −0.993890 0.110377i \(-0.964794\pi\)
0.993890 0.110377i \(-0.0352057\pi\)
\(978\) 0 0
\(979\) 27.0704 0.865173
\(980\) 8.98136i 0.286899i
\(981\) 0 0
\(982\) 11.1999i 0.357403i
\(983\) 52.4312i 1.67229i 0.548505 + 0.836147i \(0.315197\pi\)
−0.548505 + 0.836147i \(0.684803\pi\)
\(984\) 0 0
\(985\) 11.8725 0.378290
\(986\) 19.2999i 0.614635i
\(987\) 0 0
\(988\) 3.66337 10.9846i 0.116547 0.349465i
\(989\) −59.3808 −1.88820
\(990\) 0 0
\(991\) −26.0277 −0.826799 −0.413399 0.910550i \(-0.635659\pi\)
−0.413399 + 0.910550i \(0.635659\pi\)
\(992\) −6.48369 −0.205857
\(993\) 0 0
\(994\) 23.4039i 0.742325i
\(995\) 6.55246i 0.207727i
\(996\) 0 0
\(997\) 27.2475 0.862936 0.431468 0.902128i \(-0.357996\pi\)
0.431468 + 0.902128i \(0.357996\pi\)
\(998\) −15.4596 −0.489367
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.b.c.649.4 14
3.2 odd 2 2106.2.b.d.649.11 14
9.2 odd 6 702.2.t.a.415.11 28
9.4 even 3 234.2.t.a.25.12 yes 28
9.5 odd 6 702.2.t.a.181.4 28
9.7 even 3 234.2.t.a.103.5 yes 28
13.12 even 2 inner 2106.2.b.c.649.11 14
39.38 odd 2 2106.2.b.d.649.4 14
117.25 even 6 234.2.t.a.103.12 yes 28
117.38 odd 6 702.2.t.a.415.4 28
117.77 odd 6 702.2.t.a.181.11 28
117.103 even 6 234.2.t.a.25.5 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.5 28 117.103 even 6
234.2.t.a.25.12 yes 28 9.4 even 3
234.2.t.a.103.5 yes 28 9.7 even 3
234.2.t.a.103.12 yes 28 117.25 even 6
702.2.t.a.181.4 28 9.5 odd 6
702.2.t.a.181.11 28 117.77 odd 6
702.2.t.a.415.4 28 117.38 odd 6
702.2.t.a.415.11 28 9.2 odd 6
2106.2.b.c.649.4 14 1.1 even 1 trivial
2106.2.b.c.649.11 14 13.12 even 2 inner
2106.2.b.d.649.4 14 39.38 odd 2
2106.2.b.d.649.11 14 3.2 odd 2