Properties

Label 234.2.t.a.25.5
Level $234$
Weight $2$
Character 234.25
Analytic conductor $1.868$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(25,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.5
Character \(\chi\) \(=\) 234.25
Dual form 234.2.t.a.103.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.523143 - 1.65116i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.419378 - 0.242128i) q^{5} +(-1.27863 + 1.16837i) q^{6} +(-4.37722 - 2.52719i) q^{7} -1.00000i q^{8} +(-2.45264 - 1.72758i) q^{9} -0.484256 q^{10} +(2.78126 + 1.60576i) q^{11} +(1.69152 - 0.372524i) q^{12} +(-2.69805 - 2.39177i) q^{13} +(2.52719 + 4.37722i) q^{14} +(-0.180397 - 0.819127i) q^{15} +(-0.500000 + 0.866025i) q^{16} +4.20245 q^{17} +(1.26026 + 2.72245i) q^{18} -3.21153i q^{19} +(0.419378 + 0.242128i) q^{20} +(-6.46270 + 5.90540i) q^{21} +(-1.60576 - 2.78126i) q^{22} +(-3.13608 - 5.43186i) q^{23} +(-1.65116 - 0.523143i) q^{24} +(-2.38275 + 4.12704i) q^{25} +(1.14069 + 3.42035i) q^{26} +(-4.13559 + 3.14593i) q^{27} -5.05438i q^{28} +(-2.29627 + 3.97725i) q^{29} +(-0.253335 + 0.799583i) q^{30} +(5.61504 - 3.24185i) q^{31} +(0.866025 - 0.500000i) q^{32} +(4.10637 - 3.75226i) q^{33} +(-3.63943 - 2.10123i) q^{34} -2.44761 q^{35} +(0.269808 - 2.98784i) q^{36} +2.08429i q^{37} +(-1.60576 + 2.78126i) q^{38} +(-5.36065 + 3.20367i) q^{39} +(-0.242128 - 0.419378i) q^{40} +(9.57301 - 5.52698i) q^{41} +(8.54956 - 1.88288i) q^{42} +(4.73367 - 8.19896i) q^{43} +3.21153i q^{44} +(-1.44688 - 0.130656i) q^{45} +6.27217i q^{46} +(4.57369 + 2.64062i) q^{47} +(1.16837 + 1.27863i) q^{48} +(9.27337 + 16.0619i) q^{49} +(4.12704 - 2.38275i) q^{50} +(2.19848 - 6.93891i) q^{51} +(0.722307 - 3.53246i) q^{52} +6.41990 q^{53} +(5.15449 - 0.656660i) q^{54} +1.55520 q^{55} +(-2.52719 + 4.37722i) q^{56} +(-5.30274 - 1.68009i) q^{57} +(3.97725 - 2.29627i) q^{58} +(-3.13771 + 1.81156i) q^{59} +(0.619186 - 0.565792i) q^{60} +(0.500864 - 0.867521i) q^{61} -6.48369 q^{62} +(6.36984 + 13.7603i) q^{63} -1.00000 q^{64} +(-1.71061 - 0.349781i) q^{65} +(-5.43235 + 1.19637i) q^{66} +(-0.936987 + 0.540970i) q^{67} +(2.10123 + 3.63943i) q^{68} +(-10.6095 + 2.33653i) q^{69} +(2.11969 + 1.22381i) q^{70} -4.63041i q^{71} +(-1.72758 + 2.45264i) q^{72} +0.325525i q^{73} +(1.04214 - 1.80504i) q^{74} +(5.56788 + 6.09332i) q^{75} +(2.78126 - 1.60576i) q^{76} +(-8.11614 - 14.0576i) q^{77} +(6.24429 - 0.0941329i) q^{78} +(3.91818 - 6.78649i) q^{79} +0.484256i q^{80} +(3.03092 + 8.47428i) q^{81} -11.0540 q^{82} +(5.08022 + 2.93306i) q^{83} +(-8.34557 - 2.64416i) q^{84} +(1.76242 - 1.01753i) q^{85} +(-8.19896 + 4.73367i) q^{86} +(5.36580 + 5.87217i) q^{87} +(1.60576 - 2.78126i) q^{88} +8.42912i q^{89} +(1.18771 + 0.836592i) q^{90} +(5.76550 + 17.2878i) q^{91} +(3.13608 - 5.43186i) q^{92} +(-2.41533 - 10.9673i) q^{93} +(-2.64062 - 4.57369i) q^{94} +(-0.777601 - 1.34684i) q^{95} +(-0.372524 - 1.69152i) q^{96} +(-11.3021 - 6.52525i) q^{97} -18.5467i q^{98} +(-4.04736 - 8.74323i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} - 16 q^{9} + 2 q^{13} + 8 q^{14} - 14 q^{16} + 16 q^{17} - 8 q^{23} + 14 q^{25} + 8 q^{26} + 18 q^{27} - 16 q^{29} - 8 q^{30} - 68 q^{35} - 8 q^{36} - 8 q^{39} - 10 q^{42} - 4 q^{43} + 10 q^{49}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.523143 1.65116i 0.302036 0.953296i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.419378 0.242128i 0.187552 0.108283i −0.403284 0.915075i \(-0.632131\pi\)
0.590836 + 0.806792i \(0.298798\pi\)
\(6\) −1.27863 + 1.16837i −0.522000 + 0.476986i
\(7\) −4.37722 2.52719i −1.65443 0.955188i −0.975217 0.221249i \(-0.928987\pi\)
−0.679216 0.733938i \(-0.737680\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.45264 1.72758i −0.817548 0.575861i
\(10\) −0.484256 −0.153135
\(11\) 2.78126 + 1.60576i 0.838583 + 0.484156i 0.856782 0.515678i \(-0.172460\pi\)
−0.0181994 + 0.999834i \(0.505793\pi\)
\(12\) 1.69152 0.372524i 0.488299 0.107538i
\(13\) −2.69805 2.39177i −0.748303 0.663357i
\(14\) 2.52719 + 4.37722i 0.675420 + 1.16986i
\(15\) −0.180397 0.819127i −0.0465783 0.211498i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 4.20245 1.01924 0.509622 0.860398i \(-0.329785\pi\)
0.509622 + 0.860398i \(0.329785\pi\)
\(18\) 1.26026 + 2.72245i 0.297046 + 0.641688i
\(19\) 3.21153i 0.736775i −0.929672 0.368388i \(-0.879910\pi\)
0.929672 0.368388i \(-0.120090\pi\)
\(20\) 0.419378 + 0.242128i 0.0937758 + 0.0541415i
\(21\) −6.46270 + 5.90540i −1.41028 + 1.28866i
\(22\) −1.60576 2.78126i −0.342350 0.592968i
\(23\) −3.13608 5.43186i −0.653919 1.13262i −0.982164 0.188028i \(-0.939791\pi\)
0.328245 0.944593i \(-0.393543\pi\)
\(24\) −1.65116 0.523143i −0.337041 0.106786i
\(25\) −2.38275 + 4.12704i −0.476550 + 0.825408i
\(26\) 1.14069 + 3.42035i 0.223708 + 0.670787i
\(27\) −4.13559 + 3.14593i −0.795895 + 0.605435i
\(28\) 5.05438i 0.955188i
\(29\) −2.29627 + 3.97725i −0.426406 + 0.738557i −0.996551 0.0829873i \(-0.973554\pi\)
0.570144 + 0.821544i \(0.306887\pi\)
\(30\) −0.253335 + 0.799583i −0.0462524 + 0.145983i
\(31\) 5.61504 3.24185i 1.00849 0.582253i 0.0977420 0.995212i \(-0.468838\pi\)
0.910750 + 0.412959i \(0.135505\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 4.10637 3.75226i 0.714827 0.653185i
\(34\) −3.63943 2.10123i −0.624157 0.360357i
\(35\) −2.44761 −0.413722
\(36\) 0.269808 2.98784i 0.0449679 0.497974i
\(37\) 2.08429i 0.342654i 0.985214 + 0.171327i \(0.0548055\pi\)
−0.985214 + 0.171327i \(0.945194\pi\)
\(38\) −1.60576 + 2.78126i −0.260489 + 0.451181i
\(39\) −5.36065 + 3.20367i −0.858390 + 0.512997i
\(40\) −0.242128 0.419378i −0.0382838 0.0663095i
\(41\) 9.57301 5.52698i 1.49505 0.863169i 0.495070 0.868853i \(-0.335143\pi\)
0.999984 + 0.00568392i \(0.00180926\pi\)
\(42\) 8.54956 1.88288i 1.31923 0.290534i
\(43\) 4.73367 8.19896i 0.721879 1.25033i −0.238367 0.971175i \(-0.576612\pi\)
0.960246 0.279155i \(-0.0900544\pi\)
\(44\) 3.21153i 0.484156i
\(45\) −1.44688 0.130656i −0.215688 0.0194770i
\(46\) 6.27217i 0.924780i
\(47\) 4.57369 + 2.64062i 0.667141 + 0.385174i 0.794992 0.606619i \(-0.207475\pi\)
−0.127851 + 0.991793i \(0.540808\pi\)
\(48\) 1.16837 + 1.27863i 0.168640 + 0.184555i
\(49\) 9.27337 + 16.0619i 1.32477 + 2.29456i
\(50\) 4.12704 2.38275i 0.583652 0.336971i
\(51\) 2.19848 6.93891i 0.307849 0.971642i
\(52\) 0.722307 3.53246i 0.100166 0.489864i
\(53\) 6.41990 0.881841 0.440921 0.897546i \(-0.354652\pi\)
0.440921 + 0.897546i \(0.354652\pi\)
\(54\) 5.15449 0.656660i 0.701438 0.0893601i
\(55\) 1.55520 0.209703
\(56\) −2.52719 + 4.37722i −0.337710 + 0.584931i
\(57\) −5.30274 1.68009i −0.702365 0.222533i
\(58\) 3.97725 2.29627i 0.522239 0.301515i
\(59\) −3.13771 + 1.81156i −0.408495 + 0.235844i −0.690143 0.723673i \(-0.742452\pi\)
0.281648 + 0.959518i \(0.409119\pi\)
\(60\) 0.619186 0.565792i 0.0799366 0.0730434i
\(61\) 0.500864 0.867521i 0.0641290 0.111075i −0.832178 0.554508i \(-0.812906\pi\)
0.896307 + 0.443433i \(0.146240\pi\)
\(62\) −6.48369 −0.823430
\(63\) 6.36984 + 13.7603i 0.802524 + 1.73363i
\(64\) −1.00000 −0.125000
\(65\) −1.71061 0.349781i −0.212176 0.0433851i
\(66\) −5.43235 + 1.19637i −0.668676 + 0.147263i
\(67\) −0.936987 + 0.540970i −0.114471 + 0.0660900i −0.556142 0.831087i \(-0.687719\pi\)
0.441671 + 0.897177i \(0.354386\pi\)
\(68\) 2.10123 + 3.63943i 0.254811 + 0.441346i
\(69\) −10.6095 + 2.33653i −1.27723 + 0.281286i
\(70\) 2.11969 + 1.22381i 0.253352 + 0.146273i
\(71\) 4.63041i 0.549529i −0.961512 0.274764i \(-0.911400\pi\)
0.961512 0.274764i \(-0.0885999\pi\)
\(72\) −1.72758 + 2.45264i −0.203597 + 0.289047i
\(73\) 0.325525i 0.0380998i 0.999819 + 0.0190499i \(0.00606414\pi\)
−0.999819 + 0.0190499i \(0.993936\pi\)
\(74\) 1.04214 1.80504i 0.121147 0.209832i
\(75\) 5.56788 + 6.09332i 0.642923 + 0.703596i
\(76\) 2.78126 1.60576i 0.319033 0.184194i
\(77\) −8.11614 14.0576i −0.924920 1.60201i
\(78\) 6.24429 0.0941329i 0.707026 0.0106584i
\(79\) 3.91818 6.78649i 0.440830 0.763540i −0.556921 0.830565i \(-0.688017\pi\)
0.997751 + 0.0670253i \(0.0213508\pi\)
\(80\) 0.484256i 0.0541415i
\(81\) 3.03092 + 8.47428i 0.336769 + 0.941587i
\(82\) −11.0540 −1.22071
\(83\) 5.08022 + 2.93306i 0.557626 + 0.321946i 0.752192 0.658944i \(-0.228997\pi\)
−0.194566 + 0.980889i \(0.562330\pi\)
\(84\) −8.34557 2.64416i −0.910577 0.288501i
\(85\) 1.76242 1.01753i 0.191161 0.110367i
\(86\) −8.19896 + 4.73367i −0.884117 + 0.510445i
\(87\) 5.36580 + 5.87217i 0.575274 + 0.629563i
\(88\) 1.60576 2.78126i 0.171175 0.296484i
\(89\) 8.42912i 0.893485i 0.894662 + 0.446743i \(0.147416\pi\)
−0.894662 + 0.446743i \(0.852584\pi\)
\(90\) 1.18771 + 0.836592i 0.125195 + 0.0881845i
\(91\) 5.76550 + 17.2878i 0.604388 + 1.81225i
\(92\) 3.13608 5.43186i 0.326959 0.566310i
\(93\) −2.41533 10.9673i −0.250458 1.13725i
\(94\) −2.64062 4.57369i −0.272359 0.471740i
\(95\) −0.777601 1.34684i −0.0797802 0.138183i
\(96\) −0.372524 1.69152i −0.0380206 0.172640i
\(97\) −11.3021 6.52525i −1.14755 0.662539i −0.199262 0.979946i \(-0.563855\pi\)
−0.948289 + 0.317407i \(0.897188\pi\)
\(98\) 18.5467i 1.87350i
\(99\) −4.04736 8.74323i −0.406775 0.878728i
\(100\) −4.76550 −0.476550
\(101\) 3.42351 5.92969i 0.340652 0.590027i −0.643902 0.765108i \(-0.722686\pi\)
0.984554 + 0.175081i \(0.0560189\pi\)
\(102\) −5.37340 + 4.91003i −0.532046 + 0.486166i
\(103\) −1.77760 3.07889i −0.175152 0.303373i 0.765062 0.643957i \(-0.222708\pi\)
−0.940214 + 0.340584i \(0.889375\pi\)
\(104\) −2.39177 + 2.69805i −0.234532 + 0.264565i
\(105\) −1.28045 + 4.04139i −0.124959 + 0.394400i
\(106\) −5.55980 3.20995i −0.540015 0.311778i
\(107\) 1.41392 0.136689 0.0683445 0.997662i \(-0.478228\pi\)
0.0683445 + 0.997662i \(0.478228\pi\)
\(108\) −4.79225 2.00856i −0.461135 0.193274i
\(109\) 4.97525i 0.476543i 0.971199 + 0.238271i \(0.0765808\pi\)
−0.971199 + 0.238271i \(0.923419\pi\)
\(110\) −1.34684 0.777601i −0.128417 0.0741413i
\(111\) 3.44148 + 1.09038i 0.326651 + 0.103494i
\(112\) 4.37722 2.52719i 0.413608 0.238797i
\(113\) 6.54415 + 11.3348i 0.615622 + 1.06629i 0.990275 + 0.139124i \(0.0444286\pi\)
−0.374653 + 0.927165i \(0.622238\pi\)
\(114\) 3.75226 + 4.10637i 0.351432 + 0.384597i
\(115\) −2.63041 1.51867i −0.245287 0.141616i
\(116\) −4.59254 −0.426406
\(117\) 2.48538 + 10.5272i 0.229773 + 0.973244i
\(118\) 3.62311 0.333534
\(119\) −18.3951 10.6204i −1.68627 0.973570i
\(120\) −0.819127 + 0.180397i −0.0747757 + 0.0164679i
\(121\) −0.343044 0.594169i −0.0311858 0.0540154i
\(122\) −0.867521 + 0.500864i −0.0785417 + 0.0453461i
\(123\) −4.11787 18.6980i −0.371296 1.68594i
\(124\) 5.61504 + 3.24185i 0.504246 + 0.291126i
\(125\) 4.72900i 0.422975i
\(126\) 1.36371 15.1017i 0.121489 1.34536i
\(127\) −4.56300 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −11.0614 12.1053i −0.973902 1.06581i
\(130\) 1.30655 + 1.15823i 0.114592 + 0.101583i
\(131\) −1.23473 2.13862i −0.107879 0.186852i 0.807032 0.590508i \(-0.201073\pi\)
−0.914911 + 0.403656i \(0.867739\pi\)
\(132\) 5.30274 + 1.68009i 0.461544 + 0.146233i
\(133\) −8.11614 + 14.0576i −0.703758 + 1.21895i
\(134\) 1.08194 0.0934654
\(135\) −0.972658 + 2.32068i −0.0837131 + 0.199732i
\(136\) 4.20245i 0.360357i
\(137\) −16.9831 9.80519i −1.45096 0.837714i −0.452427 0.891802i \(-0.649442\pi\)
−0.998536 + 0.0540880i \(0.982775\pi\)
\(138\) 10.3563 + 3.28124i 0.881590 + 0.279317i
\(139\) 0.193698 + 0.335495i 0.0164293 + 0.0284563i 0.874123 0.485704i \(-0.161437\pi\)
−0.857694 + 0.514161i \(0.828104\pi\)
\(140\) −1.22381 2.11969i −0.103430 0.179147i
\(141\) 6.75277 6.17046i 0.568686 0.519646i
\(142\) −2.31521 + 4.01005i −0.194288 + 0.336516i
\(143\) −3.66337 10.9846i −0.306346 0.918575i
\(144\) 2.72245 1.26026i 0.226871 0.105022i
\(145\) 2.22396i 0.184690i
\(146\) 0.162762 0.281913i 0.0134703 0.0233313i
\(147\) 31.3721 6.90911i 2.58753 0.569853i
\(148\) −1.80504 + 1.04214i −0.148374 + 0.0856636i
\(149\) −8.19151 + 4.72937i −0.671075 + 0.387445i −0.796484 0.604660i \(-0.793309\pi\)
0.125409 + 0.992105i \(0.459976\pi\)
\(150\) −1.77526 8.06091i −0.144950 0.658171i
\(151\) −1.15323 0.665819i −0.0938487 0.0541836i 0.452341 0.891845i \(-0.350589\pi\)
−0.546190 + 0.837661i \(0.683922\pi\)
\(152\) −3.21153 −0.260489
\(153\) −10.3071 7.26008i −0.833281 0.586943i
\(154\) 16.2323i 1.30803i
\(155\) 1.56988 2.71912i 0.126096 0.218405i
\(156\) −5.45478 3.04062i −0.436732 0.243445i
\(157\) 2.92122 + 5.05970i 0.233139 + 0.403808i 0.958730 0.284318i \(-0.0917671\pi\)
−0.725592 + 0.688126i \(0.758434\pi\)
\(158\) −6.78649 + 3.91818i −0.539904 + 0.311714i
\(159\) 3.35852 10.6003i 0.266348 0.840656i
\(160\) 0.242128 0.419378i 0.0191419 0.0331547i
\(161\) 31.7019i 2.49846i
\(162\) 1.61229 8.85441i 0.126673 0.695668i
\(163\) 15.1340i 1.18538i 0.805430 + 0.592691i \(0.201935\pi\)
−0.805430 + 0.592691i \(0.798065\pi\)
\(164\) 9.57301 + 5.52698i 0.747527 + 0.431585i
\(165\) 0.813592 2.56788i 0.0633381 0.199909i
\(166\) −2.93306 5.08022i −0.227650 0.394301i
\(167\) −10.4155 + 6.01341i −0.805978 + 0.465331i −0.845557 0.533885i \(-0.820732\pi\)
0.0395794 + 0.999216i \(0.487398\pi\)
\(168\) 5.90540 + 6.46270i 0.455611 + 0.498608i
\(169\) 1.55891 + 12.9062i 0.119916 + 0.992784i
\(170\) −2.03506 −0.156082
\(171\) −5.54818 + 7.87673i −0.424280 + 0.602349i
\(172\) 9.46735 0.721879
\(173\) −4.42932 + 7.67180i −0.336755 + 0.583276i −0.983820 0.179158i \(-0.942663\pi\)
0.647066 + 0.762434i \(0.275996\pi\)
\(174\) −1.71083 7.76835i −0.129698 0.588917i
\(175\) 20.8596 12.0433i 1.57684 0.910389i
\(176\) −2.78126 + 1.60576i −0.209646 + 0.121039i
\(177\) 1.34970 + 6.12855i 0.101449 + 0.460650i
\(178\) 4.21456 7.29984i 0.315895 0.547146i
\(179\) 10.3704 0.775121 0.387561 0.921844i \(-0.373318\pi\)
0.387561 + 0.921844i \(0.373318\pi\)
\(180\) −0.610289 1.31836i −0.0454883 0.0982650i
\(181\) 10.8407 0.805783 0.402892 0.915248i \(-0.368005\pi\)
0.402892 + 0.915248i \(0.368005\pi\)
\(182\) 3.65081 17.8544i 0.270616 1.32346i
\(183\) −1.17039 1.28084i −0.0865178 0.0946826i
\(184\) −5.43186 + 3.13608i −0.400442 + 0.231195i
\(185\) 0.504664 + 0.874103i 0.0371036 + 0.0642653i
\(186\) −3.39190 + 10.7056i −0.248706 + 0.784973i
\(187\) 11.6881 + 6.74815i 0.854721 + 0.493474i
\(188\) 5.28124i 0.385174i
\(189\) 26.0528 3.31901i 1.89506 0.241422i
\(190\) 1.55520i 0.112826i
\(191\) −5.62900 + 9.74971i −0.407300 + 0.705464i −0.994586 0.103915i \(-0.966863\pi\)
0.587286 + 0.809379i \(0.300196\pi\)
\(192\) −0.523143 + 1.65116i −0.0377546 + 0.119162i
\(193\) −6.60401 + 3.81283i −0.475367 + 0.274453i −0.718484 0.695544i \(-0.755164\pi\)
0.243117 + 0.969997i \(0.421830\pi\)
\(194\) 6.52525 + 11.3021i 0.468486 + 0.811441i
\(195\) −1.47244 + 2.64151i −0.105444 + 0.189162i
\(196\) −9.27337 + 16.0619i −0.662383 + 1.14728i
\(197\) 24.5170i 1.74677i −0.487035 0.873383i \(-0.661921\pi\)
0.487035 0.873383i \(-0.338079\pi\)
\(198\) −0.866495 + 9.59554i −0.0615791 + 0.681925i
\(199\) −13.5310 −0.959187 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(200\) 4.12704 + 2.38275i 0.291826 + 0.168486i
\(201\) 0.403049 + 1.83012i 0.0284289 + 0.129087i
\(202\) −5.92969 + 3.42351i −0.417212 + 0.240877i
\(203\) 20.1025 11.6062i 1.41092 0.814596i
\(204\) 7.10852 1.56552i 0.497696 0.109608i
\(205\) 2.67647 4.63579i 0.186933 0.323777i
\(206\) 3.55520i 0.247703i
\(207\) −1.69228 + 18.7402i −0.117621 + 1.30254i
\(208\) 3.42035 1.14069i 0.237159 0.0790929i
\(209\) 5.15696 8.93211i 0.356714 0.617847i
\(210\) 3.12960 2.85972i 0.215963 0.197340i
\(211\) −11.9346 20.6713i −0.821610 1.42307i −0.904483 0.426511i \(-0.859743\pi\)
0.0828724 0.996560i \(-0.473591\pi\)
\(212\) 3.20995 + 5.55980i 0.220460 + 0.381849i
\(213\) −7.64554 2.42237i −0.523864 0.165978i
\(214\) −1.22449 0.706961i −0.0837045 0.0483268i
\(215\) 4.58462i 0.312668i
\(216\) 3.14593 + 4.13559i 0.214053 + 0.281391i
\(217\) −32.7710 −2.22464
\(218\) 2.48763 4.30869i 0.168483 0.291822i
\(219\) 0.537493 + 0.170296i 0.0363204 + 0.0115075i
\(220\) 0.777601 + 1.34684i 0.0524258 + 0.0908042i
\(221\) −11.3384 10.0513i −0.762704 0.676123i
\(222\) −2.43522 2.66504i −0.163441 0.178866i
\(223\) 11.1456 + 6.43490i 0.746363 + 0.430913i 0.824378 0.566040i \(-0.191525\pi\)
−0.0780155 + 0.996952i \(0.524858\pi\)
\(224\) −5.05438 −0.337710
\(225\) 12.9738 6.00577i 0.864922 0.400385i
\(226\) 13.0883i 0.870621i
\(227\) 15.6362 + 9.02759i 1.03781 + 0.599182i 0.919213 0.393760i \(-0.128826\pi\)
0.118600 + 0.992942i \(0.462159\pi\)
\(228\) −1.19637 5.43235i −0.0792317 0.359766i
\(229\) 18.3370 10.5869i 1.21174 0.699599i 0.248603 0.968606i \(-0.420029\pi\)
0.963138 + 0.269006i \(0.0866953\pi\)
\(230\) 1.51867 + 2.63041i 0.100138 + 0.173444i
\(231\) −27.4571 + 6.04691i −1.80655 + 0.397858i
\(232\) 3.97725 + 2.29627i 0.261119 + 0.150757i
\(233\) 29.0610 1.90385 0.951923 0.306337i \(-0.0991033\pi\)
0.951923 + 0.306337i \(0.0991033\pi\)
\(234\) 3.11122 10.3596i 0.203387 0.677225i
\(235\) 2.55747 0.166831
\(236\) −3.13771 1.81156i −0.204247 0.117922i
\(237\) −9.15580 10.0198i −0.594733 0.650859i
\(238\) 10.6204 + 18.3951i 0.688418 + 1.19237i
\(239\) −6.29516 + 3.63451i −0.407200 + 0.235097i −0.689586 0.724204i \(-0.742207\pi\)
0.282386 + 0.959301i \(0.408874\pi\)
\(240\) 0.799583 + 0.253335i 0.0516129 + 0.0163527i
\(241\) −15.5109 8.95521i −0.999144 0.576856i −0.0911491 0.995837i \(-0.529054\pi\)
−0.907995 + 0.418981i \(0.862387\pi\)
\(242\) 0.686087i 0.0441034i
\(243\) 15.5780 0.571274i 0.999328 0.0366473i
\(244\) 1.00173 0.0641290
\(245\) 7.77809 + 4.49068i 0.496924 + 0.286899i
\(246\) −5.78280 + 18.2518i −0.368698 + 1.16369i
\(247\) −7.68122 + 8.66485i −0.488745 + 0.551331i
\(248\) −3.24185 5.61504i −0.205857 0.356556i
\(249\) 7.50063 6.85383i 0.475333 0.434344i
\(250\) 2.36450 4.09543i 0.149544 0.259018i
\(251\) −3.84702 −0.242822 −0.121411 0.992602i \(-0.538742\pi\)
−0.121411 + 0.992602i \(0.538742\pi\)
\(252\) −8.73185 + 12.3966i −0.550055 + 0.780912i
\(253\) 20.1432i 1.26639i
\(254\) 3.95167 + 2.28150i 0.247950 + 0.143154i
\(255\) −0.758110 3.44234i −0.0474747 0.215568i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.38375 + 12.7890i 0.460586 + 0.797758i 0.998990 0.0449285i \(-0.0143060\pi\)
−0.538404 + 0.842687i \(0.680973\pi\)
\(258\) 3.52682 + 16.0142i 0.219570 + 0.996999i
\(259\) 5.26738 9.12337i 0.327299 0.566899i
\(260\) −0.552388 1.65633i −0.0342576 0.102721i
\(261\) 12.5030 5.78779i 0.773913 0.358255i
\(262\) 2.46946i 0.152564i
\(263\) −4.38124 + 7.58853i −0.270159 + 0.467929i −0.968902 0.247443i \(-0.920410\pi\)
0.698743 + 0.715372i \(0.253743\pi\)
\(264\) −3.75226 4.10637i −0.230936 0.252729i
\(265\) 2.69237 1.55444i 0.165391 0.0954884i
\(266\) 14.0576 8.11614i 0.861924 0.497632i
\(267\) 13.9178 + 4.40963i 0.851756 + 0.269865i
\(268\) −0.936987 0.540970i −0.0572356 0.0330450i
\(269\) −8.90736 −0.543091 −0.271546 0.962426i \(-0.587535\pi\)
−0.271546 + 0.962426i \(0.587535\pi\)
\(270\) 2.00269 1.52344i 0.121880 0.0927133i
\(271\) 3.58551i 0.217804i −0.994052 0.108902i \(-0.965266\pi\)
0.994052 0.108902i \(-0.0347335\pi\)
\(272\) −2.10123 + 3.63943i −0.127406 + 0.220673i
\(273\) 31.5610 0.475783i 1.91016 0.0287957i
\(274\) 9.80519 + 16.9831i 0.592353 + 1.02599i
\(275\) −13.2541 + 7.65226i −0.799253 + 0.461449i
\(276\) −7.32823 8.01980i −0.441108 0.482735i
\(277\) 7.43966 12.8859i 0.447006 0.774237i −0.551183 0.834384i \(-0.685824\pi\)
0.998190 + 0.0601468i \(0.0191569\pi\)
\(278\) 0.387396i 0.0232345i
\(279\) −19.3723 1.74935i −1.15979 0.104731i
\(280\) 2.44761i 0.146273i
\(281\) −14.2995 8.25582i −0.853037 0.492501i 0.00863764 0.999963i \(-0.497251\pi\)
−0.861674 + 0.507462i \(0.830584\pi\)
\(282\) −8.93330 + 1.96739i −0.531970 + 0.117156i
\(283\) 0.267833 + 0.463900i 0.0159210 + 0.0275760i 0.873876 0.486149i \(-0.161599\pi\)
−0.857955 + 0.513725i \(0.828265\pi\)
\(284\) 4.01005 2.31521i 0.237953 0.137382i
\(285\) −2.63065 + 0.579350i −0.155826 + 0.0343177i
\(286\) −2.31971 + 11.3446i −0.137167 + 0.670820i
\(287\) −55.8709 −3.29795
\(288\) −2.98784 0.269808i −0.176060 0.0158986i
\(289\) 0.660618 0.0388599
\(290\) 1.11198 1.92601i 0.0652978 0.113099i
\(291\) −16.6868 + 15.2479i −0.978199 + 0.893846i
\(292\) −0.281913 + 0.162762i −0.0164977 + 0.00952495i
\(293\) 16.9651 9.79482i 0.991113 0.572220i 0.0855065 0.996338i \(-0.472749\pi\)
0.905607 + 0.424118i \(0.139416\pi\)
\(294\) −30.6236 9.70258i −1.78600 0.565866i
\(295\) −0.877257 + 1.51945i −0.0510758 + 0.0884660i
\(296\) 2.08429 0.121147
\(297\) −16.5538 + 2.10888i −0.960549 + 0.122370i
\(298\) 9.45874 0.547930
\(299\) −4.53043 + 22.1562i −0.262002 + 1.28132i
\(300\) −2.49303 + 7.86859i −0.143935 + 0.454293i
\(301\) −41.4407 + 23.9258i −2.38860 + 1.37906i
\(302\) 0.665819 + 1.15323i 0.0383136 + 0.0663611i
\(303\) −7.99988 8.75483i −0.459581 0.502952i
\(304\) 2.78126 + 1.60576i 0.159516 + 0.0920969i
\(305\) 0.485092i 0.0277763i
\(306\) 5.29619 + 11.4410i 0.302763 + 0.654037i
\(307\) 1.26064i 0.0719485i 0.999353 + 0.0359743i \(0.0114534\pi\)
−0.999353 + 0.0359743i \(0.988547\pi\)
\(308\) 8.11614 14.0576i 0.462460 0.801004i
\(309\) −6.01368 + 1.32440i −0.342106 + 0.0753424i
\(310\) −2.71912 + 1.56988i −0.154436 + 0.0891634i
\(311\) 8.79222 + 15.2286i 0.498561 + 0.863533i 0.999999 0.00166095i \(-0.000528697\pi\)
−0.501438 + 0.865194i \(0.667195\pi\)
\(312\) 3.20367 + 5.36065i 0.181372 + 0.303487i
\(313\) −0.102706 + 0.177891i −0.00580526 + 0.0100550i −0.868913 0.494964i \(-0.835181\pi\)
0.863108 + 0.505019i \(0.168515\pi\)
\(314\) 5.84243i 0.329708i
\(315\) 6.00312 + 4.22845i 0.338238 + 0.238246i
\(316\) 7.83637 0.440830
\(317\) 15.6583 + 9.04030i 0.879455 + 0.507754i 0.870479 0.492206i \(-0.163809\pi\)
0.00897641 + 0.999960i \(0.497143\pi\)
\(318\) −8.20870 + 7.50084i −0.460321 + 0.420626i
\(319\) −12.7731 + 7.37453i −0.715154 + 0.412894i
\(320\) −0.419378 + 0.242128i −0.0234439 + 0.0135354i
\(321\) 0.739682 2.33461i 0.0412850 0.130305i
\(322\) 15.8509 27.4546i 0.883339 1.52999i
\(323\) 13.4963i 0.750954i
\(324\) −5.82348 + 6.86200i −0.323527 + 0.381222i
\(325\) 16.2997 5.43597i 0.904144 0.301533i
\(326\) 7.56698 13.1064i 0.419096 0.725896i
\(327\) 8.21492 + 2.60277i 0.454286 + 0.143933i
\(328\) −5.52698 9.57301i −0.305176 0.528581i
\(329\) −13.3467 23.1171i −0.735827 1.27449i
\(330\) −1.98853 + 1.81706i −0.109465 + 0.100026i
\(331\) −3.63300 2.09751i −0.199688 0.115290i 0.396822 0.917896i \(-0.370113\pi\)
−0.596510 + 0.802606i \(0.703446\pi\)
\(332\) 5.86613i 0.321946i
\(333\) 3.60077 5.11201i 0.197321 0.280136i
\(334\) 12.0268 0.658078
\(335\) −0.261968 + 0.453742i −0.0143128 + 0.0247906i
\(336\) −1.88288 8.54956i −0.102719 0.466417i
\(337\) −6.88041 11.9172i −0.374800 0.649172i 0.615497 0.788139i \(-0.288955\pi\)
−0.990297 + 0.138967i \(0.955622\pi\)
\(338\) 5.10304 11.9565i 0.277569 0.650350i
\(339\) 22.1391 4.87571i 1.20243 0.264812i
\(340\) 1.76242 + 1.01753i 0.0955805 + 0.0551834i
\(341\) 20.8226 1.12761
\(342\) 8.74323 4.04736i 0.472780 0.218856i
\(343\) 58.3615i 3.15123i
\(344\) −8.19896 4.73367i −0.442059 0.255223i
\(345\) −3.88364 + 3.54874i −0.209088 + 0.191058i
\(346\) 7.67180 4.42932i 0.412439 0.238122i
\(347\) 11.9351 + 20.6722i 0.640710 + 1.10974i 0.985275 + 0.170979i \(0.0546931\pi\)
−0.344565 + 0.938763i \(0.611974\pi\)
\(348\) −2.40255 + 7.58300i −0.128790 + 0.406491i
\(349\) 16.7557 + 9.67391i 0.896913 + 0.517833i 0.876197 0.481953i \(-0.160072\pi\)
0.0207153 + 0.999785i \(0.493406\pi\)
\(350\) −24.0866 −1.28748
\(351\) 18.6823 + 1.40350i 0.997190 + 0.0749134i
\(352\) 3.21153 0.171175
\(353\) 24.0606 + 13.8914i 1.28062 + 0.739365i 0.976961 0.213417i \(-0.0684593\pi\)
0.303656 + 0.952782i \(0.401793\pi\)
\(354\) 1.89540 5.98233i 0.100740 0.317957i
\(355\) −1.12115 1.94189i −0.0595046 0.103065i
\(356\) −7.29984 + 4.21456i −0.386891 + 0.223371i
\(357\) −27.1592 + 24.8172i −1.43742 + 1.31346i
\(358\) −8.98104 5.18521i −0.474663 0.274047i
\(359\) 23.8304i 1.25772i 0.777517 + 0.628861i \(0.216479\pi\)
−0.777517 + 0.628861i \(0.783521\pi\)
\(360\) −0.130656 + 1.44688i −0.00688617 + 0.0762573i
\(361\) 8.68609 0.457162
\(362\) −9.38833 5.42035i −0.493440 0.284887i
\(363\) −1.16053 + 0.255584i −0.0609119 + 0.0134147i
\(364\) −12.0889 + 13.6369i −0.633630 + 0.714770i
\(365\) 0.0788187 + 0.136518i 0.00412556 + 0.00714568i
\(366\) 0.373168 + 1.69444i 0.0195058 + 0.0885697i
\(367\) 5.04643 8.74067i 0.263421 0.456259i −0.703728 0.710470i \(-0.748482\pi\)
0.967149 + 0.254211i \(0.0818157\pi\)
\(368\) 6.27217 0.326959
\(369\) −33.0275 2.98244i −1.71934 0.155260i
\(370\) 1.00933i 0.0524724i
\(371\) −28.1013 16.2243i −1.45895 0.842324i
\(372\) 8.29027 7.57538i 0.429830 0.392765i
\(373\) 4.27370 + 7.40227i 0.221284 + 0.383275i 0.955198 0.295967i \(-0.0956419\pi\)
−0.733914 + 0.679242i \(0.762309\pi\)
\(374\) −6.74815 11.6881i −0.348938 0.604379i
\(375\) 7.80832 + 2.47394i 0.403220 + 0.127754i
\(376\) 2.64062 4.57369i 0.136180 0.235870i
\(377\) 15.7081 5.23868i 0.809008 0.269806i
\(378\) −24.2218 10.1520i −1.24584 0.522164i
\(379\) 30.7125i 1.57760i −0.614653 0.788798i \(-0.710704\pi\)
0.614653 0.788798i \(-0.289296\pi\)
\(380\) 0.777601 1.34684i 0.0398901 0.0690916i
\(381\) −2.38710 + 7.53423i −0.122295 + 0.385990i
\(382\) 9.74971 5.62900i 0.498839 0.288005i
\(383\) 2.49892 1.44275i 0.127689 0.0737212i −0.434795 0.900529i \(-0.643179\pi\)
0.562484 + 0.826808i \(0.309846\pi\)
\(384\) 1.27863 1.16837i 0.0652500 0.0596233i
\(385\) −6.80746 3.93029i −0.346940 0.200306i
\(386\) 7.62566 0.388136
\(387\) −25.7744 + 11.9313i −1.31019 + 0.606504i
\(388\) 13.0505i 0.662539i
\(389\) 5.94776 10.3018i 0.301564 0.522323i −0.674927 0.737885i \(-0.735825\pi\)
0.976490 + 0.215561i \(0.0691581\pi\)
\(390\) 2.59592 1.55139i 0.131450 0.0785579i
\(391\) −13.1792 22.8271i −0.666503 1.15442i
\(392\) 16.0619 9.27337i 0.811250 0.468376i
\(393\) −4.17714 + 0.919935i −0.210709 + 0.0464046i
\(394\) −12.2585 + 21.2324i −0.617575 + 1.06967i
\(395\) 3.79481i 0.190937i
\(396\) 5.54818 7.87673i 0.278806 0.395821i
\(397\) 23.8021i 1.19459i 0.802020 + 0.597297i \(0.203759\pi\)
−0.802020 + 0.597297i \(0.796241\pi\)
\(398\) 11.7182 + 6.76550i 0.587379 + 0.339124i
\(399\) 18.9654 + 20.7551i 0.949455 + 1.03906i
\(400\) −2.38275 4.12704i −0.119137 0.206352i
\(401\) 7.79168 4.49853i 0.389098 0.224646i −0.292671 0.956213i \(-0.594544\pi\)
0.681769 + 0.731567i \(0.261211\pi\)
\(402\) 0.566009 1.78645i 0.0282300 0.0891002i
\(403\) −22.9034 4.68322i −1.14090 0.233288i
\(404\) 6.84702 0.340652
\(405\) 3.32296 + 2.82006i 0.165119 + 0.140130i
\(406\) −23.2124 −1.15201
\(407\) −3.34687 + 5.79695i −0.165898 + 0.287344i
\(408\) −6.93891 2.19848i −0.343527 0.108841i
\(409\) 27.8344 16.0702i 1.37632 0.794620i 0.384608 0.923080i \(-0.374337\pi\)
0.991715 + 0.128460i \(0.0410033\pi\)
\(410\) −4.63579 + 2.67647i −0.228945 + 0.132182i
\(411\) −25.0745 + 22.9122i −1.23683 + 1.13018i
\(412\) 1.77760 3.07889i 0.0875761 0.151686i
\(413\) 18.3126 0.901103
\(414\) 10.8357 15.3834i 0.532545 0.756052i
\(415\) 2.84071 0.139445
\(416\) −3.53246 0.722307i −0.173193 0.0354140i
\(417\) 0.655287 0.144314i 0.0320895 0.00706711i
\(418\) −8.93211 + 5.15696i −0.436884 + 0.252235i
\(419\) −1.68689 2.92177i −0.0824098 0.142738i 0.821875 0.569668i \(-0.192928\pi\)
−0.904285 + 0.426930i \(0.859595\pi\)
\(420\) −4.14017 + 0.911795i −0.202020 + 0.0444910i
\(421\) 2.26626 + 1.30842i 0.110451 + 0.0637687i 0.554208 0.832378i \(-0.313021\pi\)
−0.443757 + 0.896147i \(0.646355\pi\)
\(422\) 23.8692i 1.16193i
\(423\) −6.65574 14.3779i −0.323613 0.699078i
\(424\) 6.41990i 0.311778i
\(425\) −10.0134 + 17.3437i −0.485721 + 0.841293i
\(426\) 5.41005 + 5.92060i 0.262118 + 0.286854i
\(427\) −4.38478 + 2.53155i −0.212194 + 0.122510i
\(428\) 0.706961 + 1.22449i 0.0341722 + 0.0591880i
\(429\) −20.0537 + 0.302310i −0.968202 + 0.0145957i
\(430\) −2.29231 + 3.97040i −0.110545 + 0.191470i
\(431\) 1.25113i 0.0602647i 0.999546 + 0.0301324i \(0.00959288\pi\)
−0.999546 + 0.0301324i \(0.990407\pi\)
\(432\) −0.656660 5.15449i −0.0315936 0.247996i
\(433\) −4.77117 −0.229288 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(434\) 28.3806 + 16.3855i 1.36231 + 0.786530i
\(435\) 3.67211 + 1.16345i 0.176064 + 0.0557831i
\(436\) −4.30869 + 2.48763i −0.206349 + 0.119136i
\(437\) −17.4446 + 10.0716i −0.834486 + 0.481791i
\(438\) −0.380335 0.416227i −0.0181731 0.0198881i
\(439\) −16.8509 + 29.1867i −0.804252 + 1.39300i 0.112543 + 0.993647i \(0.464100\pi\)
−0.916795 + 0.399358i \(0.869233\pi\)
\(440\) 1.55520i 0.0741413i
\(441\) 5.00405 55.4147i 0.238288 2.63880i
\(442\) 4.79371 + 14.3739i 0.228014 + 0.683696i
\(443\) 2.68876 4.65706i 0.127747 0.221264i −0.795057 0.606535i \(-0.792559\pi\)
0.922803 + 0.385272i \(0.125892\pi\)
\(444\) 0.776447 + 3.52560i 0.0368485 + 0.167318i
\(445\) 2.04093 + 3.53499i 0.0967492 + 0.167575i
\(446\) −6.43490 11.1456i −0.304701 0.527758i
\(447\) 3.52361 + 15.9996i 0.166661 + 0.756756i
\(448\) 4.37722 + 2.52719i 0.206804 + 0.119398i
\(449\) 16.7813i 0.791958i −0.918260 0.395979i \(-0.870405\pi\)
0.918260 0.395979i \(-0.129595\pi\)
\(450\) −14.2386 1.28577i −0.671212 0.0606116i
\(451\) 35.5001 1.67163
\(452\) −6.54415 + 11.3348i −0.307811 + 0.533145i
\(453\) −1.70268 + 1.55585i −0.0799988 + 0.0731002i
\(454\) −9.02759 15.6362i −0.423686 0.733845i
\(455\) 6.60377 + 5.85412i 0.309590 + 0.274445i
\(456\) −1.68009 + 5.30274i −0.0786773 + 0.248324i
\(457\) 20.5067 + 11.8396i 0.959263 + 0.553831i 0.895946 0.444162i \(-0.146499\pi\)
0.0633172 + 0.997993i \(0.479832\pi\)
\(458\) −21.1737 −0.989383
\(459\) −17.3796 + 13.2206i −0.811212 + 0.617086i
\(460\) 3.03733i 0.141616i
\(461\) 29.8451 + 17.2311i 1.39003 + 0.802533i 0.993318 0.115412i \(-0.0368188\pi\)
0.396709 + 0.917944i \(0.370152\pi\)
\(462\) 26.8020 + 8.49179i 1.24694 + 0.395074i
\(463\) −19.4659 + 11.2386i −0.904657 + 0.522304i −0.878708 0.477359i \(-0.841594\pi\)
−0.0259487 + 0.999663i \(0.508261\pi\)
\(464\) −2.29627 3.97725i −0.106602 0.184639i
\(465\) −3.66842 4.01461i −0.170119 0.186173i
\(466\) −25.1675 14.5305i −1.16586 0.673111i
\(467\) −4.43632 −0.205288 −0.102644 0.994718i \(-0.532730\pi\)
−0.102644 + 0.994718i \(0.532730\pi\)
\(468\) −7.87417 + 7.41602i −0.363984 + 0.342806i
\(469\) 5.46853 0.252513
\(470\) −2.21484 1.27874i −0.102163 0.0589837i
\(471\) 9.88257 2.17645i 0.455365 0.100285i
\(472\) 1.81156 + 3.13771i 0.0833836 + 0.144425i
\(473\) 26.3312 15.2023i 1.21071 0.699004i
\(474\) 2.91924 + 13.2553i 0.134085 + 0.608838i
\(475\) 13.2541 + 7.65226i 0.608140 + 0.351110i
\(476\) 21.2408i 0.973570i
\(477\) −15.7457 11.0909i −0.720948 0.507818i
\(478\) 7.26902 0.332477
\(479\) −10.2334 5.90827i −0.467577 0.269956i 0.247648 0.968850i \(-0.420342\pi\)
−0.715225 + 0.698894i \(0.753676\pi\)
\(480\) −0.565792 0.619186i −0.0258247 0.0282618i
\(481\) 4.98512 5.62350i 0.227302 0.256409i
\(482\) 8.95521 + 15.5109i 0.407899 + 0.706501i
\(483\) 52.3448 + 16.5846i 2.38177 + 0.754626i
\(484\) 0.343044 0.594169i 0.0155929 0.0270077i
\(485\) −6.31979 −0.286967
\(486\) −13.7766 7.29425i −0.624918 0.330874i
\(487\) 25.8373i 1.17080i 0.810745 + 0.585400i \(0.199062\pi\)
−0.810745 + 0.585400i \(0.800938\pi\)
\(488\) −0.867521 0.500864i −0.0392708 0.0226730i
\(489\) 24.9885 + 7.91721i 1.13002 + 0.358029i
\(490\) −4.49068 7.77809i −0.202868 0.351378i
\(491\) −5.59995 9.69940i −0.252722 0.437728i 0.711552 0.702633i \(-0.247993\pi\)
−0.964274 + 0.264906i \(0.914659\pi\)
\(492\) 14.1340 12.9152i 0.637208 0.582260i
\(493\) −9.64996 + 16.7142i −0.434612 + 0.752771i
\(494\) 10.9846 3.66337i 0.494219 0.164823i
\(495\) −3.81436 2.68674i −0.171443 0.120760i
\(496\) 6.48369i 0.291126i
\(497\) −11.7019 + 20.2683i −0.524903 + 0.909159i
\(498\) −9.92265 + 2.18527i −0.444644 + 0.0979245i
\(499\) 13.3884 7.72982i 0.599349 0.346034i −0.169436 0.985541i \(-0.554195\pi\)
0.768786 + 0.639507i \(0.220861\pi\)
\(500\) −4.09543 + 2.36450i −0.183153 + 0.105744i
\(501\) 4.48028 + 20.3435i 0.200164 + 0.908883i
\(502\) 3.33162 + 1.92351i 0.148697 + 0.0858505i
\(503\) −6.00330 −0.267674 −0.133837 0.991003i \(-0.542730\pi\)
−0.133837 + 0.991003i \(0.542730\pi\)
\(504\) 13.7603 6.36984i 0.612932 0.283735i
\(505\) 3.31571i 0.147547i
\(506\) −10.0716 + 17.4446i −0.447738 + 0.775505i
\(507\) 22.1257 + 4.17777i 0.982636 + 0.185541i
\(508\) −2.28150 3.95167i −0.101225 0.175327i
\(509\) −18.6801 + 10.7849i −0.827979 + 0.478034i −0.853160 0.521649i \(-0.825317\pi\)
0.0251810 + 0.999683i \(0.491984\pi\)
\(510\) −1.06463 + 3.36021i −0.0471425 + 0.148793i
\(511\) 0.822663 1.42489i 0.0363925 0.0630336i
\(512\) 1.00000i 0.0441942i
\(513\) 10.1032 + 13.2816i 0.446069 + 0.586396i
\(514\) 14.7675i 0.651367i
\(515\) −1.49097 0.860814i −0.0657001 0.0379320i
\(516\) 4.95277 15.6321i 0.218034 0.688164i
\(517\) 8.48043 + 14.6885i 0.372969 + 0.646001i
\(518\) −9.12337 + 5.26738i −0.400858 + 0.231435i
\(519\) 10.3502 + 11.3269i 0.454323 + 0.497198i
\(520\) −0.349781 + 1.71061i −0.0153389 + 0.0750154i
\(521\) 24.0543 1.05384 0.526918 0.849916i \(-0.323347\pi\)
0.526918 + 0.849916i \(0.323347\pi\)
\(522\) −13.7218 1.23910i −0.600586 0.0542340i
\(523\) −10.8449 −0.474215 −0.237107 0.971483i \(-0.576199\pi\)
−0.237107 + 0.971483i \(0.576199\pi\)
\(524\) 1.23473 2.13862i 0.0539395 0.0934260i
\(525\) −8.97285 40.7429i −0.391607 1.77817i
\(526\) 7.58853 4.38124i 0.330876 0.191031i
\(527\) 23.5970 13.6237i 1.02790 0.593458i
\(528\) 1.19637 + 5.43235i 0.0520654 + 0.236413i
\(529\) −8.17003 + 14.1509i −0.355219 + 0.615257i
\(530\) −3.10888 −0.135041
\(531\) 10.8253 + 0.977543i 0.469777 + 0.0424218i
\(532\) −16.2323 −0.703758
\(533\) −39.0477 7.98436i −1.69134 0.345841i
\(534\) −9.84836 10.7778i −0.426180 0.466399i
\(535\) 0.592967 0.342350i 0.0256362 0.0148011i
\(536\) 0.540970 + 0.936987i 0.0233663 + 0.0404717i
\(537\) 5.42520 17.1232i 0.234115 0.738920i
\(538\) 7.71400 + 4.45368i 0.332574 + 0.192012i
\(539\) 59.5633i 2.56558i
\(540\) −2.49609 + 0.317991i −0.107415 + 0.0136842i
\(541\) 12.2998i 0.528808i −0.964412 0.264404i \(-0.914825\pi\)
0.964412 0.264404i \(-0.0851753\pi\)
\(542\) −1.79275 + 3.10514i −0.0770054 + 0.133377i
\(543\) 5.67123 17.8997i 0.243376 0.768150i
\(544\) 3.63943 2.10123i 0.156039 0.0900894i
\(545\) 1.20465 + 2.08651i 0.0516014 + 0.0893763i
\(546\) −27.5705 15.3685i −1.17991 0.657709i
\(547\) 10.3452 17.9183i 0.442327 0.766133i −0.555534 0.831493i \(-0.687486\pi\)
0.997862 + 0.0653602i \(0.0208196\pi\)
\(548\) 19.6104i 0.837714i
\(549\) −2.72715 + 1.26244i −0.116392 + 0.0538795i
\(550\) 15.3045 0.652587
\(551\) 12.7731 + 7.37453i 0.544151 + 0.314165i
\(552\) 2.33653 + 10.6095i 0.0994495 + 0.451569i
\(553\) −34.3015 + 19.8040i −1.45865 + 0.842151i
\(554\) −12.8859 + 7.43966i −0.547468 + 0.316081i
\(555\) 1.70729 0.375999i 0.0724706 0.0159603i
\(556\) −0.193698 + 0.335495i −0.00821463 + 0.0142282i
\(557\) 14.2838i 0.605226i −0.953114 0.302613i \(-0.902141\pi\)
0.953114 0.302613i \(-0.0978589\pi\)
\(558\) 15.9022 + 11.2011i 0.673193 + 0.474181i
\(559\) −32.3817 + 10.7993i −1.36960 + 0.456764i
\(560\) 1.22381 2.11969i 0.0517152 0.0895734i
\(561\) 17.2568 15.7687i 0.728584 0.665756i
\(562\) 8.25582 + 14.2995i 0.348251 + 0.603188i
\(563\) 17.9673 + 31.1203i 0.757231 + 1.31156i 0.944257 + 0.329208i \(0.106782\pi\)
−0.187026 + 0.982355i \(0.559885\pi\)
\(564\) 8.72016 + 2.76284i 0.367185 + 0.116337i
\(565\) 5.48895 + 3.16905i 0.230922 + 0.133323i
\(566\) 0.535666i 0.0225157i
\(567\) 8.14910 44.7535i 0.342230 1.87947i
\(568\) −4.63041 −0.194288
\(569\) 18.5315 32.0976i 0.776882 1.34560i −0.156848 0.987623i \(-0.550133\pi\)
0.933730 0.357977i \(-0.116533\pi\)
\(570\) 2.56788 + 0.813592i 0.107557 + 0.0340776i
\(571\) 23.1732 + 40.1372i 0.969769 + 1.67969i 0.696217 + 0.717831i \(0.254865\pi\)
0.273551 + 0.961857i \(0.411802\pi\)
\(572\) 7.68122 8.66485i 0.321168 0.362296i
\(573\) 13.1535 + 14.3949i 0.549497 + 0.601354i
\(574\) 48.3856 + 27.9354i 2.01958 + 1.16600i
\(575\) 29.8900 1.24650
\(576\) 2.45264 + 1.72758i 0.102193 + 0.0719826i
\(577\) 31.4447i 1.30906i −0.756036 0.654530i \(-0.772866\pi\)
0.756036 0.654530i \(-0.227134\pi\)
\(578\) −0.572112 0.330309i −0.0237967 0.0137390i
\(579\) 2.84074 + 12.8989i 0.118057 + 0.536061i
\(580\) −1.92601 + 1.11198i −0.0799731 + 0.0461725i
\(581\) −14.8248 25.6773i −0.615037 1.06527i
\(582\) 22.0751 4.86163i 0.915044 0.201521i
\(583\) 17.8555 + 10.3088i 0.739497 + 0.426949i
\(584\) 0.325525 0.0134703
\(585\) 3.59125 + 3.81312i 0.148480 + 0.157653i
\(586\) −19.5896 −0.809241
\(587\) −27.0638 15.6253i −1.11704 0.644924i −0.176397 0.984319i \(-0.556444\pi\)
−0.940644 + 0.339395i \(0.889778\pi\)
\(588\) 21.6695 + 23.7145i 0.893635 + 0.977968i
\(589\) −10.4113 18.0329i −0.428989 0.743031i
\(590\) 1.51945 0.877257i 0.0625549 0.0361161i
\(591\) −40.4815 12.8259i −1.66519 0.527587i
\(592\) −1.80504 1.04214i −0.0741868 0.0428318i
\(593\) 26.3978i 1.08403i 0.840370 + 0.542013i \(0.182338\pi\)
−0.840370 + 0.542013i \(0.817662\pi\)
\(594\) 15.3905 + 6.45055i 0.631478 + 0.264669i
\(595\) −10.2860 −0.421684
\(596\) −8.19151 4.72937i −0.335537 0.193723i
\(597\) −7.07864 + 22.3418i −0.289709 + 0.914389i
\(598\) 15.0016 16.9226i 0.613459 0.692016i
\(599\) 3.40524 + 5.89806i 0.139135 + 0.240988i 0.927169 0.374643i \(-0.122235\pi\)
−0.788035 + 0.615631i \(0.788901\pi\)
\(600\) 6.09332 5.56788i 0.248759 0.227308i
\(601\) −4.82516 + 8.35742i −0.196822 + 0.340906i −0.947496 0.319766i \(-0.896396\pi\)
0.750674 + 0.660673i \(0.229729\pi\)
\(602\) 47.8516 1.95028
\(603\) 3.23267 + 0.291916i 0.131644 + 0.0118877i
\(604\) 1.33164i 0.0541836i
\(605\) −0.287730 0.166121i −0.0116979 0.00675377i
\(606\) 2.55068 + 11.5818i 0.103614 + 0.470480i
\(607\) −13.7896 23.8842i −0.559702 0.969432i −0.997521 0.0703688i \(-0.977582\pi\)
0.437819 0.899063i \(-0.355751\pi\)
\(608\) −1.60576 2.78126i −0.0651223 0.112795i
\(609\) −8.64718 39.2642i −0.350402 1.59106i
\(610\) −0.242546 + 0.420102i −0.00982041 + 0.0170094i
\(611\) −6.02428 18.0637i −0.243716 0.730779i
\(612\) 1.13385 12.5563i 0.0458333 0.507557i
\(613\) 16.0314i 0.647502i 0.946142 + 0.323751i \(0.104944\pi\)
−0.946142 + 0.323751i \(0.895056\pi\)
\(614\) 0.630320 1.09175i 0.0254377 0.0440593i
\(615\) −6.25424 6.84446i −0.252195 0.275995i
\(616\) −14.0576 + 8.11614i −0.566395 + 0.327009i
\(617\) −11.4362 + 6.60269i −0.460404 + 0.265814i −0.712214 0.701962i \(-0.752307\pi\)
0.251810 + 0.967777i \(0.418974\pi\)
\(618\) 5.87020 + 1.85988i 0.236134 + 0.0748152i
\(619\) −1.53649 0.887091i −0.0617566 0.0356552i 0.468804 0.883302i \(-0.344685\pi\)
−0.530560 + 0.847647i \(0.678018\pi\)
\(620\) 3.13977 0.126096
\(621\) 30.0578 + 12.5980i 1.20618 + 0.505542i
\(622\) 17.5844i 0.705072i
\(623\) 21.3020 36.8961i 0.853446 1.47821i
\(624\) −0.0941329 6.24429i −0.00376833 0.249972i
\(625\) −10.7687 18.6520i −0.430749 0.746079i
\(626\) 0.177891 0.102706i 0.00710997 0.00410494i
\(627\) −12.0505 13.1877i −0.481251 0.526667i
\(628\) −2.92122 + 5.05970i −0.116569 + 0.201904i
\(629\) 8.75911i 0.349249i
\(630\) −3.08463 6.66351i −0.122895 0.265480i
\(631\) 30.2211i 1.20308i 0.798841 + 0.601542i \(0.205447\pi\)
−0.798841 + 0.601542i \(0.794553\pi\)
\(632\) −6.78649 3.91818i −0.269952 0.155857i
\(633\) −40.3751 + 8.89184i −1.60476 + 0.353419i
\(634\) −9.04030 15.6583i −0.359036 0.621869i
\(635\) −1.91362 + 1.10483i −0.0759397 + 0.0438438i
\(636\) 10.8594 2.39157i 0.430602 0.0948319i
\(637\) 13.3964 65.5156i 0.530786 2.59582i
\(638\) 14.7491 0.583921
\(639\) −7.99942 + 11.3568i −0.316452 + 0.449266i
\(640\) 0.484256 0.0191419
\(641\) 0.301673 0.522512i 0.0119154 0.0206380i −0.860006 0.510284i \(-0.829540\pi\)
0.871922 + 0.489646i \(0.162874\pi\)
\(642\) −1.80789 + 1.65199i −0.0713516 + 0.0651988i
\(643\) −27.0250 + 15.6029i −1.06576 + 0.615317i −0.927020 0.375012i \(-0.877639\pi\)
−0.138740 + 0.990329i \(0.544305\pi\)
\(644\) −27.4546 + 15.8509i −1.08186 + 0.624615i
\(645\) −7.56993 2.39841i −0.298066 0.0944373i
\(646\) −6.74815 + 11.6881i −0.265502 + 0.459864i
\(647\) −48.8937 −1.92221 −0.961105 0.276182i \(-0.910931\pi\)
−0.961105 + 0.276182i \(0.910931\pi\)
\(648\) 8.47428 3.03092i 0.332901 0.119066i
\(649\) −11.6357 −0.456742
\(650\) −16.8339 3.44215i −0.660281 0.135012i
\(651\) −17.1439 + 54.1102i −0.671923 + 2.12074i
\(652\) −13.1064 + 7.56698i −0.513286 + 0.296346i
\(653\) −19.1944 33.2457i −0.751135 1.30100i −0.947273 0.320427i \(-0.896173\pi\)
0.196138 0.980576i \(-0.437160\pi\)
\(654\) −5.81295 6.36152i −0.227304 0.248755i
\(655\) −1.03564 0.597926i −0.0404658 0.0233629i
\(656\) 11.0540i 0.431585i
\(657\) 0.562371 0.798397i 0.0219402 0.0311484i
\(658\) 26.6934i 1.04062i
\(659\) 20.9568 36.2983i 0.816362 1.41398i −0.0919840 0.995760i \(-0.529321\pi\)
0.908346 0.418220i \(-0.137346\pi\)
\(660\) 2.63065 0.579350i 0.102398 0.0225512i
\(661\) −10.5208 + 6.07418i −0.409211 + 0.236258i −0.690451 0.723379i \(-0.742588\pi\)
0.281240 + 0.959638i \(0.409254\pi\)
\(662\) 2.09751 + 3.63300i 0.0815221 + 0.141200i
\(663\) −22.5279 + 13.4633i −0.874910 + 0.522870i
\(664\) 2.93306 5.08022i 0.113825 0.197151i
\(665\) 7.86058i 0.304820i
\(666\) −5.67437 + 2.62674i −0.219877 + 0.101784i
\(667\) 28.8051 1.11534
\(668\) −10.4155 6.01341i −0.402989 0.232666i
\(669\) 16.4558 15.0367i 0.636216 0.581353i
\(670\) 0.453742 0.261968i 0.0175296 0.0101207i
\(671\) 2.78607 1.60854i 0.107555 0.0620969i
\(672\) −2.64416 + 8.34557i −0.102001 + 0.321938i
\(673\) −18.3252 + 31.7403i −0.706386 + 1.22350i 0.259803 + 0.965662i \(0.416342\pi\)
−0.966189 + 0.257835i \(0.916991\pi\)
\(674\) 13.7608i 0.530047i
\(675\) −3.12931 24.5637i −0.120447 0.945458i
\(676\) −10.3976 + 7.80315i −0.399909 + 0.300121i
\(677\) −19.2964 + 33.4223i −0.741620 + 1.28452i 0.210138 + 0.977672i \(0.432609\pi\)
−0.951757 + 0.306851i \(0.900725\pi\)
\(678\) −21.6109 6.84705i −0.829960 0.262959i
\(679\) 32.9811 + 57.1249i 1.26570 + 2.19225i
\(680\) −1.01753 1.76242i −0.0390206 0.0675856i
\(681\) 23.0860 21.0952i 0.884656 0.808369i
\(682\) −18.0329 10.4113i −0.690514 0.398669i
\(683\) 31.4038i 1.20163i −0.799387 0.600816i \(-0.794842\pi\)
0.799387 0.600816i \(-0.205158\pi\)
\(684\) −9.59554 0.866495i −0.366895 0.0331313i
\(685\) −9.49644 −0.362840
\(686\) −29.1808 + 50.5426i −1.11413 + 1.92972i
\(687\) −7.88772 35.8157i −0.300935 1.36645i
\(688\) 4.73367 + 8.19896i 0.180470 + 0.312583i
\(689\) −17.3212 15.3549i −0.659885 0.584975i
\(690\) 5.13770 1.13148i 0.195589 0.0430747i
\(691\) 16.6786 + 9.62941i 0.634485 + 0.366320i 0.782487 0.622667i \(-0.213951\pi\)
−0.148002 + 0.988987i \(0.547284\pi\)
\(692\) −8.85863 −0.336755
\(693\) −4.37959 + 48.4995i −0.166367 + 1.84234i
\(694\) 23.8702i 0.906100i
\(695\) 0.162465 + 0.0937995i 0.00616266 + 0.00355802i
\(696\) 5.87217 5.36580i 0.222584 0.203390i
\(697\) 40.2301 23.2269i 1.52383 0.879781i
\(698\) −9.67391 16.7557i −0.366163 0.634213i
\(699\) 15.2030 47.9842i 0.575031 1.81493i
\(700\) 20.8596 + 12.0433i 0.788420 + 0.455194i
\(701\) −26.7781 −1.01139 −0.505697 0.862711i \(-0.668765\pi\)
−0.505697 + 0.862711i \(0.668765\pi\)
\(702\) −15.4776 10.5566i −0.584166 0.398435i
\(703\) 6.69374 0.252459
\(704\) −2.78126 1.60576i −0.104823 0.0605195i
\(705\) 1.33792 4.22279i 0.0503891 0.159039i
\(706\) −13.8914 24.0606i −0.522810 0.905533i
\(707\) −29.9709 + 17.3037i −1.12717 + 0.650773i
\(708\) −4.63263 + 4.23315i −0.174105 + 0.159091i
\(709\) 40.2439 + 23.2348i 1.51139 + 0.872602i 0.999911 + 0.0133058i \(0.00423551\pi\)
0.511479 + 0.859296i \(0.329098\pi\)
\(710\) 2.24230i 0.0841522i
\(711\) −21.3341 + 9.87587i −0.800092 + 0.370374i
\(712\) 8.42912 0.315895
\(713\) −35.2185 20.3334i −1.31894 0.761492i
\(714\) 35.9291 7.91271i 1.34461 0.296126i
\(715\) −4.19601 3.71968i −0.156922 0.139108i
\(716\) 5.18521 + 8.98104i 0.193780 + 0.335637i
\(717\) 2.70789 + 12.2957i 0.101128 + 0.459190i
\(718\) 11.9152 20.6378i 0.444672 0.770195i
\(719\) −4.81378 −0.179524 −0.0897619 0.995963i \(-0.528611\pi\)
−0.0897619 + 0.995963i \(0.528611\pi\)
\(720\) 0.836592 1.18771i 0.0311779 0.0442632i
\(721\) 17.9693i 0.669213i
\(722\) −7.52237 4.34304i −0.279954 0.161631i
\(723\) −22.9009 + 20.9261i −0.851693 + 0.778249i
\(724\) 5.42035 + 9.38833i 0.201446 + 0.348914i
\(725\) −10.9429 18.9536i −0.406407 0.703918i
\(726\) 1.13284 + 0.358921i 0.0420436 + 0.0133208i
\(727\) −6.35915 + 11.0144i −0.235848 + 0.408501i −0.959519 0.281645i \(-0.909120\pi\)
0.723671 + 0.690145i \(0.242453\pi\)
\(728\) 17.2878 5.76550i 0.640727 0.213684i
\(729\) 7.20624 26.0206i 0.266898 0.963725i
\(730\) 0.157637i 0.00583442i
\(731\) 19.8930 34.4558i 0.735771 1.27439i
\(732\) 0.524046 1.65401i 0.0193693 0.0611340i
\(733\) −3.68483 + 2.12744i −0.136102 + 0.0785787i −0.566505 0.824058i \(-0.691705\pi\)
0.430403 + 0.902637i \(0.358372\pi\)
\(734\) −8.74067 + 5.04643i −0.322624 + 0.186267i
\(735\) 11.4839 10.4936i 0.423589 0.387062i
\(736\) −5.43186 3.13608i −0.200221 0.115598i
\(737\) −3.47468 −0.127991
\(738\) 27.1114 + 19.0966i 0.997986 + 0.702956i
\(739\) 9.71484i 0.357366i −0.983907 0.178683i \(-0.942816\pi\)
0.983907 0.178683i \(-0.0571837\pi\)
\(740\) −0.504664 + 0.874103i −0.0185518 + 0.0321327i
\(741\) 10.2887 + 17.2159i 0.377963 + 0.632441i
\(742\) 16.2243 + 28.1013i 0.595613 + 1.03163i
\(743\) 10.6739 6.16261i 0.391589 0.226084i −0.291259 0.956644i \(-0.594074\pi\)
0.682848 + 0.730560i \(0.260741\pi\)
\(744\) −10.9673 + 2.41533i −0.402080 + 0.0885504i
\(745\) −2.29023 + 3.96679i −0.0839074 + 0.145332i
\(746\) 8.54741i 0.312943i
\(747\) −7.39285 15.9702i −0.270490 0.584321i
\(748\) 13.4963i 0.493474i
\(749\) −6.18904 3.57325i −0.226143 0.130564i
\(750\) −5.52524 6.04666i −0.201753 0.220793i
\(751\) 1.43490 + 2.48532i 0.0523603 + 0.0906908i 0.891018 0.453969i \(-0.149992\pi\)
−0.838657 + 0.544660i \(0.816659\pi\)
\(752\) −4.57369 + 2.64062i −0.166785 + 0.0962935i
\(753\) −2.01254 + 6.35204i −0.0733410 + 0.231481i
\(754\) −16.2229 3.31722i −0.590805 0.120806i
\(755\) −0.644854 −0.0234686
\(756\) 15.9007 + 20.9028i 0.578304 + 0.760229i
\(757\) 33.1438 1.20463 0.602316 0.798258i \(-0.294245\pi\)
0.602316 + 0.798258i \(0.294245\pi\)
\(758\) −15.3563 + 26.5978i −0.557764 + 0.966076i
\(759\) −33.2597 10.5378i −1.20725 0.382497i
\(760\) −1.34684 + 0.777601i −0.0488552 + 0.0282065i
\(761\) −37.0264 + 21.3772i −1.34221 + 0.774923i −0.987131 0.159915i \(-0.948878\pi\)
−0.355075 + 0.934838i \(0.615545\pi\)
\(762\) 5.83440 5.33128i 0.211358 0.193132i
\(763\) 12.5734 21.7778i 0.455188 0.788408i
\(764\) −11.2580 −0.407300
\(765\) −6.08045 0.549076i −0.219839 0.0198519i
\(766\) −2.88551 −0.104258
\(767\) 12.7985 + 2.61700i 0.462127 + 0.0944943i
\(768\) −1.69152 + 0.372524i −0.0610373 + 0.0134423i
\(769\) −41.6797 + 24.0638i −1.50301 + 0.867762i −0.503014 + 0.864278i \(0.667776\pi\)
−0.999994 + 0.00348401i \(0.998891\pi\)
\(770\) 3.93029 + 6.80746i 0.141638 + 0.245324i
\(771\) 24.9795 5.50125i 0.899614 0.198123i
\(772\) −6.60401 3.81283i −0.237684 0.137227i
\(773\) 21.3661i 0.768484i −0.923232 0.384242i \(-0.874463\pi\)
0.923232 0.384242i \(-0.125537\pi\)
\(774\) 28.2869 + 2.55436i 1.01675 + 0.0918147i
\(775\) 30.8980i 1.10989i
\(776\) −6.52525 + 11.3021i −0.234243 + 0.405721i
\(777\) −12.3085 13.4701i −0.441566 0.483237i
\(778\) −10.3018 + 5.94776i −0.369338 + 0.213238i
\(779\) −17.7501 30.7440i −0.635962 1.10152i
\(780\) −3.02383 + 0.0455844i −0.108271 + 0.00163218i
\(781\) 7.43535 12.8784i 0.266058 0.460826i
\(782\) 26.3585i 0.942578i
\(783\) −3.01573 23.6722i −0.107774 0.845975i
\(784\) −18.5467 −0.662383
\(785\) 2.45019 + 1.41462i 0.0874510 + 0.0504898i
\(786\) 4.07747 + 1.29188i 0.145439 + 0.0460799i
\(787\) 29.5928 17.0854i 1.05487 0.609029i 0.130860 0.991401i \(-0.458226\pi\)
0.924008 + 0.382372i \(0.124893\pi\)
\(788\) 21.2324 12.2585i 0.756372 0.436691i
\(789\) 10.2379 + 11.2040i 0.364477 + 0.398873i
\(790\) −1.89740 + 3.28640i −0.0675066 + 0.116925i
\(791\) 66.1533i 2.35214i
\(792\) −8.74323 + 4.04736i −0.310677 + 0.143817i
\(793\) −3.42626 + 1.14266i −0.121670 + 0.0405772i
\(794\) 11.9011 20.6132i 0.422353 0.731537i
\(795\) −1.15813 5.25871i −0.0410747 0.186507i
\(796\) −6.76550 11.7182i −0.239797 0.415340i
\(797\) −6.26917 10.8585i −0.222066 0.384629i 0.733369 0.679830i \(-0.237947\pi\)
−0.955435 + 0.295201i \(0.904613\pi\)
\(798\) −6.04691 27.4571i −0.214058 0.971973i
\(799\) 19.2207 + 11.0971i 0.679980 + 0.392587i
\(800\) 4.76550i 0.168486i
\(801\) 14.5620 20.6736i 0.514523 0.730467i
\(802\) −8.99705 −0.317697
\(803\) −0.522716 + 0.905371i −0.0184463 + 0.0319498i
\(804\) −1.38340 + 1.26411i −0.0487889 + 0.0445817i
\(805\) 7.67592 + 13.2951i 0.270540 + 0.468590i
\(806\) 17.4933 + 15.5075i 0.616175 + 0.546228i
\(807\) −4.65982 + 14.7075i −0.164033 + 0.517727i
\(808\) −5.92969 3.42351i −0.208606 0.120439i
\(809\) −23.7653 −0.835543 −0.417772 0.908552i \(-0.637189\pi\)
−0.417772 + 0.908552i \(0.637189\pi\)
\(810\) −1.46774 4.10372i −0.0515712 0.144190i
\(811\) 12.1844i 0.427853i −0.976850 0.213926i \(-0.931375\pi\)
0.976850 0.213926i \(-0.0686253\pi\)
\(812\) 20.1025 + 11.6062i 0.705461 + 0.407298i
\(813\) −5.92024 1.87573i −0.207632 0.0657848i
\(814\) 5.79695 3.34687i 0.203183 0.117308i
\(815\) 3.66435 + 6.34685i 0.128357 + 0.222320i
\(816\) 4.91003 + 5.37340i 0.171886 + 0.188107i
\(817\) −26.3312 15.2023i −0.921212 0.531862i
\(818\) −32.1404 −1.12376
\(819\) 15.7253 52.3611i 0.549487 1.82964i
\(820\) 5.35295 0.186933
\(821\) 14.8532 + 8.57549i 0.518379 + 0.299287i 0.736271 0.676686i \(-0.236585\pi\)
−0.217892 + 0.975973i \(0.569918\pi\)
\(822\) 33.1713 7.30534i 1.15698 0.254803i
\(823\) −19.0983 33.0792i −0.665725 1.15307i −0.979088 0.203436i \(-0.934789\pi\)
0.313363 0.949633i \(-0.398544\pi\)
\(824\) −3.07889 + 1.77760i −0.107258 + 0.0619257i
\(825\) 5.70131 + 25.8878i 0.198494 + 0.901299i
\(826\) −15.8592 9.15629i −0.551810 0.318588i
\(827\) 16.3182i 0.567441i −0.958907 0.283721i \(-0.908431\pi\)
0.958907 0.283721i \(-0.0915688\pi\)
\(828\) −17.0757 + 7.90457i −0.593420 + 0.274703i
\(829\) 13.6052 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(830\) −2.46012 1.42035i −0.0853922 0.0493012i
\(831\) −17.3846 19.0252i −0.603065 0.659977i
\(832\) 2.69805 + 2.39177i 0.0935379 + 0.0829196i
\(833\) 38.9709 + 67.4996i 1.35026 + 2.33872i
\(834\) −0.639652 0.202663i −0.0221493 0.00701766i
\(835\) −2.91203 + 5.04378i −0.100775 + 0.174547i
\(836\) 10.3139 0.356714
\(837\) −13.0229 + 31.0715i −0.450137 + 1.07399i
\(838\) 3.37377i 0.116545i
\(839\) 43.9792 + 25.3914i 1.51833 + 0.876609i 0.999767 + 0.0215696i \(0.00686634\pi\)
0.518563 + 0.855039i \(0.326467\pi\)
\(840\) 4.04139 + 1.28045i 0.139441 + 0.0441797i
\(841\) 3.95431 + 6.84907i 0.136356 + 0.236175i
\(842\) −1.30842 2.26626i −0.0450913 0.0781004i
\(843\) −21.1123 + 19.2918i −0.727148 + 0.664443i
\(844\) 11.9346 20.6713i 0.410805 0.711535i
\(845\) 3.77872 + 5.03512i 0.129992 + 0.173213i
\(846\) −1.42492 + 15.7795i −0.0489897 + 0.542511i
\(847\) 3.46774i 0.119153i
\(848\) −3.20995 + 5.55980i −0.110230 + 0.190924i
\(849\) 0.906087 0.199548i 0.0310968 0.00684848i
\(850\) 17.3437 10.0134i 0.594884 0.343456i
\(851\) 11.3215 6.53649i 0.388097 0.224068i
\(852\) −1.72494 7.83242i −0.0590955 0.268334i
\(853\) −31.1360 17.9764i −1.06608 0.615499i −0.138969 0.990297i \(-0.544379\pi\)
−0.927106 + 0.374798i \(0.877712\pi\)
\(854\) 5.06311 0.173256
\(855\) −0.419605 + 4.64670i −0.0143502 + 0.158914i
\(856\) 1.41392i 0.0483268i
\(857\) 2.28591 3.95932i 0.0780853 0.135248i −0.824339 0.566097i \(-0.808453\pi\)
0.902424 + 0.430849i \(0.141786\pi\)
\(858\) 17.5182 + 9.76505i 0.598061 + 0.333373i
\(859\) −5.82450 10.0883i −0.198729 0.344209i 0.749387 0.662132i \(-0.230348\pi\)
−0.948117 + 0.317923i \(0.897015\pi\)
\(860\) 3.97040 2.29231i 0.135389 0.0781671i
\(861\) −29.2284 + 92.2517i −0.996103 + 3.14393i
\(862\) 0.625564 1.08351i 0.0213068 0.0369044i
\(863\) 26.2523i 0.893640i 0.894624 + 0.446820i \(0.147444\pi\)
−0.894624 + 0.446820i \(0.852556\pi\)
\(864\) −2.00856 + 4.79225i −0.0683327 + 0.163036i
\(865\) 4.28985i 0.145859i
\(866\) 4.13195 + 2.38558i 0.140409 + 0.0810655i
\(867\) 0.345597 1.09078i 0.0117371 0.0370450i
\(868\) −16.3855 28.3806i −0.556161 0.963299i
\(869\) 21.7950 12.5834i 0.739345 0.426861i
\(870\) −2.59842 2.84363i −0.0880946 0.0964082i
\(871\) 3.82191 + 0.781493i 0.129500 + 0.0264799i
\(872\) 4.97525 0.168483
\(873\) 16.4470 + 35.5294i 0.556648 + 1.20249i
\(874\) 20.1432 0.681355
\(875\) 11.9511 20.6999i 0.404020 0.699783i
\(876\) 0.121266 + 0.550630i 0.00409719 + 0.0186041i
\(877\) 40.5146 23.3911i 1.36808 0.789862i 0.377398 0.926051i \(-0.376819\pi\)
0.990683 + 0.136189i \(0.0434854\pi\)
\(878\) 29.1867 16.8509i 0.985003 0.568692i
\(879\) −7.29762 33.1362i −0.246142 1.11766i
\(880\) −0.777601 + 1.34684i −0.0262129 + 0.0454021i
\(881\) 52.3698 1.76438 0.882192 0.470889i \(-0.156067\pi\)
0.882192 + 0.470889i \(0.156067\pi\)
\(882\) −32.0410 + 45.4885i −1.07888 + 1.53168i
\(883\) −28.7233 −0.966617 −0.483309 0.875450i \(-0.660565\pi\)
−0.483309 + 0.875450i \(0.660565\pi\)
\(884\) 3.03546 14.8450i 0.102094 0.499291i
\(885\) 2.04993 + 2.24338i 0.0689075 + 0.0754104i
\(886\) −4.65706 + 2.68876i −0.156457 + 0.0903305i
\(887\) −6.01188 10.4129i −0.201859 0.349631i 0.747268 0.664523i \(-0.231365\pi\)
−0.949128 + 0.314892i \(0.898032\pi\)
\(888\) 1.09038 3.44148i 0.0365907 0.115489i
\(889\) 19.9732 + 11.5316i 0.669881 + 0.386756i
\(890\) 4.08185i 0.136824i
\(891\) −5.17790 + 28.4362i −0.173466 + 0.952648i
\(892\) 12.8698i 0.430913i
\(893\) 8.48043 14.6885i 0.283787 0.491533i
\(894\) 4.94827 15.6179i 0.165495 0.522340i
\(895\) 4.34912 2.51097i 0.145375 0.0839324i
\(896\) −2.52719 4.37722i −0.0844274 0.146233i
\(897\) 34.2133 + 19.0713i 1.14235 + 0.636772i
\(898\) −8.39064 + 14.5330i −0.279999 + 0.484973i
\(899\) 29.7766i 0.993105i
\(900\) 11.6881 + 8.23278i 0.389602 + 0.274426i
\(901\) 26.9793 0.898812
\(902\) −30.7440 17.7501i −1.02366 0.591012i
\(903\) 17.8259 + 80.9417i 0.593207 + 2.69357i
\(904\) 11.3348 6.54415i 0.376990 0.217655i
\(905\) 4.54635 2.62484i 0.151126 0.0872526i
\(906\) 2.25249 0.496067i 0.0748339 0.0164807i
\(907\) −13.8974 + 24.0710i −0.461456 + 0.799265i −0.999034 0.0439492i \(-0.986006\pi\)
0.537578 + 0.843214i \(0.319339\pi\)
\(908\) 18.0552i 0.599182i
\(909\) −18.6407 + 8.62903i −0.618272 + 0.286207i
\(910\) −2.79198 8.37170i −0.0925531 0.277519i
\(911\) 10.3296 17.8914i 0.342235 0.592769i −0.642612 0.766191i \(-0.722149\pi\)
0.984847 + 0.173423i \(0.0554827\pi\)
\(912\) 4.10637 3.75226i 0.135975 0.124250i
\(913\) 9.41962 + 16.3153i 0.311744 + 0.539956i
\(914\) −11.8396 20.5067i −0.391618 0.678302i
\(915\) −0.800964 0.253772i −0.0264791 0.00838946i
\(916\) 18.3370 + 10.5869i 0.605871 + 0.349800i
\(917\) 12.4816i 0.412179i
\(918\) 21.6615 2.75958i 0.714937 0.0910798i
\(919\) 56.3658 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(920\) −1.51867 + 2.63041i −0.0500690 + 0.0867220i
\(921\) 2.08152 + 0.659495i 0.0685883 + 0.0217311i
\(922\) −17.2311 29.8451i −0.567476 0.982898i
\(923\) −11.0749 + 12.4931i −0.364534 + 0.411214i
\(924\) −18.9654 20.7551i −0.623914 0.682794i
\(925\) −8.60193 4.96633i −0.282830 0.163292i
\(926\) 22.4773 0.738649
\(927\) −0.959221 + 10.6224i −0.0315049 + 0.348885i
\(928\) 4.59254i 0.150757i
\(929\) 1.75111 + 1.01100i 0.0574520 + 0.0331699i 0.528451 0.848964i \(-0.322773\pi\)
−0.470999 + 0.882134i \(0.656106\pi\)
\(930\) 1.16964 + 5.31097i 0.0383540 + 0.174153i
\(931\) 51.5834 29.7817i 1.69058 0.976055i
\(932\) 14.5305 + 25.1675i 0.475962 + 0.824390i
\(933\) 29.7443 6.55063i 0.973786 0.214458i
\(934\) 3.84196 + 2.21816i 0.125713 + 0.0725804i
\(935\) 6.53566 0.213739
\(936\) 10.5272 2.48538i 0.344094 0.0812370i
\(937\) −15.3243 −0.500622 −0.250311 0.968166i \(-0.580533\pi\)
−0.250311 + 0.968166i \(0.580533\pi\)
\(938\) −4.73589 2.73427i −0.154632 0.0892770i
\(939\) 0.239997 + 0.262646i 0.00783200 + 0.00857112i
\(940\) 1.27874 + 2.21484i 0.0417078 + 0.0722400i
\(941\) 35.8714 20.7104i 1.16938 0.675139i 0.215842 0.976428i \(-0.430750\pi\)
0.953533 + 0.301289i \(0.0974170\pi\)
\(942\) −9.64678 3.05643i −0.314309 0.0995837i
\(943\) −60.0435 34.6661i −1.95529 1.12888i
\(944\) 3.62311i 0.117922i
\(945\) 10.1223 7.70002i 0.329279 0.250482i
\(946\) −30.4047 −0.988541
\(947\) 49.2660 + 28.4437i 1.60093 + 0.924297i 0.991302 + 0.131610i \(0.0420146\pi\)
0.609628 + 0.792687i \(0.291319\pi\)
\(948\) 4.09954 12.9391i 0.133147 0.420242i
\(949\) 0.778579 0.878281i 0.0252738 0.0285102i
\(950\) −7.65226 13.2541i −0.248272 0.430020i
\(951\) 23.1185 21.1249i 0.749667 0.685021i
\(952\) −10.6204 + 18.3951i −0.344209 + 0.596187i
\(953\) −40.5931 −1.31494 −0.657470 0.753481i \(-0.728373\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(954\) 8.09075 + 17.4779i 0.261948 + 0.565867i
\(955\) 5.45175i 0.176415i
\(956\) −6.29516 3.63451i −0.203600 0.117548i
\(957\) 5.49438 + 24.9483i 0.177608 + 0.806463i
\(958\) 5.90827 + 10.2334i 0.190888 + 0.330627i
\(959\) 49.5591 + 85.8389i 1.60035 + 2.77188i
\(960\) 0.180397 + 0.819127i 0.00582229 + 0.0264372i
\(961\) 5.51914 9.55944i 0.178037 0.308369i
\(962\) −7.12899 + 2.37753i −0.229848 + 0.0766547i
\(963\) −3.46785 2.44266i −0.111750 0.0787138i
\(964\) 17.9104i 0.576856i
\(965\) −1.84638 + 3.19803i −0.0594372 + 0.102948i
\(966\) −37.0396 40.5351i −1.19173 1.30420i
\(967\) −43.2958 + 24.9968i −1.39230 + 0.803844i −0.993569 0.113225i \(-0.963882\pi\)
−0.398729 + 0.917069i \(0.630548\pi\)
\(968\) −0.594169 + 0.343044i −0.0190973 + 0.0110258i
\(969\) −22.2845 7.06049i −0.715882 0.226816i
\(970\) 5.47310 + 3.15989i 0.175730 + 0.101458i
\(971\) −31.1467 −0.999546 −0.499773 0.866156i \(-0.666583\pi\)
−0.499773 + 0.866156i \(0.666583\pi\)
\(972\) 8.28373 + 13.2053i 0.265701 + 0.423560i
\(973\) 1.95805i 0.0627721i
\(974\) 12.9186 22.3758i 0.413940 0.716965i
\(975\) −0.448590 29.7571i −0.0143664 0.952991i
\(976\) 0.500864 + 0.867521i 0.0160323 + 0.0277687i
\(977\) 5.97565 3.45004i 0.191178 0.110377i −0.401356 0.915922i \(-0.631461\pi\)
0.592534 + 0.805546i \(0.298128\pi\)
\(978\) −17.6821 19.3508i −0.565411 0.618770i
\(979\) −13.5352 + 23.4436i −0.432586 + 0.749262i
\(980\) 8.98136i 0.286899i
\(981\) 8.59515 12.2025i 0.274422 0.389596i
\(982\) 11.1999i 0.357403i
\(983\) 45.4067 + 26.2156i 1.44825 + 0.836147i 0.998377 0.0569461i \(-0.0181363\pi\)
0.449872 + 0.893093i \(0.351470\pi\)
\(984\) −18.6980 + 4.11787i −0.596069 + 0.131273i
\(985\) −5.93626 10.2819i −0.189145 0.327608i
\(986\) 16.7142 9.64996i 0.532289 0.307317i
\(987\) −45.1523 + 9.94393i −1.43721 + 0.316519i
\(988\) −11.3446 2.31971i −0.360920 0.0737998i
\(989\) −59.3808 −1.88820
\(990\) 1.95996 + 4.23396i 0.0622916 + 0.134564i
\(991\) −26.0277 −0.826799 −0.413399 0.910550i \(-0.635659\pi\)
−0.413399 + 0.910550i \(0.635659\pi\)
\(992\) 3.24185 5.61504i 0.102929 0.178278i
\(993\) −5.36390 + 4.90135i −0.170218 + 0.155540i
\(994\) 20.2683 11.7019i 0.642872 0.371163i
\(995\) −5.67460 + 3.27623i −0.179897 + 0.103864i
\(996\) 9.68590 + 3.06882i 0.306910 + 0.0972393i
\(997\) −13.6237 + 23.5970i −0.431468 + 0.747324i −0.997000 0.0774021i \(-0.975337\pi\)
0.565532 + 0.824726i \(0.308671\pi\)
\(998\) −15.4596 −0.489367
\(999\) −6.55702 8.61975i −0.207455 0.272717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.t.a.25.5 28
3.2 odd 2 702.2.t.a.181.11 28
9.2 odd 6 2106.2.b.d.649.4 14
9.4 even 3 inner 234.2.t.a.103.12 yes 28
9.5 odd 6 702.2.t.a.415.4 28
9.7 even 3 2106.2.b.c.649.11 14
13.12 even 2 inner 234.2.t.a.25.12 yes 28
39.38 odd 2 702.2.t.a.181.4 28
117.25 even 6 2106.2.b.c.649.4 14
117.38 odd 6 2106.2.b.d.649.11 14
117.77 odd 6 702.2.t.a.415.11 28
117.103 even 6 inner 234.2.t.a.103.5 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.5 28 1.1 even 1 trivial
234.2.t.a.25.12 yes 28 13.12 even 2 inner
234.2.t.a.103.5 yes 28 117.103 even 6 inner
234.2.t.a.103.12 yes 28 9.4 even 3 inner
702.2.t.a.181.4 28 39.38 odd 2
702.2.t.a.181.11 28 3.2 odd 2
702.2.t.a.415.4 28 9.5 odd 6
702.2.t.a.415.11 28 117.77 odd 6
2106.2.b.c.649.4 14 117.25 even 6
2106.2.b.c.649.11 14 9.7 even 3
2106.2.b.d.649.4 14 9.2 odd 6
2106.2.b.d.649.11 14 117.38 odd 6