Properties

Label 702.2.t.a.415.4
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.4
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(0.419378 + 0.242128i) q^{5} +(4.37722 - 2.52719i) q^{7} +1.00000i q^{8} -0.484256 q^{10} +(2.78126 - 1.60576i) q^{11} +(-0.722307 + 3.53246i) q^{13} +(-2.52719 + 4.37722i) q^{14} +(-0.500000 - 0.866025i) q^{16} -4.20245 q^{17} -3.21153i q^{19} +(0.419378 - 0.242128i) q^{20} +(-1.60576 + 2.78126i) q^{22} +(3.13608 - 5.43186i) q^{23} +(-2.38275 - 4.12704i) q^{25} +(-1.14069 - 3.42035i) q^{26} -5.05438i q^{28} +(2.29627 + 3.97725i) q^{29} +(-5.61504 - 3.24185i) q^{31} +(0.866025 + 0.500000i) q^{32} +(3.63943 - 2.10123i) q^{34} +2.44761 q^{35} +2.08429i q^{37} +(1.60576 + 2.78126i) q^{38} +(-0.242128 + 0.419378i) q^{40} +(9.57301 + 5.52698i) q^{41} +(4.73367 + 8.19896i) q^{43} -3.21153i q^{44} +6.27217i q^{46} +(4.57369 - 2.64062i) q^{47} +(9.27337 - 16.0619i) q^{49} +(4.12704 + 2.38275i) q^{50} +(2.69805 + 2.39177i) q^{52} -6.41990 q^{53} +1.55520 q^{55} +(2.52719 + 4.37722i) q^{56} +(-3.97725 - 2.29627i) q^{58} +(-3.13771 - 1.81156i) q^{59} +(0.500864 + 0.867521i) q^{61} +6.48369 q^{62} -1.00000 q^{64} +(-1.15823 + 1.30655i) q^{65} +(0.936987 + 0.540970i) q^{67} +(-2.10123 + 3.63943i) q^{68} +(-2.11969 + 1.22381i) q^{70} +4.63041i q^{71} +0.325525i q^{73} +(-1.04214 - 1.80504i) q^{74} +(-2.78126 - 1.60576i) q^{76} +(8.11614 - 14.0576i) q^{77} +(3.91818 + 6.78649i) q^{79} -0.484256i q^{80} -11.0540 q^{82} +(5.08022 - 2.93306i) q^{83} +(-1.76242 - 1.01753i) q^{85} +(-8.19896 - 4.73367i) q^{86} +(1.60576 + 2.78126i) q^{88} -8.42912i q^{89} +(5.76550 + 17.2878i) q^{91} +(-3.13608 - 5.43186i) q^{92} +(-2.64062 + 4.57369i) q^{94} +(0.777601 - 1.34684i) q^{95} +(11.3021 - 6.52525i) q^{97} +18.5467i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.419378 + 0.242128i 0.187552 + 0.108283i 0.590836 0.806792i \(-0.298798\pi\)
−0.403284 + 0.915075i \(0.632131\pi\)
\(6\) 0 0
\(7\) 4.37722 2.52719i 1.65443 0.955188i 0.679216 0.733938i \(-0.262320\pi\)
0.975217 0.221249i \(-0.0710134\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.484256 −0.153135
\(11\) 2.78126 1.60576i 0.838583 0.484156i −0.0181994 0.999834i \(-0.505793\pi\)
0.856782 + 0.515678i \(0.172460\pi\)
\(12\) 0 0
\(13\) −0.722307 + 3.53246i −0.200332 + 0.979728i
\(14\) −2.52719 + 4.37722i −0.675420 + 1.16986i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −4.20245 −1.01924 −0.509622 0.860398i \(-0.670215\pi\)
−0.509622 + 0.860398i \(0.670215\pi\)
\(18\) 0 0
\(19\) 3.21153i 0.736775i −0.929672 0.368388i \(-0.879910\pi\)
0.929672 0.368388i \(-0.120090\pi\)
\(20\) 0.419378 0.242128i 0.0937758 0.0541415i
\(21\) 0 0
\(22\) −1.60576 + 2.78126i −0.342350 + 0.592968i
\(23\) 3.13608 5.43186i 0.653919 1.13262i −0.328245 0.944593i \(-0.606457\pi\)
0.982164 0.188028i \(-0.0602094\pi\)
\(24\) 0 0
\(25\) −2.38275 4.12704i −0.476550 0.825408i
\(26\) −1.14069 3.42035i −0.223708 0.670787i
\(27\) 0 0
\(28\) 5.05438i 0.955188i
\(29\) 2.29627 + 3.97725i 0.426406 + 0.738557i 0.996551 0.0829873i \(-0.0264461\pi\)
−0.570144 + 0.821544i \(0.693113\pi\)
\(30\) 0 0
\(31\) −5.61504 3.24185i −1.00849 0.582253i −0.0977420 0.995212i \(-0.531162\pi\)
−0.910750 + 0.412959i \(0.864495\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 3.63943 2.10123i 0.624157 0.360357i
\(35\) 2.44761 0.413722
\(36\) 0 0
\(37\) 2.08429i 0.342654i 0.985214 + 0.171327i \(0.0548055\pi\)
−0.985214 + 0.171327i \(0.945194\pi\)
\(38\) 1.60576 + 2.78126i 0.260489 + 0.451181i
\(39\) 0 0
\(40\) −0.242128 + 0.419378i −0.0382838 + 0.0663095i
\(41\) 9.57301 + 5.52698i 1.49505 + 0.863169i 0.999984 0.00568392i \(-0.00180926\pi\)
0.495070 + 0.868853i \(0.335143\pi\)
\(42\) 0 0
\(43\) 4.73367 + 8.19896i 0.721879 + 1.25033i 0.960246 + 0.279155i \(0.0900544\pi\)
−0.238367 + 0.971175i \(0.576612\pi\)
\(44\) 3.21153i 0.484156i
\(45\) 0 0
\(46\) 6.27217i 0.924780i
\(47\) 4.57369 2.64062i 0.667141 0.385174i −0.127851 0.991793i \(-0.540808\pi\)
0.794992 + 0.606619i \(0.207475\pi\)
\(48\) 0 0
\(49\) 9.27337 16.0619i 1.32477 2.29456i
\(50\) 4.12704 + 2.38275i 0.583652 + 0.336971i
\(51\) 0 0
\(52\) 2.69805 + 2.39177i 0.374152 + 0.331678i
\(53\) −6.41990 −0.881841 −0.440921 0.897546i \(-0.645348\pi\)
−0.440921 + 0.897546i \(0.645348\pi\)
\(54\) 0 0
\(55\) 1.55520 0.209703
\(56\) 2.52719 + 4.37722i 0.337710 + 0.584931i
\(57\) 0 0
\(58\) −3.97725 2.29627i −0.522239 0.301515i
\(59\) −3.13771 1.81156i −0.408495 0.235844i 0.281648 0.959518i \(-0.409119\pi\)
−0.690143 + 0.723673i \(0.742452\pi\)
\(60\) 0 0
\(61\) 0.500864 + 0.867521i 0.0641290 + 0.111075i 0.896307 0.443433i \(-0.146240\pi\)
−0.832178 + 0.554508i \(0.812906\pi\)
\(62\) 6.48369 0.823430
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.15823 + 1.30655i −0.143660 + 0.162057i
\(66\) 0 0
\(67\) 0.936987 + 0.540970i 0.114471 + 0.0660900i 0.556142 0.831087i \(-0.312281\pi\)
−0.441671 + 0.897177i \(0.645614\pi\)
\(68\) −2.10123 + 3.63943i −0.254811 + 0.441346i
\(69\) 0 0
\(70\) −2.11969 + 1.22381i −0.253352 + 0.146273i
\(71\) 4.63041i 0.549529i 0.961512 + 0.274764i \(0.0885999\pi\)
−0.961512 + 0.274764i \(0.911400\pi\)
\(72\) 0 0
\(73\) 0.325525i 0.0380998i 0.999819 + 0.0190499i \(0.00606414\pi\)
−0.999819 + 0.0190499i \(0.993936\pi\)
\(74\) −1.04214 1.80504i −0.121147 0.209832i
\(75\) 0 0
\(76\) −2.78126 1.60576i −0.319033 0.184194i
\(77\) 8.11614 14.0576i 0.924920 1.60201i
\(78\) 0 0
\(79\) 3.91818 + 6.78649i 0.440830 + 0.763540i 0.997751 0.0670253i \(-0.0213508\pi\)
−0.556921 + 0.830565i \(0.688017\pi\)
\(80\) 0.484256i 0.0541415i
\(81\) 0 0
\(82\) −11.0540 −1.22071
\(83\) 5.08022 2.93306i 0.557626 0.321946i −0.194566 0.980889i \(-0.562330\pi\)
0.752192 + 0.658944i \(0.228997\pi\)
\(84\) 0 0
\(85\) −1.76242 1.01753i −0.191161 0.110367i
\(86\) −8.19896 4.73367i −0.884117 0.510445i
\(87\) 0 0
\(88\) 1.60576 + 2.78126i 0.171175 + 0.296484i
\(89\) 8.42912i 0.893485i −0.894662 0.446743i \(-0.852584\pi\)
0.894662 0.446743i \(-0.147416\pi\)
\(90\) 0 0
\(91\) 5.76550 + 17.2878i 0.604388 + 1.81225i
\(92\) −3.13608 5.43186i −0.326959 0.566310i
\(93\) 0 0
\(94\) −2.64062 + 4.57369i −0.272359 + 0.471740i
\(95\) 0.777601 1.34684i 0.0797802 0.138183i
\(96\) 0 0
\(97\) 11.3021 6.52525i 1.14755 0.662539i 0.199262 0.979946i \(-0.436145\pi\)
0.948289 + 0.317407i \(0.102812\pi\)
\(98\) 18.5467i 1.87350i
\(99\) 0 0
\(100\) −4.76550 −0.476550
\(101\) −3.42351 5.92969i −0.340652 0.590027i 0.643902 0.765108i \(-0.277314\pi\)
−0.984554 + 0.175081i \(0.943981\pi\)
\(102\) 0 0
\(103\) −1.77760 + 3.07889i −0.175152 + 0.303373i −0.940214 0.340584i \(-0.889375\pi\)
0.765062 + 0.643957i \(0.222708\pi\)
\(104\) −3.53246 0.722307i −0.346386 0.0708280i
\(105\) 0 0
\(106\) 5.55980 3.20995i 0.540015 0.311778i
\(107\) −1.41392 −0.136689 −0.0683445 0.997662i \(-0.521772\pi\)
−0.0683445 + 0.997662i \(0.521772\pi\)
\(108\) 0 0
\(109\) 4.97525i 0.476543i 0.971199 + 0.238271i \(0.0765808\pi\)
−0.971199 + 0.238271i \(0.923419\pi\)
\(110\) −1.34684 + 0.777601i −0.128417 + 0.0741413i
\(111\) 0 0
\(112\) −4.37722 2.52719i −0.413608 0.238797i
\(113\) −6.54415 + 11.3348i −0.615622 + 1.06629i 0.374653 + 0.927165i \(0.377762\pi\)
−0.990275 + 0.139124i \(0.955571\pi\)
\(114\) 0 0
\(115\) 2.63041 1.51867i 0.245287 0.141616i
\(116\) 4.59254 0.426406
\(117\) 0 0
\(118\) 3.62311 0.333534
\(119\) −18.3951 + 10.6204i −1.68627 + 0.973570i
\(120\) 0 0
\(121\) −0.343044 + 0.594169i −0.0311858 + 0.0540154i
\(122\) −0.867521 0.500864i −0.0785417 0.0453461i
\(123\) 0 0
\(124\) −5.61504 + 3.24185i −0.504246 + 0.291126i
\(125\) 4.72900i 0.422975i
\(126\) 0 0
\(127\) −4.56300 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0.349781 1.71061i 0.0306779 0.150031i
\(131\) 1.23473 2.13862i 0.107879 0.186852i −0.807032 0.590508i \(-0.798927\pi\)
0.914911 + 0.403656i \(0.132261\pi\)
\(132\) 0 0
\(133\) −8.11614 14.0576i −0.703758 1.21895i
\(134\) −1.08194 −0.0934654
\(135\) 0 0
\(136\) 4.20245i 0.360357i
\(137\) −16.9831 + 9.80519i −1.45096 + 0.837714i −0.998536 0.0540880i \(-0.982775\pi\)
−0.452427 + 0.891802i \(0.649442\pi\)
\(138\) 0 0
\(139\) 0.193698 0.335495i 0.0164293 0.0284563i −0.857694 0.514161i \(-0.828104\pi\)
0.874123 + 0.485704i \(0.161437\pi\)
\(140\) 1.22381 2.11969i 0.103430 0.179147i
\(141\) 0 0
\(142\) −2.31521 4.01005i −0.194288 0.336516i
\(143\) 3.66337 + 10.9846i 0.306346 + 0.918575i
\(144\) 0 0
\(145\) 2.22396i 0.184690i
\(146\) −0.162762 0.281913i −0.0134703 0.0233313i
\(147\) 0 0
\(148\) 1.80504 + 1.04214i 0.148374 + 0.0856636i
\(149\) −8.19151 4.72937i −0.671075 0.387445i 0.125409 0.992105i \(-0.459976\pi\)
−0.796484 + 0.604660i \(0.793309\pi\)
\(150\) 0 0
\(151\) 1.15323 0.665819i 0.0938487 0.0541836i −0.452341 0.891845i \(-0.649411\pi\)
0.546190 + 0.837661i \(0.316078\pi\)
\(152\) 3.21153 0.260489
\(153\) 0 0
\(154\) 16.2323i 1.30803i
\(155\) −1.56988 2.71912i −0.126096 0.218405i
\(156\) 0 0
\(157\) 2.92122 5.05970i 0.233139 0.403808i −0.725592 0.688126i \(-0.758434\pi\)
0.958730 + 0.284318i \(0.0917671\pi\)
\(158\) −6.78649 3.91818i −0.539904 0.311714i
\(159\) 0 0
\(160\) 0.242128 + 0.419378i 0.0191419 + 0.0331547i
\(161\) 31.7019i 2.49846i
\(162\) 0 0
\(163\) 15.1340i 1.18538i 0.805430 + 0.592691i \(0.201935\pi\)
−0.805430 + 0.592691i \(0.798065\pi\)
\(164\) 9.57301 5.52698i 0.747527 0.431585i
\(165\) 0 0
\(166\) −2.93306 + 5.08022i −0.227650 + 0.394301i
\(167\) −10.4155 6.01341i −0.805978 0.465331i 0.0395794 0.999216i \(-0.487398\pi\)
−0.845557 + 0.533885i \(0.820732\pi\)
\(168\) 0 0
\(169\) −11.9565 5.10304i −0.919734 0.392542i
\(170\) 2.03506 0.156082
\(171\) 0 0
\(172\) 9.46735 0.721879
\(173\) 4.42932 + 7.67180i 0.336755 + 0.583276i 0.983820 0.179158i \(-0.0573374\pi\)
−0.647066 + 0.762434i \(0.724004\pi\)
\(174\) 0 0
\(175\) −20.8596 12.0433i −1.57684 0.910389i
\(176\) −2.78126 1.60576i −0.209646 0.121039i
\(177\) 0 0
\(178\) 4.21456 + 7.29984i 0.315895 + 0.547146i
\(179\) −10.3704 −0.775121 −0.387561 0.921844i \(-0.626682\pi\)
−0.387561 + 0.921844i \(0.626682\pi\)
\(180\) 0 0
\(181\) 10.8407 0.805783 0.402892 0.915248i \(-0.368005\pi\)
0.402892 + 0.915248i \(0.368005\pi\)
\(182\) −13.6369 12.0889i −1.01084 0.896088i
\(183\) 0 0
\(184\) 5.43186 + 3.13608i 0.400442 + 0.231195i
\(185\) −0.504664 + 0.874103i −0.0371036 + 0.0642653i
\(186\) 0 0
\(187\) −11.6881 + 6.74815i −0.854721 + 0.493474i
\(188\) 5.28124i 0.385174i
\(189\) 0 0
\(190\) 1.55520i 0.112826i
\(191\) 5.62900 + 9.74971i 0.407300 + 0.705464i 0.994586 0.103915i \(-0.0331370\pi\)
−0.587286 + 0.809379i \(0.699804\pi\)
\(192\) 0 0
\(193\) 6.60401 + 3.81283i 0.475367 + 0.274453i 0.718484 0.695544i \(-0.244836\pi\)
−0.243117 + 0.969997i \(0.578170\pi\)
\(194\) −6.52525 + 11.3021i −0.468486 + 0.811441i
\(195\) 0 0
\(196\) −9.27337 16.0619i −0.662383 1.14728i
\(197\) 24.5170i 1.74677i 0.487035 + 0.873383i \(0.338079\pi\)
−0.487035 + 0.873383i \(0.661921\pi\)
\(198\) 0 0
\(199\) −13.5310 −0.959187 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(200\) 4.12704 2.38275i 0.291826 0.168486i
\(201\) 0 0
\(202\) 5.92969 + 3.42351i 0.417212 + 0.240877i
\(203\) 20.1025 + 11.6062i 1.41092 + 0.814596i
\(204\) 0 0
\(205\) 2.67647 + 4.63579i 0.186933 + 0.323777i
\(206\) 3.55520i 0.247703i
\(207\) 0 0
\(208\) 3.42035 1.14069i 0.237159 0.0790929i
\(209\) −5.15696 8.93211i −0.356714 0.617847i
\(210\) 0 0
\(211\) −11.9346 + 20.6713i −0.821610 + 1.42307i 0.0828724 + 0.996560i \(0.473591\pi\)
−0.904483 + 0.426511i \(0.859743\pi\)
\(212\) −3.20995 + 5.55980i −0.220460 + 0.381849i
\(213\) 0 0
\(214\) 1.22449 0.706961i 0.0837045 0.0483268i
\(215\) 4.58462i 0.312668i
\(216\) 0 0
\(217\) −32.7710 −2.22464
\(218\) −2.48763 4.30869i −0.168483 0.291822i
\(219\) 0 0
\(220\) 0.777601 1.34684i 0.0524258 0.0908042i
\(221\) 3.03546 14.8450i 0.204187 0.998583i
\(222\) 0 0
\(223\) −11.1456 + 6.43490i −0.746363 + 0.430913i −0.824378 0.566040i \(-0.808475\pi\)
0.0780155 + 0.996952i \(0.475142\pi\)
\(224\) 5.05438 0.337710
\(225\) 0 0
\(226\) 13.0883i 0.870621i
\(227\) 15.6362 9.02759i 1.03781 0.599182i 0.118600 0.992942i \(-0.462159\pi\)
0.919213 + 0.393760i \(0.128826\pi\)
\(228\) 0 0
\(229\) −18.3370 10.5869i −1.21174 0.699599i −0.248603 0.968606i \(-0.579971\pi\)
−0.963138 + 0.269006i \(0.913305\pi\)
\(230\) −1.51867 + 2.63041i −0.100138 + 0.173444i
\(231\) 0 0
\(232\) −3.97725 + 2.29627i −0.261119 + 0.150757i
\(233\) −29.0610 −1.90385 −0.951923 0.306337i \(-0.900897\pi\)
−0.951923 + 0.306337i \(0.900897\pi\)
\(234\) 0 0
\(235\) 2.55747 0.166831
\(236\) −3.13771 + 1.81156i −0.204247 + 0.117922i
\(237\) 0 0
\(238\) 10.6204 18.3951i 0.688418 1.19237i
\(239\) −6.29516 3.63451i −0.407200 0.235097i 0.282386 0.959301i \(-0.408874\pi\)
−0.689586 + 0.724204i \(0.742207\pi\)
\(240\) 0 0
\(241\) 15.5109 8.95521i 0.999144 0.576856i 0.0911491 0.995837i \(-0.470946\pi\)
0.907995 + 0.418981i \(0.137613\pi\)
\(242\) 0.686087i 0.0441034i
\(243\) 0 0
\(244\) 1.00173 0.0641290
\(245\) 7.77809 4.49068i 0.496924 0.286899i
\(246\) 0 0
\(247\) 11.3446 + 2.31971i 0.721839 + 0.147600i
\(248\) 3.24185 5.61504i 0.205857 0.356556i
\(249\) 0 0
\(250\) 2.36450 + 4.09543i 0.149544 + 0.259018i
\(251\) 3.84702 0.242822 0.121411 0.992602i \(-0.461258\pi\)
0.121411 + 0.992602i \(0.461258\pi\)
\(252\) 0 0
\(253\) 20.1432i 1.26639i
\(254\) 3.95167 2.28150i 0.247950 0.143154i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.38375 + 12.7890i −0.460586 + 0.797758i −0.998990 0.0449285i \(-0.985694\pi\)
0.538404 + 0.842687i \(0.319027\pi\)
\(258\) 0 0
\(259\) 5.26738 + 9.12337i 0.327299 + 0.566899i
\(260\) 0.552388 + 1.65633i 0.0342576 + 0.102721i
\(261\) 0 0
\(262\) 2.46946i 0.152564i
\(263\) 4.38124 + 7.58853i 0.270159 + 0.467929i 0.968902 0.247443i \(-0.0795904\pi\)
−0.698743 + 0.715372i \(0.746257\pi\)
\(264\) 0 0
\(265\) −2.69237 1.55444i −0.165391 0.0954884i
\(266\) 14.0576 + 8.11614i 0.861924 + 0.497632i
\(267\) 0 0
\(268\) 0.936987 0.540970i 0.0572356 0.0330450i
\(269\) 8.90736 0.543091 0.271546 0.962426i \(-0.412465\pi\)
0.271546 + 0.962426i \(0.412465\pi\)
\(270\) 0 0
\(271\) 3.58551i 0.217804i −0.994052 0.108902i \(-0.965266\pi\)
0.994052 0.108902i \(-0.0347335\pi\)
\(272\) 2.10123 + 3.63943i 0.127406 + 0.220673i
\(273\) 0 0
\(274\) 9.80519 16.9831i 0.592353 1.02599i
\(275\) −13.2541 7.65226i −0.799253 0.461449i
\(276\) 0 0
\(277\) 7.43966 + 12.8859i 0.447006 + 0.774237i 0.998190 0.0601468i \(-0.0191569\pi\)
−0.551183 + 0.834384i \(0.685824\pi\)
\(278\) 0.387396i 0.0232345i
\(279\) 0 0
\(280\) 2.44761i 0.146273i
\(281\) −14.2995 + 8.25582i −0.853037 + 0.492501i −0.861674 0.507462i \(-0.830584\pi\)
0.00863764 + 0.999963i \(0.497251\pi\)
\(282\) 0 0
\(283\) 0.267833 0.463900i 0.0159210 0.0275760i −0.857955 0.513725i \(-0.828265\pi\)
0.873876 + 0.486149i \(0.161599\pi\)
\(284\) 4.01005 + 2.31521i 0.237953 + 0.137382i
\(285\) 0 0
\(286\) −8.66485 7.68122i −0.512363 0.454200i
\(287\) 55.8709 3.29795
\(288\) 0 0
\(289\) 0.660618 0.0388599
\(290\) −1.11198 1.92601i −0.0652978 0.113099i
\(291\) 0 0
\(292\) 0.281913 + 0.162762i 0.0164977 + 0.00952495i
\(293\) 16.9651 + 9.79482i 0.991113 + 0.572220i 0.905607 0.424118i \(-0.139416\pi\)
0.0855065 + 0.996338i \(0.472749\pi\)
\(294\) 0 0
\(295\) −0.877257 1.51945i −0.0510758 0.0884660i
\(296\) −2.08429 −0.121147
\(297\) 0 0
\(298\) 9.45874 0.547930
\(299\) 16.9226 + 15.0016i 0.978659 + 0.867562i
\(300\) 0 0
\(301\) 41.4407 + 23.9258i 2.38860 + 1.37906i
\(302\) −0.665819 + 1.15323i −0.0383136 + 0.0663611i
\(303\) 0 0
\(304\) −2.78126 + 1.60576i −0.159516 + 0.0920969i
\(305\) 0.485092i 0.0277763i
\(306\) 0 0
\(307\) 1.26064i 0.0719485i 0.999353 + 0.0359743i \(0.0114534\pi\)
−0.999353 + 0.0359743i \(0.988547\pi\)
\(308\) −8.11614 14.0576i −0.462460 0.801004i
\(309\) 0 0
\(310\) 2.71912 + 1.56988i 0.154436 + 0.0891634i
\(311\) −8.79222 + 15.2286i −0.498561 + 0.863533i −0.999999 0.00166095i \(-0.999471\pi\)
0.501438 + 0.865194i \(0.332805\pi\)
\(312\) 0 0
\(313\) −0.102706 0.177891i −0.00580526 0.0100550i 0.863108 0.505019i \(-0.168515\pi\)
−0.868913 + 0.494964i \(0.835181\pi\)
\(314\) 5.84243i 0.329708i
\(315\) 0 0
\(316\) 7.83637 0.440830
\(317\) 15.6583 9.04030i 0.879455 0.507754i 0.00897641 0.999960i \(-0.497143\pi\)
0.870479 + 0.492206i \(0.163809\pi\)
\(318\) 0 0
\(319\) 12.7731 + 7.37453i 0.715154 + 0.412894i
\(320\) −0.419378 0.242128i −0.0234439 0.0135354i
\(321\) 0 0
\(322\) 15.8509 + 27.4546i 0.883339 + 1.52999i
\(323\) 13.4963i 0.750954i
\(324\) 0 0
\(325\) 16.2997 5.43597i 0.904144 0.301533i
\(326\) −7.56698 13.1064i −0.419096 0.725896i
\(327\) 0 0
\(328\) −5.52698 + 9.57301i −0.305176 + 0.528581i
\(329\) 13.3467 23.1171i 0.735827 1.27449i
\(330\) 0 0
\(331\) 3.63300 2.09751i 0.199688 0.115290i −0.396822 0.917896i \(-0.629887\pi\)
0.596510 + 0.802606i \(0.296554\pi\)
\(332\) 5.86613i 0.321946i
\(333\) 0 0
\(334\) 12.0268 0.658078
\(335\) 0.261968 + 0.453742i 0.0143128 + 0.0247906i
\(336\) 0 0
\(337\) −6.88041 + 11.9172i −0.374800 + 0.649172i −0.990297 0.138967i \(-0.955622\pi\)
0.615497 + 0.788139i \(0.288955\pi\)
\(338\) 12.9062 1.55891i 0.702004 0.0847935i
\(339\) 0 0
\(340\) −1.76242 + 1.01753i −0.0955805 + 0.0551834i
\(341\) −20.8226 −1.12761
\(342\) 0 0
\(343\) 58.3615i 3.15123i
\(344\) −8.19896 + 4.73367i −0.442059 + 0.255223i
\(345\) 0 0
\(346\) −7.67180 4.42932i −0.412439 0.238122i
\(347\) −11.9351 + 20.6722i −0.640710 + 1.10974i 0.344565 + 0.938763i \(0.388026\pi\)
−0.985275 + 0.170979i \(0.945307\pi\)
\(348\) 0 0
\(349\) −16.7557 + 9.67391i −0.896913 + 0.517833i −0.876197 0.481953i \(-0.839928\pi\)
−0.0207153 + 0.999785i \(0.506594\pi\)
\(350\) 24.0866 1.28748
\(351\) 0 0
\(352\) 3.21153 0.171175
\(353\) 24.0606 13.8914i 1.28062 0.739365i 0.303656 0.952782i \(-0.401793\pi\)
0.976961 + 0.213417i \(0.0684593\pi\)
\(354\) 0 0
\(355\) −1.12115 + 1.94189i −0.0595046 + 0.103065i
\(356\) −7.29984 4.21456i −0.386891 0.223371i
\(357\) 0 0
\(358\) 8.98104 5.18521i 0.474663 0.274047i
\(359\) 23.8304i 1.25772i −0.777517 0.628861i \(-0.783521\pi\)
0.777517 0.628861i \(-0.216479\pi\)
\(360\) 0 0
\(361\) 8.68609 0.457162
\(362\) −9.38833 + 5.42035i −0.493440 + 0.284887i
\(363\) 0 0
\(364\) 17.8544 + 3.65081i 0.935824 + 0.191355i
\(365\) −0.0788187 + 0.136518i −0.00412556 + 0.00714568i
\(366\) 0 0
\(367\) 5.04643 + 8.74067i 0.263421 + 0.456259i 0.967149 0.254211i \(-0.0818157\pi\)
−0.703728 + 0.710470i \(0.748482\pi\)
\(368\) −6.27217 −0.326959
\(369\) 0 0
\(370\) 1.00933i 0.0524724i
\(371\) −28.1013 + 16.2243i −1.45895 + 0.842324i
\(372\) 0 0
\(373\) 4.27370 7.40227i 0.221284 0.383275i −0.733914 0.679242i \(-0.762309\pi\)
0.955198 + 0.295967i \(0.0956419\pi\)
\(374\) 6.74815 11.6881i 0.348938 0.604379i
\(375\) 0 0
\(376\) 2.64062 + 4.57369i 0.136180 + 0.235870i
\(377\) −15.7081 + 5.23868i −0.809008 + 0.269806i
\(378\) 0 0
\(379\) 30.7125i 1.57760i −0.614653 0.788798i \(-0.710704\pi\)
0.614653 0.788798i \(-0.289296\pi\)
\(380\) −0.777601 1.34684i −0.0398901 0.0690916i
\(381\) 0 0
\(382\) −9.74971 5.62900i −0.498839 0.288005i
\(383\) 2.49892 + 1.44275i 0.127689 + 0.0737212i 0.562484 0.826808i \(-0.309846\pi\)
−0.434795 + 0.900529i \(0.643179\pi\)
\(384\) 0 0
\(385\) 6.80746 3.93029i 0.346940 0.200306i
\(386\) −7.62566 −0.388136
\(387\) 0 0
\(388\) 13.0505i 0.662539i
\(389\) −5.94776 10.3018i −0.301564 0.522323i 0.674927 0.737885i \(-0.264175\pi\)
−0.976490 + 0.215561i \(0.930842\pi\)
\(390\) 0 0
\(391\) −13.1792 + 22.8271i −0.666503 + 1.15442i
\(392\) 16.0619 + 9.27337i 0.811250 + 0.468376i
\(393\) 0 0
\(394\) −12.2585 21.2324i −0.617575 1.06967i
\(395\) 3.79481i 0.190937i
\(396\) 0 0
\(397\) 23.8021i 1.19459i 0.802020 + 0.597297i \(0.203759\pi\)
−0.802020 + 0.597297i \(0.796241\pi\)
\(398\) 11.7182 6.76550i 0.587379 0.339124i
\(399\) 0 0
\(400\) −2.38275 + 4.12704i −0.119137 + 0.206352i
\(401\) 7.79168 + 4.49853i 0.389098 + 0.224646i 0.681769 0.731567i \(-0.261211\pi\)
−0.292671 + 0.956213i \(0.594544\pi\)
\(402\) 0 0
\(403\) 15.5075 17.4933i 0.772483 0.871404i
\(404\) −6.84702 −0.340652
\(405\) 0 0
\(406\) −23.2124 −1.15201
\(407\) 3.34687 + 5.79695i 0.165898 + 0.287344i
\(408\) 0 0
\(409\) −27.8344 16.0702i −1.37632 0.794620i −0.384608 0.923080i \(-0.625663\pi\)
−0.991715 + 0.128460i \(0.958997\pi\)
\(410\) −4.63579 2.67647i −0.228945 0.132182i
\(411\) 0 0
\(412\) 1.77760 + 3.07889i 0.0875761 + 0.151686i
\(413\) −18.3126 −0.901103
\(414\) 0 0
\(415\) 2.84071 0.139445
\(416\) −2.39177 + 2.69805i −0.117266 + 0.132283i
\(417\) 0 0
\(418\) 8.93211 + 5.15696i 0.436884 + 0.252235i
\(419\) 1.68689 2.92177i 0.0824098 0.142738i −0.821875 0.569668i \(-0.807072\pi\)
0.904285 + 0.426930i \(0.140405\pi\)
\(420\) 0 0
\(421\) −2.26626 + 1.30842i −0.110451 + 0.0637687i −0.554208 0.832378i \(-0.686979\pi\)
0.443757 + 0.896147i \(0.353645\pi\)
\(422\) 23.8692i 1.16193i
\(423\) 0 0
\(424\) 6.41990i 0.311778i
\(425\) 10.0134 + 17.3437i 0.485721 + 0.841293i
\(426\) 0 0
\(427\) 4.38478 + 2.53155i 0.212194 + 0.122510i
\(428\) −0.706961 + 1.22449i −0.0341722 + 0.0591880i
\(429\) 0 0
\(430\) −2.29231 3.97040i −0.110545 0.191470i
\(431\) 1.25113i 0.0602647i −0.999546 0.0301324i \(-0.990407\pi\)
0.999546 0.0301324i \(-0.00959288\pi\)
\(432\) 0 0
\(433\) −4.77117 −0.229288 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(434\) 28.3806 16.3855i 1.36231 0.786530i
\(435\) 0 0
\(436\) 4.30869 + 2.48763i 0.206349 + 0.119136i
\(437\) −17.4446 10.0716i −0.834486 0.481791i
\(438\) 0 0
\(439\) −16.8509 29.1867i −0.804252 1.39300i −0.916795 0.399358i \(-0.869233\pi\)
0.112543 0.993647i \(-0.464100\pi\)
\(440\) 1.55520i 0.0741413i
\(441\) 0 0
\(442\) 4.79371 + 14.3739i 0.228014 + 0.683696i
\(443\) −2.68876 4.65706i −0.127747 0.221264i 0.795057 0.606535i \(-0.207441\pi\)
−0.922803 + 0.385272i \(0.874108\pi\)
\(444\) 0 0
\(445\) 2.04093 3.53499i 0.0967492 0.167575i
\(446\) 6.43490 11.1456i 0.304701 0.527758i
\(447\) 0 0
\(448\) −4.37722 + 2.52719i −0.206804 + 0.119398i
\(449\) 16.7813i 0.791958i 0.918260 + 0.395979i \(0.129595\pi\)
−0.918260 + 0.395979i \(0.870405\pi\)
\(450\) 0 0
\(451\) 35.5001 1.67163
\(452\) 6.54415 + 11.3348i 0.307811 + 0.533145i
\(453\) 0 0
\(454\) −9.02759 + 15.6362i −0.423686 + 0.733845i
\(455\) −1.76793 + 8.64609i −0.0828817 + 0.405335i
\(456\) 0 0
\(457\) −20.5067 + 11.8396i −0.959263 + 0.553831i −0.895946 0.444162i \(-0.853501\pi\)
−0.0633172 + 0.997993i \(0.520168\pi\)
\(458\) 21.1737 0.989383
\(459\) 0 0
\(460\) 3.03733i 0.141616i
\(461\) 29.8451 17.2311i 1.39003 0.802533i 0.396709 0.917944i \(-0.370152\pi\)
0.993318 + 0.115412i \(0.0368188\pi\)
\(462\) 0 0
\(463\) 19.4659 + 11.2386i 0.904657 + 0.522304i 0.878708 0.477359i \(-0.158406\pi\)
0.0259487 + 0.999663i \(0.491739\pi\)
\(464\) 2.29627 3.97725i 0.106602 0.184639i
\(465\) 0 0
\(466\) 25.1675 14.5305i 1.16586 0.673111i
\(467\) 4.43632 0.205288 0.102644 0.994718i \(-0.467270\pi\)
0.102644 + 0.994718i \(0.467270\pi\)
\(468\) 0 0
\(469\) 5.46853 0.252513
\(470\) −2.21484 + 1.27874i −0.102163 + 0.0589837i
\(471\) 0 0
\(472\) 1.81156 3.13771i 0.0833836 0.144425i
\(473\) 26.3312 + 15.2023i 1.21071 + 0.699004i
\(474\) 0 0
\(475\) −13.2541 + 7.65226i −0.608140 + 0.351110i
\(476\) 21.2408i 0.973570i
\(477\) 0 0
\(478\) 7.26902 0.332477
\(479\) −10.2334 + 5.90827i −0.467577 + 0.269956i −0.715225 0.698894i \(-0.753676\pi\)
0.247648 + 0.968850i \(0.420342\pi\)
\(480\) 0 0
\(481\) −7.36265 1.50549i −0.335708 0.0686446i
\(482\) −8.95521 + 15.5109i −0.407899 + 0.706501i
\(483\) 0 0
\(484\) 0.343044 + 0.594169i 0.0155929 + 0.0270077i
\(485\) 6.31979 0.286967
\(486\) 0 0
\(487\) 25.8373i 1.17080i 0.810745 + 0.585400i \(0.199062\pi\)
−0.810745 + 0.585400i \(0.800938\pi\)
\(488\) −0.867521 + 0.500864i −0.0392708 + 0.0226730i
\(489\) 0 0
\(490\) −4.49068 + 7.77809i −0.202868 + 0.351378i
\(491\) 5.59995 9.69940i 0.252722 0.437728i −0.711552 0.702633i \(-0.752007\pi\)
0.964274 + 0.264906i \(0.0853408\pi\)
\(492\) 0 0
\(493\) −9.64996 16.7142i −0.434612 0.752771i
\(494\) −10.9846 + 3.66337i −0.494219 + 0.164823i
\(495\) 0 0
\(496\) 6.48369i 0.291126i
\(497\) 11.7019 + 20.2683i 0.524903 + 0.909159i
\(498\) 0 0
\(499\) −13.3884 7.72982i −0.599349 0.346034i 0.169436 0.985541i \(-0.445805\pi\)
−0.768786 + 0.639507i \(0.779139\pi\)
\(500\) −4.09543 2.36450i −0.183153 0.105744i
\(501\) 0 0
\(502\) −3.33162 + 1.92351i −0.148697 + 0.0858505i
\(503\) 6.00330 0.267674 0.133837 0.991003i \(-0.457270\pi\)
0.133837 + 0.991003i \(0.457270\pi\)
\(504\) 0 0
\(505\) 3.31571i 0.147547i
\(506\) 10.0716 + 17.4446i 0.447738 + 0.775505i
\(507\) 0 0
\(508\) −2.28150 + 3.95167i −0.101225 + 0.175327i
\(509\) −18.6801 10.7849i −0.827979 0.478034i 0.0251810 0.999683i \(-0.491984\pi\)
−0.853160 + 0.521649i \(0.825317\pi\)
\(510\) 0 0
\(511\) 0.822663 + 1.42489i 0.0363925 + 0.0630336i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 14.7675i 0.651367i
\(515\) −1.49097 + 0.860814i −0.0657001 + 0.0379320i
\(516\) 0 0
\(517\) 8.48043 14.6885i 0.372969 0.646001i
\(518\) −9.12337 5.26738i −0.400858 0.231435i
\(519\) 0 0
\(520\) −1.30655 1.15823i −0.0572958 0.0507916i
\(521\) −24.0543 −1.05384 −0.526918 0.849916i \(-0.676653\pi\)
−0.526918 + 0.849916i \(0.676653\pi\)
\(522\) 0 0
\(523\) −10.8449 −0.474215 −0.237107 0.971483i \(-0.576199\pi\)
−0.237107 + 0.971483i \(0.576199\pi\)
\(524\) −1.23473 2.13862i −0.0539395 0.0934260i
\(525\) 0 0
\(526\) −7.58853 4.38124i −0.330876 0.191031i
\(527\) 23.5970 + 13.6237i 1.02790 + 0.593458i
\(528\) 0 0
\(529\) −8.17003 14.1509i −0.355219 0.615257i
\(530\) 3.10888 0.135041
\(531\) 0 0
\(532\) −16.2323 −0.703758
\(533\) −26.4385 + 29.8241i −1.14518 + 1.29183i
\(534\) 0 0
\(535\) −0.592967 0.342350i −0.0256362 0.0148011i
\(536\) −0.540970 + 0.936987i −0.0233663 + 0.0404717i
\(537\) 0 0
\(538\) −7.71400 + 4.45368i −0.332574 + 0.192012i
\(539\) 59.5633i 2.56558i
\(540\) 0 0
\(541\) 12.2998i 0.528808i −0.964412 0.264404i \(-0.914825\pi\)
0.964412 0.264404i \(-0.0851753\pi\)
\(542\) 1.79275 + 3.10514i 0.0770054 + 0.133377i
\(543\) 0 0
\(544\) −3.63943 2.10123i −0.156039 0.0900894i
\(545\) −1.20465 + 2.08651i −0.0516014 + 0.0893763i
\(546\) 0 0
\(547\) 10.3452 + 17.9183i 0.442327 + 0.766133i 0.997862 0.0653602i \(-0.0208196\pi\)
−0.555534 + 0.831493i \(0.687486\pi\)
\(548\) 19.6104i 0.837714i
\(549\) 0 0
\(550\) 15.3045 0.652587
\(551\) 12.7731 7.37453i 0.544151 0.314165i
\(552\) 0 0
\(553\) 34.3015 + 19.8040i 1.45865 + 0.842151i
\(554\) −12.8859 7.43966i −0.547468 0.316081i
\(555\) 0 0
\(556\) −0.193698 0.335495i −0.00821463 0.0142282i
\(557\) 14.2838i 0.605226i 0.953114 + 0.302613i \(0.0978589\pi\)
−0.953114 + 0.302613i \(0.902141\pi\)
\(558\) 0 0
\(559\) −32.3817 + 10.7993i −1.36960 + 0.456764i
\(560\) −1.22381 2.11969i −0.0517152 0.0895734i
\(561\) 0 0
\(562\) 8.25582 14.2995i 0.348251 0.603188i
\(563\) −17.9673 + 31.1203i −0.757231 + 1.31156i 0.187026 + 0.982355i \(0.440115\pi\)
−0.944257 + 0.329208i \(0.893218\pi\)
\(564\) 0 0
\(565\) −5.48895 + 3.16905i −0.230922 + 0.133323i
\(566\) 0.535666i 0.0225157i
\(567\) 0 0
\(568\) −4.63041 −0.194288
\(569\) −18.5315 32.0976i −0.776882 1.34560i −0.933730 0.357977i \(-0.883467\pi\)
0.156848 0.987623i \(-0.449867\pi\)
\(570\) 0 0
\(571\) 23.1732 40.1372i 0.969769 1.67969i 0.273551 0.961857i \(-0.411802\pi\)
0.696217 0.717831i \(-0.254865\pi\)
\(572\) 11.3446 + 2.31971i 0.474341 + 0.0969919i
\(573\) 0 0
\(574\) −48.3856 + 27.9354i −2.01958 + 1.16600i
\(575\) −29.8900 −1.24650
\(576\) 0 0
\(577\) 31.4447i 1.30906i −0.756036 0.654530i \(-0.772866\pi\)
0.756036 0.654530i \(-0.227134\pi\)
\(578\) −0.572112 + 0.330309i −0.0237967 + 0.0137390i
\(579\) 0 0
\(580\) 1.92601 + 1.11198i 0.0799731 + 0.0461725i
\(581\) 14.8248 25.6773i 0.615037 1.06527i
\(582\) 0 0
\(583\) −17.8555 + 10.3088i −0.739497 + 0.426949i
\(584\) −0.325525 −0.0134703
\(585\) 0 0
\(586\) −19.5896 −0.809241
\(587\) −27.0638 + 15.6253i −1.11704 + 0.644924i −0.940644 0.339395i \(-0.889778\pi\)
−0.176397 + 0.984319i \(0.556444\pi\)
\(588\) 0 0
\(589\) −10.4113 + 18.0329i −0.428989 + 0.743031i
\(590\) 1.51945 + 0.877257i 0.0625549 + 0.0361161i
\(591\) 0 0
\(592\) 1.80504 1.04214i 0.0741868 0.0428318i
\(593\) 26.3978i 1.08403i −0.840370 0.542013i \(-0.817662\pi\)
0.840370 0.542013i \(-0.182338\pi\)
\(594\) 0 0
\(595\) −10.2860 −0.421684
\(596\) −8.19151 + 4.72937i −0.335537 + 0.193723i
\(597\) 0 0
\(598\) −22.1562 4.53043i −0.906033 0.185263i
\(599\) −3.40524 + 5.89806i −0.139135 + 0.240988i −0.927169 0.374643i \(-0.877765\pi\)
0.788035 + 0.615631i \(0.211099\pi\)
\(600\) 0 0
\(601\) −4.82516 8.35742i −0.196822 0.340906i 0.750674 0.660673i \(-0.229729\pi\)
−0.947496 + 0.319766i \(0.896396\pi\)
\(602\) −47.8516 −1.95028
\(603\) 0 0
\(604\) 1.33164i 0.0541836i
\(605\) −0.287730 + 0.166121i −0.0116979 + 0.00675377i
\(606\) 0 0
\(607\) −13.7896 + 23.8842i −0.559702 + 0.969432i 0.437819 + 0.899063i \(0.355751\pi\)
−0.997521 + 0.0703688i \(0.977582\pi\)
\(608\) 1.60576 2.78126i 0.0651223 0.112795i
\(609\) 0 0
\(610\) −0.242546 0.420102i −0.00982041 0.0170094i
\(611\) 6.02428 + 18.0637i 0.243716 + 0.730779i
\(612\) 0 0
\(613\) 16.0314i 0.647502i 0.946142 + 0.323751i \(0.104944\pi\)
−0.946142 + 0.323751i \(0.895056\pi\)
\(614\) −0.630320 1.09175i −0.0254377 0.0440593i
\(615\) 0 0
\(616\) 14.0576 + 8.11614i 0.566395 + 0.327009i
\(617\) −11.4362 6.60269i −0.460404 0.265814i 0.251810 0.967777i \(-0.418974\pi\)
−0.712214 + 0.701962i \(0.752307\pi\)
\(618\) 0 0
\(619\) 1.53649 0.887091i 0.0617566 0.0356552i −0.468804 0.883302i \(-0.655315\pi\)
0.530560 + 0.847647i \(0.321982\pi\)
\(620\) −3.13977 −0.126096
\(621\) 0 0
\(622\) 17.5844i 0.705072i
\(623\) −21.3020 36.8961i −0.853446 1.47821i
\(624\) 0 0
\(625\) −10.7687 + 18.6520i −0.430749 + 0.746079i
\(626\) 0.177891 + 0.102706i 0.00710997 + 0.00410494i
\(627\) 0 0
\(628\) −2.92122 5.05970i −0.116569 0.201904i
\(629\) 8.75911i 0.349249i
\(630\) 0 0
\(631\) 30.2211i 1.20308i 0.798841 + 0.601542i \(0.205447\pi\)
−0.798841 + 0.601542i \(0.794553\pi\)
\(632\) −6.78649 + 3.91818i −0.269952 + 0.155857i
\(633\) 0 0
\(634\) −9.04030 + 15.6583i −0.359036 + 0.621869i
\(635\) −1.91362 1.10483i −0.0759397 0.0438438i
\(636\) 0 0
\(637\) 50.0399 + 44.3594i 1.98265 + 1.75759i
\(638\) −14.7491 −0.583921
\(639\) 0 0
\(640\) 0.484256 0.0191419
\(641\) −0.301673 0.522512i −0.0119154 0.0206380i 0.860006 0.510284i \(-0.170460\pi\)
−0.871922 + 0.489646i \(0.837126\pi\)
\(642\) 0 0
\(643\) 27.0250 + 15.6029i 1.06576 + 0.615317i 0.927020 0.375012i \(-0.122361\pi\)
0.138740 + 0.990329i \(0.455695\pi\)
\(644\) −27.4546 15.8509i −1.08186 0.624615i
\(645\) 0 0
\(646\) −6.74815 11.6881i −0.265502 0.459864i
\(647\) 48.8937 1.92221 0.961105 0.276182i \(-0.0890692\pi\)
0.961105 + 0.276182i \(0.0890692\pi\)
\(648\) 0 0
\(649\) −11.6357 −0.456742
\(650\) −11.3980 + 12.8575i −0.447064 + 0.504314i
\(651\) 0 0
\(652\) 13.1064 + 7.56698i 0.513286 + 0.296346i
\(653\) 19.1944 33.2457i 0.751135 1.30100i −0.196138 0.980576i \(-0.562840\pi\)
0.947273 0.320427i \(-0.103827\pi\)
\(654\) 0 0
\(655\) 1.03564 0.597926i 0.0404658 0.0233629i
\(656\) 11.0540i 0.431585i
\(657\) 0 0
\(658\) 26.6934i 1.04062i
\(659\) −20.9568 36.2983i −0.816362 1.41398i −0.908346 0.418220i \(-0.862654\pi\)
0.0919840 0.995760i \(-0.470679\pi\)
\(660\) 0 0
\(661\) 10.5208 + 6.07418i 0.409211 + 0.236258i 0.690451 0.723379i \(-0.257412\pi\)
−0.281240 + 0.959638i \(0.590746\pi\)
\(662\) −2.09751 + 3.63300i −0.0815221 + 0.141200i
\(663\) 0 0
\(664\) 2.93306 + 5.08022i 0.113825 + 0.197151i
\(665\) 7.86058i 0.304820i
\(666\) 0 0
\(667\) 28.8051 1.11534
\(668\) −10.4155 + 6.01341i −0.402989 + 0.232666i
\(669\) 0 0
\(670\) −0.453742 0.261968i −0.0175296 0.0101207i
\(671\) 2.78607 + 1.60854i 0.107555 + 0.0620969i
\(672\) 0 0
\(673\) −18.3252 31.7403i −0.706386 1.22350i −0.966189 0.257835i \(-0.916991\pi\)
0.259803 0.965662i \(-0.416342\pi\)
\(674\) 13.7608i 0.530047i
\(675\) 0 0
\(676\) −10.3976 + 7.80315i −0.399909 + 0.300121i
\(677\) 19.2964 + 33.4223i 0.741620 + 1.28452i 0.951757 + 0.306851i \(0.0992755\pi\)
−0.210138 + 0.977672i \(0.567391\pi\)
\(678\) 0 0
\(679\) 32.9811 57.1249i 1.26570 2.19225i
\(680\) 1.01753 1.76242i 0.0390206 0.0675856i
\(681\) 0 0
\(682\) 18.0329 10.4113i 0.690514 0.398669i
\(683\) 31.4038i 1.20163i 0.799387 + 0.600816i \(0.205158\pi\)
−0.799387 + 0.600816i \(0.794842\pi\)
\(684\) 0 0
\(685\) −9.49644 −0.362840
\(686\) 29.1808 + 50.5426i 1.11413 + 1.92972i
\(687\) 0 0
\(688\) 4.73367 8.19896i 0.180470 0.312583i
\(689\) 4.63714 22.6780i 0.176661 0.863965i
\(690\) 0 0
\(691\) −16.6786 + 9.62941i −0.634485 + 0.366320i −0.782487 0.622667i \(-0.786049\pi\)
0.148002 + 0.988987i \(0.452716\pi\)
\(692\) 8.85863 0.336755
\(693\) 0 0
\(694\) 23.8702i 0.906100i
\(695\) 0.162465 0.0937995i 0.00616266 0.00355802i
\(696\) 0 0
\(697\) −40.2301 23.2269i −1.52383 0.879781i
\(698\) 9.67391 16.7557i 0.366163 0.634213i
\(699\) 0 0
\(700\) −20.8596 + 12.0433i −0.788420 + 0.455194i
\(701\) 26.7781 1.01139 0.505697 0.862711i \(-0.331235\pi\)
0.505697 + 0.862711i \(0.331235\pi\)
\(702\) 0 0
\(703\) 6.69374 0.252459
\(704\) −2.78126 + 1.60576i −0.104823 + 0.0605195i
\(705\) 0 0
\(706\) −13.8914 + 24.0606i −0.522810 + 0.905533i
\(707\) −29.9709 17.3037i −1.12717 0.650773i
\(708\) 0 0
\(709\) −40.2439 + 23.2348i −1.51139 + 0.872602i −0.511479 + 0.859296i \(0.670902\pi\)
−0.999911 + 0.0133058i \(0.995764\pi\)
\(710\) 2.24230i 0.0841522i
\(711\) 0 0
\(712\) 8.42912 0.315895
\(713\) −35.2185 + 20.3334i −1.31894 + 0.761492i
\(714\) 0 0
\(715\) −1.12333 + 5.49369i −0.0420103 + 0.205452i
\(716\) −5.18521 + 8.98104i −0.193780 + 0.335637i
\(717\) 0 0
\(718\) 11.9152 + 20.6378i 0.444672 + 0.770195i
\(719\) 4.81378 0.179524 0.0897619 0.995963i \(-0.471389\pi\)
0.0897619 + 0.995963i \(0.471389\pi\)
\(720\) 0 0
\(721\) 17.9693i 0.669213i
\(722\) −7.52237 + 4.34304i −0.279954 + 0.161631i
\(723\) 0 0
\(724\) 5.42035 9.38833i 0.201446 0.348914i
\(725\) 10.9429 18.9536i 0.406407 0.703918i
\(726\) 0 0
\(727\) −6.35915 11.0144i −0.235848 0.408501i 0.723671 0.690145i \(-0.242453\pi\)
−0.959519 + 0.281645i \(0.909120\pi\)
\(728\) −17.2878 + 5.76550i −0.640727 + 0.213684i
\(729\) 0 0
\(730\) 0.157637i 0.00583442i
\(731\) −19.8930 34.4558i −0.735771 1.27439i
\(732\) 0 0
\(733\) 3.68483 + 2.12744i 0.136102 + 0.0785787i 0.566505 0.824058i \(-0.308295\pi\)
−0.430403 + 0.902637i \(0.641628\pi\)
\(734\) −8.74067 5.04643i −0.322624 0.186267i
\(735\) 0 0
\(736\) 5.43186 3.13608i 0.200221 0.115598i
\(737\) 3.47468 0.127991
\(738\) 0 0
\(739\) 9.71484i 0.357366i −0.983907 0.178683i \(-0.942816\pi\)
0.983907 0.178683i \(-0.0571837\pi\)
\(740\) 0.504664 + 0.874103i 0.0185518 + 0.0321327i
\(741\) 0 0
\(742\) 16.2243 28.1013i 0.595613 1.03163i
\(743\) 10.6739 + 6.16261i 0.391589 + 0.226084i 0.682848 0.730560i \(-0.260741\pi\)
−0.291259 + 0.956644i \(0.594074\pi\)
\(744\) 0 0
\(745\) −2.29023 3.96679i −0.0839074 0.145332i
\(746\) 8.54741i 0.312943i
\(747\) 0 0
\(748\) 13.4963i 0.493474i
\(749\) −6.18904 + 3.57325i −0.226143 + 0.130564i
\(750\) 0 0
\(751\) 1.43490 2.48532i 0.0523603 0.0906908i −0.838657 0.544660i \(-0.816659\pi\)
0.891018 + 0.453969i \(0.149992\pi\)
\(752\) −4.57369 2.64062i −0.166785 0.0962935i
\(753\) 0 0
\(754\) 10.9843 12.3909i 0.400024 0.451249i
\(755\) 0.644854 0.0234686
\(756\) 0 0
\(757\) 33.1438 1.20463 0.602316 0.798258i \(-0.294245\pi\)
0.602316 + 0.798258i \(0.294245\pi\)
\(758\) 15.3563 + 26.5978i 0.557764 + 0.966076i
\(759\) 0 0
\(760\) 1.34684 + 0.777601i 0.0488552 + 0.0282065i
\(761\) −37.0264 21.3772i −1.34221 0.774923i −0.355075 0.934838i \(-0.615545\pi\)
−0.987131 + 0.159915i \(0.948878\pi\)
\(762\) 0 0
\(763\) 12.5734 + 21.7778i 0.455188 + 0.788408i
\(764\) 11.2580 0.407300
\(765\) 0 0
\(766\) −2.88551 −0.104258
\(767\) 8.66563 9.77532i 0.312898 0.352966i
\(768\) 0 0
\(769\) 41.6797 + 24.0638i 1.50301 + 0.867762i 0.999994 + 0.00348401i \(0.00110900\pi\)
0.503014 + 0.864278i \(0.332224\pi\)
\(770\) −3.93029 + 6.80746i −0.141638 + 0.245324i
\(771\) 0 0
\(772\) 6.60401 3.81283i 0.237684 0.137227i
\(773\) 21.3661i 0.768484i 0.923232 + 0.384242i \(0.125537\pi\)
−0.923232 + 0.384242i \(0.874463\pi\)
\(774\) 0 0
\(775\) 30.8980i 1.10989i
\(776\) 6.52525 + 11.3021i 0.234243 + 0.405721i
\(777\) 0 0
\(778\) 10.3018 + 5.94776i 0.369338 + 0.213238i
\(779\) 17.7501 30.7440i 0.635962 1.10152i
\(780\) 0 0
\(781\) 7.43535 + 12.8784i 0.266058 + 0.460826i
\(782\) 26.3585i 0.942578i
\(783\) 0 0
\(784\) −18.5467 −0.662383
\(785\) 2.45019 1.41462i 0.0874510 0.0504898i
\(786\) 0 0
\(787\) −29.5928 17.0854i −1.05487 0.609029i −0.130860 0.991401i \(-0.541774\pi\)
−0.924008 + 0.382372i \(0.875107\pi\)
\(788\) 21.2324 + 12.2585i 0.756372 + 0.436691i
\(789\) 0 0
\(790\) −1.89740 3.28640i −0.0675066 0.116925i
\(791\) 66.1533i 2.35214i
\(792\) 0 0
\(793\) −3.42626 + 1.14266i −0.121670 + 0.0405772i
\(794\) −11.9011 20.6132i −0.422353 0.731537i
\(795\) 0 0
\(796\) −6.76550 + 11.7182i −0.239797 + 0.415340i
\(797\) 6.26917 10.8585i 0.222066 0.384629i −0.733369 0.679830i \(-0.762053\pi\)
0.955435 + 0.295201i \(0.0953868\pi\)
\(798\) 0 0
\(799\) −19.2207 + 11.0971i −0.679980 + 0.392587i
\(800\) 4.76550i 0.168486i
\(801\) 0 0
\(802\) −8.99705 −0.317697
\(803\) 0.522716 + 0.905371i 0.0184463 + 0.0319498i
\(804\) 0 0
\(805\) 7.67592 13.2951i 0.270540 0.468590i
\(806\) −4.68322 + 22.9034i −0.164959 + 0.806737i
\(807\) 0 0
\(808\) 5.92969 3.42351i 0.208606 0.120439i
\(809\) 23.7653 0.835543 0.417772 0.908552i \(-0.362811\pi\)
0.417772 + 0.908552i \(0.362811\pi\)
\(810\) 0 0
\(811\) 12.1844i 0.427853i −0.976850 0.213926i \(-0.931375\pi\)
0.976850 0.213926i \(-0.0686253\pi\)
\(812\) 20.1025 11.6062i 0.705461 0.407298i
\(813\) 0 0
\(814\) −5.79695 3.34687i −0.203183 0.117308i
\(815\) −3.66435 + 6.34685i −0.128357 + 0.222320i
\(816\) 0 0
\(817\) 26.3312 15.2023i 0.921212 0.531862i
\(818\) 32.1404 1.12376
\(819\) 0 0
\(820\) 5.35295 0.186933
\(821\) 14.8532 8.57549i 0.518379 0.299287i −0.217892 0.975973i \(-0.569918\pi\)
0.736271 + 0.676686i \(0.236585\pi\)
\(822\) 0 0
\(823\) −19.0983 + 33.0792i −0.665725 + 1.15307i 0.313363 + 0.949633i \(0.398544\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(824\) −3.07889 1.77760i −0.107258 0.0619257i
\(825\) 0 0
\(826\) 15.8592 9.15629i 0.551810 0.318588i
\(827\) 16.3182i 0.567441i 0.958907 + 0.283721i \(0.0915688\pi\)
−0.958907 + 0.283721i \(0.908431\pi\)
\(828\) 0 0
\(829\) 13.6052 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(830\) −2.46012 + 1.42035i −0.0853922 + 0.0493012i
\(831\) 0 0
\(832\) 0.722307 3.53246i 0.0250415 0.122466i
\(833\) −38.9709 + 67.4996i −1.35026 + 2.33872i
\(834\) 0 0
\(835\) −2.91203 5.04378i −0.100775 0.174547i
\(836\) −10.3139 −0.356714
\(837\) 0 0
\(838\) 3.37377i 0.116545i
\(839\) 43.9792 25.3914i 1.51833 0.876609i 0.518563 0.855039i \(-0.326467\pi\)
0.999767 0.0215696i \(-0.00686634\pi\)
\(840\) 0 0
\(841\) 3.95431 6.84907i 0.136356 0.236175i
\(842\) 1.30842 2.26626i 0.0450913 0.0781004i
\(843\) 0 0
\(844\) 11.9346 + 20.6713i 0.410805 + 0.711535i
\(845\) −3.77872 5.03512i −0.129992 0.173213i
\(846\) 0 0
\(847\) 3.46774i 0.119153i
\(848\) 3.20995 + 5.55980i 0.110230 + 0.190924i
\(849\) 0 0
\(850\) −17.3437 10.0134i −0.594884 0.343456i
\(851\) 11.3215 + 6.53649i 0.388097 + 0.224068i
\(852\) 0 0
\(853\) 31.1360 17.9764i 1.06608 0.615499i 0.138969 0.990297i \(-0.455621\pi\)
0.927106 + 0.374798i \(0.122288\pi\)
\(854\) −5.06311 −0.173256
\(855\) 0 0
\(856\) 1.41392i 0.0483268i
\(857\) −2.28591 3.95932i −0.0780853 0.135248i 0.824339 0.566097i \(-0.191547\pi\)
−0.902424 + 0.430849i \(0.858214\pi\)
\(858\) 0 0
\(859\) −5.82450 + 10.0883i −0.198729 + 0.344209i −0.948117 0.317923i \(-0.897015\pi\)
0.749387 + 0.662132i \(0.230348\pi\)
\(860\) 3.97040 + 2.29231i 0.135389 + 0.0781671i
\(861\) 0 0
\(862\) 0.625564 + 1.08351i 0.0213068 + 0.0369044i
\(863\) 26.2523i 0.893640i −0.894624 0.446820i \(-0.852556\pi\)
0.894624 0.446820i \(-0.147444\pi\)
\(864\) 0 0
\(865\) 4.28985i 0.145859i
\(866\) 4.13195 2.38558i 0.140409 0.0810655i
\(867\) 0 0
\(868\) −16.3855 + 28.3806i −0.556161 + 0.963299i
\(869\) 21.7950 + 12.5834i 0.739345 + 0.426861i
\(870\) 0 0
\(871\) −2.58775 + 2.91912i −0.0876825 + 0.0989107i
\(872\) −4.97525 −0.168483
\(873\) 0 0
\(874\) 20.1432 0.681355
\(875\) −11.9511 20.6999i −0.404020 0.699783i
\(876\) 0 0
\(877\) −40.5146 23.3911i −1.36808 0.789862i −0.377398 0.926051i \(-0.623181\pi\)
−0.990683 + 0.136189i \(0.956515\pi\)
\(878\) 29.1867 + 16.8509i 0.985003 + 0.568692i
\(879\) 0 0
\(880\) −0.777601 1.34684i −0.0262129 0.0454021i
\(881\) −52.3698 −1.76438 −0.882192 0.470889i \(-0.843933\pi\)
−0.882192 + 0.470889i \(0.843933\pi\)
\(882\) 0 0
\(883\) −28.7233 −0.966617 −0.483309 0.875450i \(-0.660565\pi\)
−0.483309 + 0.875450i \(0.660565\pi\)
\(884\) −11.3384 10.0513i −0.381352 0.338061i
\(885\) 0 0
\(886\) 4.65706 + 2.68876i 0.156457 + 0.0903305i
\(887\) 6.01188 10.4129i 0.201859 0.349631i −0.747268 0.664523i \(-0.768635\pi\)
0.949128 + 0.314892i \(0.101968\pi\)
\(888\) 0 0
\(889\) −19.9732 + 11.5316i −0.669881 + 0.386756i
\(890\) 4.08185i 0.136824i
\(891\) 0 0
\(892\) 12.8698i 0.430913i
\(893\) −8.48043 14.6885i −0.283787 0.491533i
\(894\) 0 0
\(895\) −4.34912 2.51097i −0.145375 0.0839324i
\(896\) 2.52719 4.37722i 0.0844274 0.146233i
\(897\) 0 0
\(898\) −8.39064 14.5330i −0.279999 0.484973i
\(899\) 29.7766i 0.993105i
\(900\) 0 0
\(901\) 26.9793 0.898812
\(902\) −30.7440 + 17.7501i −1.02366 + 0.591012i
\(903\) 0 0
\(904\) −11.3348 6.54415i −0.376990 0.217655i
\(905\) 4.54635 + 2.62484i 0.151126 + 0.0872526i
\(906\) 0 0
\(907\) −13.8974 24.0710i −0.461456 0.799265i 0.537578 0.843214i \(-0.319339\pi\)
−0.999034 + 0.0439492i \(0.986006\pi\)
\(908\) 18.0552i 0.599182i
\(909\) 0 0
\(910\) −2.79198 8.37170i −0.0925531 0.277519i
\(911\) −10.3296 17.8914i −0.342235 0.592769i 0.642612 0.766191i \(-0.277851\pi\)
−0.984847 + 0.173423i \(0.944517\pi\)
\(912\) 0 0
\(913\) 9.41962 16.3153i 0.311744 0.539956i
\(914\) 11.8396 20.5067i 0.391618 0.678302i
\(915\) 0 0
\(916\) −18.3370 + 10.5869i −0.605871 + 0.349800i
\(917\) 12.4816i 0.412179i
\(918\) 0 0
\(919\) 56.3658 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(920\) 1.51867 + 2.63041i 0.0500690 + 0.0867220i
\(921\) 0 0
\(922\) −17.2311 + 29.8451i −0.567476 + 0.982898i
\(923\) −16.3567 3.34458i −0.538389 0.110088i
\(924\) 0 0
\(925\) 8.60193 4.96633i 0.282830 0.163292i
\(926\) −22.4773 −0.738649
\(927\) 0 0
\(928\) 4.59254i 0.150757i
\(929\) 1.75111 1.01100i 0.0574520 0.0331699i −0.470999 0.882134i \(-0.656106\pi\)
0.528451 + 0.848964i \(0.322773\pi\)
\(930\) 0 0
\(931\) −51.5834 29.7817i −1.69058 0.976055i
\(932\) −14.5305 + 25.1675i −0.475962 + 0.824390i
\(933\) 0 0
\(934\) −3.84196 + 2.21816i −0.125713 + 0.0725804i
\(935\) −6.53566 −0.213739
\(936\) 0 0
\(937\) −15.3243 −0.500622 −0.250311 0.968166i \(-0.580533\pi\)
−0.250311 + 0.968166i \(0.580533\pi\)
\(938\) −4.73589 + 2.73427i −0.154632 + 0.0892770i
\(939\) 0 0
\(940\) 1.27874 2.21484i 0.0417078 0.0722400i
\(941\) 35.8714 + 20.7104i 1.16938 + 0.675139i 0.953533 0.301289i \(-0.0974170\pi\)
0.215842 + 0.976428i \(0.430750\pi\)
\(942\) 0 0
\(943\) 60.0435 34.6661i 1.95529 1.12888i
\(944\) 3.62311i 0.117922i
\(945\) 0 0
\(946\) −30.4047 −0.988541
\(947\) 49.2660 28.4437i 1.60093 0.924297i 0.609628 0.792687i \(-0.291319\pi\)
0.991302 0.131610i \(-0.0420146\pi\)
\(948\) 0 0
\(949\) −1.14990 0.235129i −0.0373274 0.00763261i
\(950\) 7.65226 13.2541i 0.248272 0.430020i
\(951\) 0 0
\(952\) −10.6204 18.3951i −0.344209 0.596187i
\(953\) 40.5931 1.31494 0.657470 0.753481i \(-0.271627\pi\)
0.657470 + 0.753481i \(0.271627\pi\)
\(954\) 0 0
\(955\) 5.45175i 0.176415i
\(956\) −6.29516 + 3.63451i −0.203600 + 0.117548i
\(957\) 0 0
\(958\) 5.90827 10.2334i 0.190888 0.330627i
\(959\) −49.5591 + 85.8389i −1.60035 + 2.77188i
\(960\) 0 0
\(961\) 5.51914 + 9.55944i 0.178037 + 0.308369i
\(962\) 7.12899 2.37753i 0.229848 0.0766547i
\(963\) 0 0
\(964\) 17.9104i 0.576856i
\(965\) 1.84638 + 3.19803i 0.0594372 + 0.102948i
\(966\) 0 0
\(967\) 43.2958 + 24.9968i 1.39230 + 0.803844i 0.993569 0.113225i \(-0.0361182\pi\)
0.398729 + 0.917069i \(0.369452\pi\)
\(968\) −0.594169 0.343044i −0.0190973 0.0110258i
\(969\) 0 0
\(970\) −5.47310 + 3.15989i −0.175730 + 0.101458i
\(971\) 31.1467 0.999546 0.499773 0.866156i \(-0.333417\pi\)
0.499773 + 0.866156i \(0.333417\pi\)
\(972\) 0 0
\(973\) 1.95805i 0.0627721i
\(974\) −12.9186 22.3758i −0.413940 0.716965i
\(975\) 0 0
\(976\) 0.500864 0.867521i 0.0160323 0.0277687i
\(977\) 5.97565 + 3.45004i 0.191178 + 0.110377i 0.592534 0.805546i \(-0.298128\pi\)
−0.401356 + 0.915922i \(0.631461\pi\)
\(978\) 0 0
\(979\) −13.5352 23.4436i −0.432586 0.749262i
\(980\) 8.98136i 0.286899i
\(981\) 0 0
\(982\) 11.1999i 0.357403i
\(983\) 45.4067 26.2156i 1.44825 0.836147i 0.449872 0.893093i \(-0.351470\pi\)
0.998377 + 0.0569461i \(0.0181363\pi\)
\(984\) 0 0
\(985\) −5.93626 + 10.2819i −0.189145 + 0.327608i
\(986\) 16.7142 + 9.64996i 0.532289 + 0.307317i
\(987\) 0 0
\(988\) 7.68122 8.66485i 0.244372 0.275666i
\(989\) 59.3808 1.88820
\(990\) 0 0
\(991\) −26.0277 −0.826799 −0.413399 0.910550i \(-0.635659\pi\)
−0.413399 + 0.910550i \(0.635659\pi\)
\(992\) −3.24185 5.61504i −0.102929 0.178278i
\(993\) 0 0
\(994\) −20.2683 11.7019i −0.642872 0.371163i
\(995\) −5.67460 3.27623i −0.179897 0.103864i
\(996\) 0 0
\(997\) −13.6237 23.5970i −0.431468 0.747324i 0.565532 0.824726i \(-0.308671\pi\)
−0.997000 + 0.0774021i \(0.975337\pi\)
\(998\) 15.4596 0.489367
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.4 28
3.2 odd 2 234.2.t.a.103.12 yes 28
9.2 odd 6 234.2.t.a.25.5 28
9.4 even 3 2106.2.b.d.649.4 14
9.5 odd 6 2106.2.b.c.649.11 14
9.7 even 3 inner 702.2.t.a.181.11 28
13.12 even 2 inner 702.2.t.a.415.11 28
39.38 odd 2 234.2.t.a.103.5 yes 28
117.25 even 6 inner 702.2.t.a.181.4 28
117.38 odd 6 234.2.t.a.25.12 yes 28
117.77 odd 6 2106.2.b.c.649.4 14
117.103 even 6 2106.2.b.d.649.11 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.5 28 9.2 odd 6
234.2.t.a.25.12 yes 28 117.38 odd 6
234.2.t.a.103.5 yes 28 39.38 odd 2
234.2.t.a.103.12 yes 28 3.2 odd 2
702.2.t.a.181.4 28 117.25 even 6 inner
702.2.t.a.181.11 28 9.7 even 3 inner
702.2.t.a.415.4 28 1.1 even 1 trivial
702.2.t.a.415.11 28 13.12 even 2 inner
2106.2.b.c.649.4 14 117.77 odd 6
2106.2.b.c.649.11 14 9.5 odd 6
2106.2.b.d.649.4 14 9.4 even 3
2106.2.b.d.649.11 14 117.103 even 6