Properties

Label 702.2.t.a.415.11
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.11
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-0.419378 - 0.242128i) q^{5} +(-4.37722 + 2.52719i) q^{7} -1.00000i q^{8} -0.484256 q^{10} +(-2.78126 + 1.60576i) q^{11} +(-2.69805 + 2.39177i) q^{13} +(-2.52719 + 4.37722i) q^{14} +(-0.500000 - 0.866025i) q^{16} -4.20245 q^{17} +3.21153i q^{19} +(-0.419378 + 0.242128i) q^{20} +(-1.60576 + 2.78126i) q^{22} +(3.13608 - 5.43186i) q^{23} +(-2.38275 - 4.12704i) q^{25} +(-1.14069 + 3.42035i) q^{26} +5.05438i q^{28} +(2.29627 + 3.97725i) q^{29} +(5.61504 + 3.24185i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-3.63943 + 2.10123i) q^{34} +2.44761 q^{35} -2.08429i q^{37} +(1.60576 + 2.78126i) q^{38} +(-0.242128 + 0.419378i) q^{40} +(-9.57301 - 5.52698i) q^{41} +(4.73367 + 8.19896i) q^{43} +3.21153i q^{44} -6.27217i q^{46} +(-4.57369 + 2.64062i) q^{47} +(9.27337 - 16.0619i) q^{49} +(-4.12704 - 2.38275i) q^{50} +(0.722307 + 3.53246i) q^{52} -6.41990 q^{53} +1.55520 q^{55} +(2.52719 + 4.37722i) q^{56} +(3.97725 + 2.29627i) q^{58} +(3.13771 + 1.81156i) q^{59} +(0.500864 + 0.867521i) q^{61} +6.48369 q^{62} -1.00000 q^{64} +(1.71061 - 0.349781i) q^{65} +(-0.936987 - 0.540970i) q^{67} +(-2.10123 + 3.63943i) q^{68} +(2.11969 - 1.22381i) q^{70} -4.63041i q^{71} -0.325525i q^{73} +(-1.04214 - 1.80504i) q^{74} +(2.78126 + 1.60576i) q^{76} +(8.11614 - 14.0576i) q^{77} +(3.91818 + 6.78649i) q^{79} +0.484256i q^{80} -11.0540 q^{82} +(-5.08022 + 2.93306i) q^{83} +(1.76242 + 1.01753i) q^{85} +(8.19896 + 4.73367i) q^{86} +(1.60576 + 2.78126i) q^{88} +8.42912i q^{89} +(5.76550 - 17.2878i) q^{91} +(-3.13608 - 5.43186i) q^{92} +(-2.64062 + 4.57369i) q^{94} +(0.777601 - 1.34684i) q^{95} +(-11.3021 + 6.52525i) q^{97} -18.5467i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.419378 0.242128i −0.187552 0.108283i 0.403284 0.915075i \(-0.367869\pi\)
−0.590836 + 0.806792i \(0.701202\pi\)
\(6\) 0 0
\(7\) −4.37722 + 2.52719i −1.65443 + 0.955188i −0.679216 + 0.733938i \(0.737680\pi\)
−0.975217 + 0.221249i \(0.928987\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.484256 −0.153135
\(11\) −2.78126 + 1.60576i −0.838583 + 0.484156i −0.856782 0.515678i \(-0.827540\pi\)
0.0181994 + 0.999834i \(0.494207\pi\)
\(12\) 0 0
\(13\) −2.69805 + 2.39177i −0.748303 + 0.663357i
\(14\) −2.52719 + 4.37722i −0.675420 + 1.16986i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −4.20245 −1.01924 −0.509622 0.860398i \(-0.670215\pi\)
−0.509622 + 0.860398i \(0.670215\pi\)
\(18\) 0 0
\(19\) 3.21153i 0.736775i 0.929672 + 0.368388i \(0.120090\pi\)
−0.929672 + 0.368388i \(0.879910\pi\)
\(20\) −0.419378 + 0.242128i −0.0937758 + 0.0541415i
\(21\) 0 0
\(22\) −1.60576 + 2.78126i −0.342350 + 0.592968i
\(23\) 3.13608 5.43186i 0.653919 1.13262i −0.328245 0.944593i \(-0.606457\pi\)
0.982164 0.188028i \(-0.0602094\pi\)
\(24\) 0 0
\(25\) −2.38275 4.12704i −0.476550 0.825408i
\(26\) −1.14069 + 3.42035i −0.223708 + 0.670787i
\(27\) 0 0
\(28\) 5.05438i 0.955188i
\(29\) 2.29627 + 3.97725i 0.426406 + 0.738557i 0.996551 0.0829873i \(-0.0264461\pi\)
−0.570144 + 0.821544i \(0.693113\pi\)
\(30\) 0 0
\(31\) 5.61504 + 3.24185i 1.00849 + 0.582253i 0.910750 0.412959i \(-0.135505\pi\)
0.0977420 + 0.995212i \(0.468838\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −3.63943 + 2.10123i −0.624157 + 0.360357i
\(35\) 2.44761 0.413722
\(36\) 0 0
\(37\) 2.08429i 0.342654i −0.985214 0.171327i \(-0.945194\pi\)
0.985214 0.171327i \(-0.0548055\pi\)
\(38\) 1.60576 + 2.78126i 0.260489 + 0.451181i
\(39\) 0 0
\(40\) −0.242128 + 0.419378i −0.0382838 + 0.0663095i
\(41\) −9.57301 5.52698i −1.49505 0.863169i −0.495070 0.868853i \(-0.664857\pi\)
−0.999984 + 0.00568392i \(0.998191\pi\)
\(42\) 0 0
\(43\) 4.73367 + 8.19896i 0.721879 + 1.25033i 0.960246 + 0.279155i \(0.0900544\pi\)
−0.238367 + 0.971175i \(0.576612\pi\)
\(44\) 3.21153i 0.484156i
\(45\) 0 0
\(46\) 6.27217i 0.924780i
\(47\) −4.57369 + 2.64062i −0.667141 + 0.385174i −0.794992 0.606619i \(-0.792525\pi\)
0.127851 + 0.991793i \(0.459192\pi\)
\(48\) 0 0
\(49\) 9.27337 16.0619i 1.32477 2.29456i
\(50\) −4.12704 2.38275i −0.583652 0.336971i
\(51\) 0 0
\(52\) 0.722307 + 3.53246i 0.100166 + 0.489864i
\(53\) −6.41990 −0.881841 −0.440921 0.897546i \(-0.645348\pi\)
−0.440921 + 0.897546i \(0.645348\pi\)
\(54\) 0 0
\(55\) 1.55520 0.209703
\(56\) 2.52719 + 4.37722i 0.337710 + 0.584931i
\(57\) 0 0
\(58\) 3.97725 + 2.29627i 0.522239 + 0.301515i
\(59\) 3.13771 + 1.81156i 0.408495 + 0.235844i 0.690143 0.723673i \(-0.257548\pi\)
−0.281648 + 0.959518i \(0.590881\pi\)
\(60\) 0 0
\(61\) 0.500864 + 0.867521i 0.0641290 + 0.111075i 0.896307 0.443433i \(-0.146240\pi\)
−0.832178 + 0.554508i \(0.812906\pi\)
\(62\) 6.48369 0.823430
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.71061 0.349781i 0.212176 0.0433851i
\(66\) 0 0
\(67\) −0.936987 0.540970i −0.114471 0.0660900i 0.441671 0.897177i \(-0.354386\pi\)
−0.556142 + 0.831087i \(0.687719\pi\)
\(68\) −2.10123 + 3.63943i −0.254811 + 0.441346i
\(69\) 0 0
\(70\) 2.11969 1.22381i 0.253352 0.146273i
\(71\) 4.63041i 0.549529i −0.961512 0.274764i \(-0.911400\pi\)
0.961512 0.274764i \(-0.0885999\pi\)
\(72\) 0 0
\(73\) 0.325525i 0.0380998i −0.999819 0.0190499i \(-0.993936\pi\)
0.999819 0.0190499i \(-0.00606414\pi\)
\(74\) −1.04214 1.80504i −0.121147 0.209832i
\(75\) 0 0
\(76\) 2.78126 + 1.60576i 0.319033 + 0.184194i
\(77\) 8.11614 14.0576i 0.924920 1.60201i
\(78\) 0 0
\(79\) 3.91818 + 6.78649i 0.440830 + 0.763540i 0.997751 0.0670253i \(-0.0213508\pi\)
−0.556921 + 0.830565i \(0.688017\pi\)
\(80\) 0.484256i 0.0541415i
\(81\) 0 0
\(82\) −11.0540 −1.22071
\(83\) −5.08022 + 2.93306i −0.557626 + 0.321946i −0.752192 0.658944i \(-0.771003\pi\)
0.194566 + 0.980889i \(0.437670\pi\)
\(84\) 0 0
\(85\) 1.76242 + 1.01753i 0.191161 + 0.110367i
\(86\) 8.19896 + 4.73367i 0.884117 + 0.510445i
\(87\) 0 0
\(88\) 1.60576 + 2.78126i 0.171175 + 0.296484i
\(89\) 8.42912i 0.893485i 0.894662 + 0.446743i \(0.147416\pi\)
−0.894662 + 0.446743i \(0.852584\pi\)
\(90\) 0 0
\(91\) 5.76550 17.2878i 0.604388 1.81225i
\(92\) −3.13608 5.43186i −0.326959 0.566310i
\(93\) 0 0
\(94\) −2.64062 + 4.57369i −0.272359 + 0.471740i
\(95\) 0.777601 1.34684i 0.0797802 0.138183i
\(96\) 0 0
\(97\) −11.3021 + 6.52525i −1.14755 + 0.662539i −0.948289 0.317407i \(-0.897188\pi\)
−0.199262 + 0.979946i \(0.563855\pi\)
\(98\) 18.5467i 1.87350i
\(99\) 0 0
\(100\) −4.76550 −0.476550
\(101\) −3.42351 5.92969i −0.340652 0.590027i 0.643902 0.765108i \(-0.277314\pi\)
−0.984554 + 0.175081i \(0.943981\pi\)
\(102\) 0 0
\(103\) −1.77760 + 3.07889i −0.175152 + 0.303373i −0.940214 0.340584i \(-0.889375\pi\)
0.765062 + 0.643957i \(0.222708\pi\)
\(104\) 2.39177 + 2.69805i 0.234532 + 0.264565i
\(105\) 0 0
\(106\) −5.55980 + 3.20995i −0.540015 + 0.311778i
\(107\) −1.41392 −0.136689 −0.0683445 0.997662i \(-0.521772\pi\)
−0.0683445 + 0.997662i \(0.521772\pi\)
\(108\) 0 0
\(109\) 4.97525i 0.476543i −0.971199 0.238271i \(-0.923419\pi\)
0.971199 0.238271i \(-0.0765808\pi\)
\(110\) 1.34684 0.777601i 0.128417 0.0741413i
\(111\) 0 0
\(112\) 4.37722 + 2.52719i 0.413608 + 0.238797i
\(113\) −6.54415 + 11.3348i −0.615622 + 1.06629i 0.374653 + 0.927165i \(0.377762\pi\)
−0.990275 + 0.139124i \(0.955571\pi\)
\(114\) 0 0
\(115\) −2.63041 + 1.51867i −0.245287 + 0.141616i
\(116\) 4.59254 0.426406
\(117\) 0 0
\(118\) 3.62311 0.333534
\(119\) 18.3951 10.6204i 1.68627 0.973570i
\(120\) 0 0
\(121\) −0.343044 + 0.594169i −0.0311858 + 0.0540154i
\(122\) 0.867521 + 0.500864i 0.0785417 + 0.0453461i
\(123\) 0 0
\(124\) 5.61504 3.24185i 0.504246 0.291126i
\(125\) 4.72900i 0.422975i
\(126\) 0 0
\(127\) −4.56300 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 1.30655 1.15823i 0.114592 0.101583i
\(131\) 1.23473 2.13862i 0.107879 0.186852i −0.807032 0.590508i \(-0.798927\pi\)
0.914911 + 0.403656i \(0.132261\pi\)
\(132\) 0 0
\(133\) −8.11614 14.0576i −0.703758 1.21895i
\(134\) −1.08194 −0.0934654
\(135\) 0 0
\(136\) 4.20245i 0.360357i
\(137\) 16.9831 9.80519i 1.45096 0.837714i 0.452427 0.891802i \(-0.350558\pi\)
0.998536 + 0.0540880i \(0.0172251\pi\)
\(138\) 0 0
\(139\) 0.193698 0.335495i 0.0164293 0.0284563i −0.857694 0.514161i \(-0.828104\pi\)
0.874123 + 0.485704i \(0.161437\pi\)
\(140\) 1.22381 2.11969i 0.103430 0.179147i
\(141\) 0 0
\(142\) −2.31521 4.01005i −0.194288 0.336516i
\(143\) 3.66337 10.9846i 0.306346 0.918575i
\(144\) 0 0
\(145\) 2.22396i 0.184690i
\(146\) −0.162762 0.281913i −0.0134703 0.0233313i
\(147\) 0 0
\(148\) −1.80504 1.04214i −0.148374 0.0856636i
\(149\) 8.19151 + 4.72937i 0.671075 + 0.387445i 0.796484 0.604660i \(-0.206691\pi\)
−0.125409 + 0.992105i \(0.540024\pi\)
\(150\) 0 0
\(151\) −1.15323 + 0.665819i −0.0938487 + 0.0541836i −0.546190 0.837661i \(-0.683922\pi\)
0.452341 + 0.891845i \(0.350589\pi\)
\(152\) 3.21153 0.260489
\(153\) 0 0
\(154\) 16.2323i 1.30803i
\(155\) −1.56988 2.71912i −0.126096 0.218405i
\(156\) 0 0
\(157\) 2.92122 5.05970i 0.233139 0.403808i −0.725592 0.688126i \(-0.758434\pi\)
0.958730 + 0.284318i \(0.0917671\pi\)
\(158\) 6.78649 + 3.91818i 0.539904 + 0.311714i
\(159\) 0 0
\(160\) 0.242128 + 0.419378i 0.0191419 + 0.0331547i
\(161\) 31.7019i 2.49846i
\(162\) 0 0
\(163\) 15.1340i 1.18538i −0.805430 0.592691i \(-0.798065\pi\)
0.805430 0.592691i \(-0.201935\pi\)
\(164\) −9.57301 + 5.52698i −0.747527 + 0.431585i
\(165\) 0 0
\(166\) −2.93306 + 5.08022i −0.227650 + 0.394301i
\(167\) 10.4155 + 6.01341i 0.805978 + 0.465331i 0.845557 0.533885i \(-0.179268\pi\)
−0.0395794 + 0.999216i \(0.512602\pi\)
\(168\) 0 0
\(169\) 1.55891 12.9062i 0.119916 0.992784i
\(170\) 2.03506 0.156082
\(171\) 0 0
\(172\) 9.46735 0.721879
\(173\) 4.42932 + 7.67180i 0.336755 + 0.583276i 0.983820 0.179158i \(-0.0573374\pi\)
−0.647066 + 0.762434i \(0.724004\pi\)
\(174\) 0 0
\(175\) 20.8596 + 12.0433i 1.57684 + 0.910389i
\(176\) 2.78126 + 1.60576i 0.209646 + 0.121039i
\(177\) 0 0
\(178\) 4.21456 + 7.29984i 0.315895 + 0.547146i
\(179\) −10.3704 −0.775121 −0.387561 0.921844i \(-0.626682\pi\)
−0.387561 + 0.921844i \(0.626682\pi\)
\(180\) 0 0
\(181\) 10.8407 0.805783 0.402892 0.915248i \(-0.368005\pi\)
0.402892 + 0.915248i \(0.368005\pi\)
\(182\) −3.65081 17.8544i −0.270616 1.32346i
\(183\) 0 0
\(184\) −5.43186 3.13608i −0.400442 0.231195i
\(185\) −0.504664 + 0.874103i −0.0371036 + 0.0642653i
\(186\) 0 0
\(187\) 11.6881 6.74815i 0.854721 0.493474i
\(188\) 5.28124i 0.385174i
\(189\) 0 0
\(190\) 1.55520i 0.112826i
\(191\) 5.62900 + 9.74971i 0.407300 + 0.705464i 0.994586 0.103915i \(-0.0331370\pi\)
−0.587286 + 0.809379i \(0.699804\pi\)
\(192\) 0 0
\(193\) −6.60401 3.81283i −0.475367 0.274453i 0.243117 0.969997i \(-0.421830\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(194\) −6.52525 + 11.3021i −0.468486 + 0.811441i
\(195\) 0 0
\(196\) −9.27337 16.0619i −0.662383 1.14728i
\(197\) 24.5170i 1.74677i −0.487035 0.873383i \(-0.661921\pi\)
0.487035 0.873383i \(-0.338079\pi\)
\(198\) 0 0
\(199\) −13.5310 −0.959187 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(200\) −4.12704 + 2.38275i −0.291826 + 0.168486i
\(201\) 0 0
\(202\) −5.92969 3.42351i −0.417212 0.240877i
\(203\) −20.1025 11.6062i −1.41092 0.814596i
\(204\) 0 0
\(205\) 2.67647 + 4.63579i 0.186933 + 0.323777i
\(206\) 3.55520i 0.247703i
\(207\) 0 0
\(208\) 3.42035 + 1.14069i 0.237159 + 0.0790929i
\(209\) −5.15696 8.93211i −0.356714 0.617847i
\(210\) 0 0
\(211\) −11.9346 + 20.6713i −0.821610 + 1.42307i 0.0828724 + 0.996560i \(0.473591\pi\)
−0.904483 + 0.426511i \(0.859743\pi\)
\(212\) −3.20995 + 5.55980i −0.220460 + 0.381849i
\(213\) 0 0
\(214\) −1.22449 + 0.706961i −0.0837045 + 0.0483268i
\(215\) 4.58462i 0.312668i
\(216\) 0 0
\(217\) −32.7710 −2.22464
\(218\) −2.48763 4.30869i −0.168483 0.291822i
\(219\) 0 0
\(220\) 0.777601 1.34684i 0.0524258 0.0908042i
\(221\) 11.3384 10.0513i 0.762704 0.676123i
\(222\) 0 0
\(223\) 11.1456 6.43490i 0.746363 0.430913i −0.0780155 0.996952i \(-0.524858\pi\)
0.824378 + 0.566040i \(0.191525\pi\)
\(224\) 5.05438 0.337710
\(225\) 0 0
\(226\) 13.0883i 0.870621i
\(227\) −15.6362 + 9.02759i −1.03781 + 0.599182i −0.919213 0.393760i \(-0.871174\pi\)
−0.118600 + 0.992942i \(0.537841\pi\)
\(228\) 0 0
\(229\) 18.3370 + 10.5869i 1.21174 + 0.699599i 0.963138 0.269006i \(-0.0866953\pi\)
0.248603 + 0.968606i \(0.420029\pi\)
\(230\) −1.51867 + 2.63041i −0.100138 + 0.173444i
\(231\) 0 0
\(232\) 3.97725 2.29627i 0.261119 0.150757i
\(233\) −29.0610 −1.90385 −0.951923 0.306337i \(-0.900897\pi\)
−0.951923 + 0.306337i \(0.900897\pi\)
\(234\) 0 0
\(235\) 2.55747 0.166831
\(236\) 3.13771 1.81156i 0.204247 0.117922i
\(237\) 0 0
\(238\) 10.6204 18.3951i 0.688418 1.19237i
\(239\) 6.29516 + 3.63451i 0.407200 + 0.235097i 0.689586 0.724204i \(-0.257793\pi\)
−0.282386 + 0.959301i \(0.591126\pi\)
\(240\) 0 0
\(241\) −15.5109 + 8.95521i −0.999144 + 0.576856i −0.907995 0.418981i \(-0.862387\pi\)
−0.0911491 + 0.995837i \(0.529054\pi\)
\(242\) 0.686087i 0.0441034i
\(243\) 0 0
\(244\) 1.00173 0.0641290
\(245\) −7.77809 + 4.49068i −0.496924 + 0.286899i
\(246\) 0 0
\(247\) −7.68122 8.66485i −0.488745 0.551331i
\(248\) 3.24185 5.61504i 0.205857 0.356556i
\(249\) 0 0
\(250\) 2.36450 + 4.09543i 0.149544 + 0.259018i
\(251\) 3.84702 0.242822 0.121411 0.992602i \(-0.461258\pi\)
0.121411 + 0.992602i \(0.461258\pi\)
\(252\) 0 0
\(253\) 20.1432i 1.26639i
\(254\) −3.95167 + 2.28150i −0.247950 + 0.143154i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.38375 + 12.7890i −0.460586 + 0.797758i −0.998990 0.0449285i \(-0.985694\pi\)
0.538404 + 0.842687i \(0.319027\pi\)
\(258\) 0 0
\(259\) 5.26738 + 9.12337i 0.327299 + 0.566899i
\(260\) 0.552388 1.65633i 0.0342576 0.102721i
\(261\) 0 0
\(262\) 2.46946i 0.152564i
\(263\) 4.38124 + 7.58853i 0.270159 + 0.467929i 0.968902 0.247443i \(-0.0795904\pi\)
−0.698743 + 0.715372i \(0.746257\pi\)
\(264\) 0 0
\(265\) 2.69237 + 1.55444i 0.165391 + 0.0954884i
\(266\) −14.0576 8.11614i −0.861924 0.497632i
\(267\) 0 0
\(268\) −0.936987 + 0.540970i −0.0572356 + 0.0330450i
\(269\) 8.90736 0.543091 0.271546 0.962426i \(-0.412465\pi\)
0.271546 + 0.962426i \(0.412465\pi\)
\(270\) 0 0
\(271\) 3.58551i 0.217804i 0.994052 + 0.108902i \(0.0347335\pi\)
−0.994052 + 0.108902i \(0.965266\pi\)
\(272\) 2.10123 + 3.63943i 0.127406 + 0.220673i
\(273\) 0 0
\(274\) 9.80519 16.9831i 0.592353 1.02599i
\(275\) 13.2541 + 7.65226i 0.799253 + 0.461449i
\(276\) 0 0
\(277\) 7.43966 + 12.8859i 0.447006 + 0.774237i 0.998190 0.0601468i \(-0.0191569\pi\)
−0.551183 + 0.834384i \(0.685824\pi\)
\(278\) 0.387396i 0.0232345i
\(279\) 0 0
\(280\) 2.44761i 0.146273i
\(281\) 14.2995 8.25582i 0.853037 0.492501i −0.00863764 0.999963i \(-0.502749\pi\)
0.861674 + 0.507462i \(0.169416\pi\)
\(282\) 0 0
\(283\) 0.267833 0.463900i 0.0159210 0.0275760i −0.857955 0.513725i \(-0.828265\pi\)
0.873876 + 0.486149i \(0.161599\pi\)
\(284\) −4.01005 2.31521i −0.237953 0.137382i
\(285\) 0 0
\(286\) −2.31971 11.3446i −0.137167 0.670820i
\(287\) 55.8709 3.29795
\(288\) 0 0
\(289\) 0.660618 0.0388599
\(290\) −1.11198 1.92601i −0.0652978 0.113099i
\(291\) 0 0
\(292\) −0.281913 0.162762i −0.0164977 0.00952495i
\(293\) −16.9651 9.79482i −0.991113 0.572220i −0.0855065 0.996338i \(-0.527251\pi\)
−0.905607 + 0.424118i \(0.860584\pi\)
\(294\) 0 0
\(295\) −0.877257 1.51945i −0.0510758 0.0884660i
\(296\) −2.08429 −0.121147
\(297\) 0 0
\(298\) 9.45874 0.547930
\(299\) 4.53043 + 22.1562i 0.262002 + 1.28132i
\(300\) 0 0
\(301\) −41.4407 23.9258i −2.38860 1.37906i
\(302\) −0.665819 + 1.15323i −0.0383136 + 0.0663611i
\(303\) 0 0
\(304\) 2.78126 1.60576i 0.159516 0.0920969i
\(305\) 0.485092i 0.0277763i
\(306\) 0 0
\(307\) 1.26064i 0.0719485i −0.999353 0.0359743i \(-0.988547\pi\)
0.999353 0.0359743i \(-0.0114534\pi\)
\(308\) −8.11614 14.0576i −0.462460 0.801004i
\(309\) 0 0
\(310\) −2.71912 1.56988i −0.154436 0.0891634i
\(311\) −8.79222 + 15.2286i −0.498561 + 0.863533i −0.999999 0.00166095i \(-0.999471\pi\)
0.501438 + 0.865194i \(0.332805\pi\)
\(312\) 0 0
\(313\) −0.102706 0.177891i −0.00580526 0.0100550i 0.863108 0.505019i \(-0.168515\pi\)
−0.868913 + 0.494964i \(0.835181\pi\)
\(314\) 5.84243i 0.329708i
\(315\) 0 0
\(316\) 7.83637 0.440830
\(317\) −15.6583 + 9.04030i −0.879455 + 0.507754i −0.870479 0.492206i \(-0.836191\pi\)
−0.00897641 + 0.999960i \(0.502857\pi\)
\(318\) 0 0
\(319\) −12.7731 7.37453i −0.715154 0.412894i
\(320\) 0.419378 + 0.242128i 0.0234439 + 0.0135354i
\(321\) 0 0
\(322\) 15.8509 + 27.4546i 0.883339 + 1.52999i
\(323\) 13.4963i 0.750954i
\(324\) 0 0
\(325\) 16.2997 + 5.43597i 0.904144 + 0.301533i
\(326\) −7.56698 13.1064i −0.419096 0.725896i
\(327\) 0 0
\(328\) −5.52698 + 9.57301i −0.305176 + 0.528581i
\(329\) 13.3467 23.1171i 0.735827 1.27449i
\(330\) 0 0
\(331\) −3.63300 + 2.09751i −0.199688 + 0.115290i −0.596510 0.802606i \(-0.703446\pi\)
0.396822 + 0.917896i \(0.370113\pi\)
\(332\) 5.86613i 0.321946i
\(333\) 0 0
\(334\) 12.0268 0.658078
\(335\) 0.261968 + 0.453742i 0.0143128 + 0.0247906i
\(336\) 0 0
\(337\) −6.88041 + 11.9172i −0.374800 + 0.649172i −0.990297 0.138967i \(-0.955622\pi\)
0.615497 + 0.788139i \(0.288955\pi\)
\(338\) −5.10304 11.9565i −0.277569 0.650350i
\(339\) 0 0
\(340\) 1.76242 1.01753i 0.0955805 0.0551834i
\(341\) −20.8226 −1.12761
\(342\) 0 0
\(343\) 58.3615i 3.15123i
\(344\) 8.19896 4.73367i 0.442059 0.255223i
\(345\) 0 0
\(346\) 7.67180 + 4.42932i 0.412439 + 0.238122i
\(347\) −11.9351 + 20.6722i −0.640710 + 1.10974i 0.344565 + 0.938763i \(0.388026\pi\)
−0.985275 + 0.170979i \(0.945307\pi\)
\(348\) 0 0
\(349\) 16.7557 9.67391i 0.896913 0.517833i 0.0207153 0.999785i \(-0.493406\pi\)
0.876197 + 0.481953i \(0.160072\pi\)
\(350\) 24.0866 1.28748
\(351\) 0 0
\(352\) 3.21153 0.171175
\(353\) −24.0606 + 13.8914i −1.28062 + 0.739365i −0.976961 0.213417i \(-0.931541\pi\)
−0.303656 + 0.952782i \(0.598207\pi\)
\(354\) 0 0
\(355\) −1.12115 + 1.94189i −0.0595046 + 0.103065i
\(356\) 7.29984 + 4.21456i 0.386891 + 0.223371i
\(357\) 0 0
\(358\) −8.98104 + 5.18521i −0.474663 + 0.274047i
\(359\) 23.8304i 1.25772i 0.777517 + 0.628861i \(0.216479\pi\)
−0.777517 + 0.628861i \(0.783521\pi\)
\(360\) 0 0
\(361\) 8.68609 0.457162
\(362\) 9.38833 5.42035i 0.493440 0.284887i
\(363\) 0 0
\(364\) −12.0889 13.6369i −0.633630 0.714770i
\(365\) −0.0788187 + 0.136518i −0.00412556 + 0.00714568i
\(366\) 0 0
\(367\) 5.04643 + 8.74067i 0.263421 + 0.456259i 0.967149 0.254211i \(-0.0818157\pi\)
−0.703728 + 0.710470i \(0.748482\pi\)
\(368\) −6.27217 −0.326959
\(369\) 0 0
\(370\) 1.00933i 0.0524724i
\(371\) 28.1013 16.2243i 1.45895 0.842324i
\(372\) 0 0
\(373\) 4.27370 7.40227i 0.221284 0.383275i −0.733914 0.679242i \(-0.762309\pi\)
0.955198 + 0.295967i \(0.0956419\pi\)
\(374\) 6.74815 11.6881i 0.348938 0.604379i
\(375\) 0 0
\(376\) 2.64062 + 4.57369i 0.136180 + 0.235870i
\(377\) −15.7081 5.23868i −0.809008 0.269806i
\(378\) 0 0
\(379\) 30.7125i 1.57760i 0.614653 + 0.788798i \(0.289296\pi\)
−0.614653 + 0.788798i \(0.710704\pi\)
\(380\) −0.777601 1.34684i −0.0398901 0.0690916i
\(381\) 0 0
\(382\) 9.74971 + 5.62900i 0.498839 + 0.288005i
\(383\) −2.49892 1.44275i −0.127689 0.0737212i 0.434795 0.900529i \(-0.356821\pi\)
−0.562484 + 0.826808i \(0.690154\pi\)
\(384\) 0 0
\(385\) −6.80746 + 3.93029i −0.346940 + 0.200306i
\(386\) −7.62566 −0.388136
\(387\) 0 0
\(388\) 13.0505i 0.662539i
\(389\) −5.94776 10.3018i −0.301564 0.522323i 0.674927 0.737885i \(-0.264175\pi\)
−0.976490 + 0.215561i \(0.930842\pi\)
\(390\) 0 0
\(391\) −13.1792 + 22.8271i −0.666503 + 1.15442i
\(392\) −16.0619 9.27337i −0.811250 0.468376i
\(393\) 0 0
\(394\) −12.2585 21.2324i −0.617575 1.06967i
\(395\) 3.79481i 0.190937i
\(396\) 0 0
\(397\) 23.8021i 1.19459i −0.802020 0.597297i \(-0.796241\pi\)
0.802020 0.597297i \(-0.203759\pi\)
\(398\) −11.7182 + 6.76550i −0.587379 + 0.339124i
\(399\) 0 0
\(400\) −2.38275 + 4.12704i −0.119137 + 0.206352i
\(401\) −7.79168 4.49853i −0.389098 0.224646i 0.292671 0.956213i \(-0.405456\pi\)
−0.681769 + 0.731567i \(0.738789\pi\)
\(402\) 0 0
\(403\) −22.9034 + 4.68322i −1.14090 + 0.233288i
\(404\) −6.84702 −0.340652
\(405\) 0 0
\(406\) −23.2124 −1.15201
\(407\) 3.34687 + 5.79695i 0.165898 + 0.287344i
\(408\) 0 0
\(409\) 27.8344 + 16.0702i 1.37632 + 0.794620i 0.991715 0.128460i \(-0.0410033\pi\)
0.384608 + 0.923080i \(0.374337\pi\)
\(410\) 4.63579 + 2.67647i 0.228945 + 0.132182i
\(411\) 0 0
\(412\) 1.77760 + 3.07889i 0.0875761 + 0.151686i
\(413\) −18.3126 −0.901103
\(414\) 0 0
\(415\) 2.84071 0.139445
\(416\) 3.53246 0.722307i 0.173193 0.0354140i
\(417\) 0 0
\(418\) −8.93211 5.15696i −0.436884 0.252235i
\(419\) 1.68689 2.92177i 0.0824098 0.142738i −0.821875 0.569668i \(-0.807072\pi\)
0.904285 + 0.426930i \(0.140405\pi\)
\(420\) 0 0
\(421\) 2.26626 1.30842i 0.110451 0.0637687i −0.443757 0.896147i \(-0.646355\pi\)
0.554208 + 0.832378i \(0.313021\pi\)
\(422\) 23.8692i 1.16193i
\(423\) 0 0
\(424\) 6.41990i 0.311778i
\(425\) 10.0134 + 17.3437i 0.485721 + 0.841293i
\(426\) 0 0
\(427\) −4.38478 2.53155i −0.212194 0.122510i
\(428\) −0.706961 + 1.22449i −0.0341722 + 0.0591880i
\(429\) 0 0
\(430\) −2.29231 3.97040i −0.110545 0.191470i
\(431\) 1.25113i 0.0602647i 0.999546 + 0.0301324i \(0.00959288\pi\)
−0.999546 + 0.0301324i \(0.990407\pi\)
\(432\) 0 0
\(433\) −4.77117 −0.229288 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(434\) −28.3806 + 16.3855i −1.36231 + 0.786530i
\(435\) 0 0
\(436\) −4.30869 2.48763i −0.206349 0.119136i
\(437\) 17.4446 + 10.0716i 0.834486 + 0.481791i
\(438\) 0 0
\(439\) −16.8509 29.1867i −0.804252 1.39300i −0.916795 0.399358i \(-0.869233\pi\)
0.112543 0.993647i \(-0.464100\pi\)
\(440\) 1.55520i 0.0741413i
\(441\) 0 0
\(442\) 4.79371 14.3739i 0.228014 0.683696i
\(443\) −2.68876 4.65706i −0.127747 0.221264i 0.795057 0.606535i \(-0.207441\pi\)
−0.922803 + 0.385272i \(0.874108\pi\)
\(444\) 0 0
\(445\) 2.04093 3.53499i 0.0967492 0.167575i
\(446\) 6.43490 11.1456i 0.304701 0.527758i
\(447\) 0 0
\(448\) 4.37722 2.52719i 0.206804 0.119398i
\(449\) 16.7813i 0.791958i −0.918260 0.395979i \(-0.870405\pi\)
0.918260 0.395979i \(-0.129595\pi\)
\(450\) 0 0
\(451\) 35.5001 1.67163
\(452\) 6.54415 + 11.3348i 0.307811 + 0.533145i
\(453\) 0 0
\(454\) −9.02759 + 15.6362i −0.423686 + 0.733845i
\(455\) −6.60377 + 5.85412i −0.309590 + 0.274445i
\(456\) 0 0
\(457\) 20.5067 11.8396i 0.959263 0.553831i 0.0633172 0.997993i \(-0.479832\pi\)
0.895946 + 0.444162i \(0.146499\pi\)
\(458\) 21.1737 0.989383
\(459\) 0 0
\(460\) 3.03733i 0.141616i
\(461\) −29.8451 + 17.2311i −1.39003 + 0.802533i −0.993318 0.115412i \(-0.963181\pi\)
−0.396709 + 0.917944i \(0.629848\pi\)
\(462\) 0 0
\(463\) −19.4659 11.2386i −0.904657 0.522304i −0.0259487 0.999663i \(-0.508261\pi\)
−0.878708 + 0.477359i \(0.841594\pi\)
\(464\) 2.29627 3.97725i 0.106602 0.184639i
\(465\) 0 0
\(466\) −25.1675 + 14.5305i −1.16586 + 0.673111i
\(467\) 4.43632 0.205288 0.102644 0.994718i \(-0.467270\pi\)
0.102644 + 0.994718i \(0.467270\pi\)
\(468\) 0 0
\(469\) 5.46853 0.252513
\(470\) 2.21484 1.27874i 0.102163 0.0589837i
\(471\) 0 0
\(472\) 1.81156 3.13771i 0.0833836 0.144425i
\(473\) −26.3312 15.2023i −1.21071 0.699004i
\(474\) 0 0
\(475\) 13.2541 7.65226i 0.608140 0.351110i
\(476\) 21.2408i 0.973570i
\(477\) 0 0
\(478\) 7.26902 0.332477
\(479\) 10.2334 5.90827i 0.467577 0.269956i −0.247648 0.968850i \(-0.579658\pi\)
0.715225 + 0.698894i \(0.246324\pi\)
\(480\) 0 0
\(481\) 4.98512 + 5.62350i 0.227302 + 0.256409i
\(482\) −8.95521 + 15.5109i −0.407899 + 0.706501i
\(483\) 0 0
\(484\) 0.343044 + 0.594169i 0.0155929 + 0.0270077i
\(485\) 6.31979 0.286967
\(486\) 0 0
\(487\) 25.8373i 1.17080i −0.810745 0.585400i \(-0.800938\pi\)
0.810745 0.585400i \(-0.199062\pi\)
\(488\) 0.867521 0.500864i 0.0392708 0.0226730i
\(489\) 0 0
\(490\) −4.49068 + 7.77809i −0.202868 + 0.351378i
\(491\) 5.59995 9.69940i 0.252722 0.437728i −0.711552 0.702633i \(-0.752007\pi\)
0.964274 + 0.264906i \(0.0853408\pi\)
\(492\) 0 0
\(493\) −9.64996 16.7142i −0.434612 0.752771i
\(494\) −10.9846 3.66337i −0.494219 0.164823i
\(495\) 0 0
\(496\) 6.48369i 0.291126i
\(497\) 11.7019 + 20.2683i 0.524903 + 0.909159i
\(498\) 0 0
\(499\) 13.3884 + 7.72982i 0.599349 + 0.346034i 0.768786 0.639507i \(-0.220861\pi\)
−0.169436 + 0.985541i \(0.554195\pi\)
\(500\) 4.09543 + 2.36450i 0.183153 + 0.105744i
\(501\) 0 0
\(502\) 3.33162 1.92351i 0.148697 0.0858505i
\(503\) 6.00330 0.267674 0.133837 0.991003i \(-0.457270\pi\)
0.133837 + 0.991003i \(0.457270\pi\)
\(504\) 0 0
\(505\) 3.31571i 0.147547i
\(506\) 10.0716 + 17.4446i 0.447738 + 0.775505i
\(507\) 0 0
\(508\) −2.28150 + 3.95167i −0.101225 + 0.175327i
\(509\) 18.6801 + 10.7849i 0.827979 + 0.478034i 0.853160 0.521649i \(-0.174683\pi\)
−0.0251810 + 0.999683i \(0.508016\pi\)
\(510\) 0 0
\(511\) 0.822663 + 1.42489i 0.0363925 + 0.0630336i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 14.7675i 0.651367i
\(515\) 1.49097 0.860814i 0.0657001 0.0379320i
\(516\) 0 0
\(517\) 8.48043 14.6885i 0.372969 0.646001i
\(518\) 9.12337 + 5.26738i 0.400858 + 0.231435i
\(519\) 0 0
\(520\) −0.349781 1.71061i −0.0153389 0.0750154i
\(521\) −24.0543 −1.05384 −0.526918 0.849916i \(-0.676653\pi\)
−0.526918 + 0.849916i \(0.676653\pi\)
\(522\) 0 0
\(523\) −10.8449 −0.474215 −0.237107 0.971483i \(-0.576199\pi\)
−0.237107 + 0.971483i \(0.576199\pi\)
\(524\) −1.23473 2.13862i −0.0539395 0.0934260i
\(525\) 0 0
\(526\) 7.58853 + 4.38124i 0.330876 + 0.191031i
\(527\) −23.5970 13.6237i −1.02790 0.593458i
\(528\) 0 0
\(529\) −8.17003 14.1509i −0.355219 0.615257i
\(530\) 3.10888 0.135041
\(531\) 0 0
\(532\) −16.2323 −0.703758
\(533\) 39.0477 7.98436i 1.69134 0.345841i
\(534\) 0 0
\(535\) 0.592967 + 0.342350i 0.0256362 + 0.0148011i
\(536\) −0.540970 + 0.936987i −0.0233663 + 0.0404717i
\(537\) 0 0
\(538\) 7.71400 4.45368i 0.332574 0.192012i
\(539\) 59.5633i 2.56558i
\(540\) 0 0
\(541\) 12.2998i 0.528808i 0.964412 + 0.264404i \(0.0851753\pi\)
−0.964412 + 0.264404i \(0.914825\pi\)
\(542\) 1.79275 + 3.10514i 0.0770054 + 0.133377i
\(543\) 0 0
\(544\) 3.63943 + 2.10123i 0.156039 + 0.0900894i
\(545\) −1.20465 + 2.08651i −0.0516014 + 0.0893763i
\(546\) 0 0
\(547\) 10.3452 + 17.9183i 0.442327 + 0.766133i 0.997862 0.0653602i \(-0.0208196\pi\)
−0.555534 + 0.831493i \(0.687486\pi\)
\(548\) 19.6104i 0.837714i
\(549\) 0 0
\(550\) 15.3045 0.652587
\(551\) −12.7731 + 7.37453i −0.544151 + 0.314165i
\(552\) 0 0
\(553\) −34.3015 19.8040i −1.45865 0.842151i
\(554\) 12.8859 + 7.43966i 0.547468 + 0.316081i
\(555\) 0 0
\(556\) −0.193698 0.335495i −0.00821463 0.0142282i
\(557\) 14.2838i 0.605226i −0.953114 0.302613i \(-0.902141\pi\)
0.953114 0.302613i \(-0.0978589\pi\)
\(558\) 0 0
\(559\) −32.3817 10.7993i −1.36960 0.456764i
\(560\) −1.22381 2.11969i −0.0517152 0.0895734i
\(561\) 0 0
\(562\) 8.25582 14.2995i 0.348251 0.603188i
\(563\) −17.9673 + 31.1203i −0.757231 + 1.31156i 0.187026 + 0.982355i \(0.440115\pi\)
−0.944257 + 0.329208i \(0.893218\pi\)
\(564\) 0 0
\(565\) 5.48895 3.16905i 0.230922 0.133323i
\(566\) 0.535666i 0.0225157i
\(567\) 0 0
\(568\) −4.63041 −0.194288
\(569\) −18.5315 32.0976i −0.776882 1.34560i −0.933730 0.357977i \(-0.883467\pi\)
0.156848 0.987623i \(-0.449867\pi\)
\(570\) 0 0
\(571\) 23.1732 40.1372i 0.969769 1.67969i 0.273551 0.961857i \(-0.411802\pi\)
0.696217 0.717831i \(-0.254865\pi\)
\(572\) −7.68122 8.66485i −0.321168 0.362296i
\(573\) 0 0
\(574\) 48.3856 27.9354i 2.01958 1.16600i
\(575\) −29.8900 −1.24650
\(576\) 0 0
\(577\) 31.4447i 1.30906i 0.756036 + 0.654530i \(0.227134\pi\)
−0.756036 + 0.654530i \(0.772866\pi\)
\(578\) 0.572112 0.330309i 0.0237967 0.0137390i
\(579\) 0 0
\(580\) −1.92601 1.11198i −0.0799731 0.0461725i
\(581\) 14.8248 25.6773i 0.615037 1.06527i
\(582\) 0 0
\(583\) 17.8555 10.3088i 0.739497 0.426949i
\(584\) −0.325525 −0.0134703
\(585\) 0 0
\(586\) −19.5896 −0.809241
\(587\) 27.0638 15.6253i 1.11704 0.644924i 0.176397 0.984319i \(-0.443556\pi\)
0.940644 + 0.339395i \(0.110222\pi\)
\(588\) 0 0
\(589\) −10.4113 + 18.0329i −0.428989 + 0.743031i
\(590\) −1.51945 0.877257i −0.0625549 0.0361161i
\(591\) 0 0
\(592\) −1.80504 + 1.04214i −0.0741868 + 0.0428318i
\(593\) 26.3978i 1.08403i 0.840370 + 0.542013i \(0.182338\pi\)
−0.840370 + 0.542013i \(0.817662\pi\)
\(594\) 0 0
\(595\) −10.2860 −0.421684
\(596\) 8.19151 4.72937i 0.335537 0.193723i
\(597\) 0 0
\(598\) 15.0016 + 16.9226i 0.613459 + 0.692016i
\(599\) −3.40524 + 5.89806i −0.139135 + 0.240988i −0.927169 0.374643i \(-0.877765\pi\)
0.788035 + 0.615631i \(0.211099\pi\)
\(600\) 0 0
\(601\) −4.82516 8.35742i −0.196822 0.340906i 0.750674 0.660673i \(-0.229729\pi\)
−0.947496 + 0.319766i \(0.896396\pi\)
\(602\) −47.8516 −1.95028
\(603\) 0 0
\(604\) 1.33164i 0.0541836i
\(605\) 0.287730 0.166121i 0.0116979 0.00675377i
\(606\) 0 0
\(607\) −13.7896 + 23.8842i −0.559702 + 0.969432i 0.437819 + 0.899063i \(0.355751\pi\)
−0.997521 + 0.0703688i \(0.977582\pi\)
\(608\) 1.60576 2.78126i 0.0651223 0.112795i
\(609\) 0 0
\(610\) −0.242546 0.420102i −0.00982041 0.0170094i
\(611\) 6.02428 18.0637i 0.243716 0.730779i
\(612\) 0 0
\(613\) 16.0314i 0.647502i −0.946142 0.323751i \(-0.895056\pi\)
0.946142 0.323751i \(-0.104944\pi\)
\(614\) −0.630320 1.09175i −0.0254377 0.0440593i
\(615\) 0 0
\(616\) −14.0576 8.11614i −0.566395 0.327009i
\(617\) 11.4362 + 6.60269i 0.460404 + 0.265814i 0.712214 0.701962i \(-0.247693\pi\)
−0.251810 + 0.967777i \(0.581026\pi\)
\(618\) 0 0
\(619\) −1.53649 + 0.887091i −0.0617566 + 0.0356552i −0.530560 0.847647i \(-0.678018\pi\)
0.468804 + 0.883302i \(0.344685\pi\)
\(620\) −3.13977 −0.126096
\(621\) 0 0
\(622\) 17.5844i 0.705072i
\(623\) −21.3020 36.8961i −0.853446 1.47821i
\(624\) 0 0
\(625\) −10.7687 + 18.6520i −0.430749 + 0.746079i
\(626\) −0.177891 0.102706i −0.00710997 0.00410494i
\(627\) 0 0
\(628\) −2.92122 5.05970i −0.116569 0.201904i
\(629\) 8.75911i 0.349249i
\(630\) 0 0
\(631\) 30.2211i 1.20308i −0.798841 0.601542i \(-0.794553\pi\)
0.798841 0.601542i \(-0.205447\pi\)
\(632\) 6.78649 3.91818i 0.269952 0.155857i
\(633\) 0 0
\(634\) −9.04030 + 15.6583i −0.359036 + 0.621869i
\(635\) 1.91362 + 1.10483i 0.0759397 + 0.0438438i
\(636\) 0 0
\(637\) 13.3964 + 65.5156i 0.530786 + 2.59582i
\(638\) −14.7491 −0.583921
\(639\) 0 0
\(640\) 0.484256 0.0191419
\(641\) −0.301673 0.522512i −0.0119154 0.0206380i 0.860006 0.510284i \(-0.170460\pi\)
−0.871922 + 0.489646i \(0.837126\pi\)
\(642\) 0 0
\(643\) −27.0250 15.6029i −1.06576 0.615317i −0.138740 0.990329i \(-0.544305\pi\)
−0.927020 + 0.375012i \(0.877639\pi\)
\(644\) 27.4546 + 15.8509i 1.08186 + 0.624615i
\(645\) 0 0
\(646\) −6.74815 11.6881i −0.265502 0.459864i
\(647\) 48.8937 1.92221 0.961105 0.276182i \(-0.0890692\pi\)
0.961105 + 0.276182i \(0.0890692\pi\)
\(648\) 0 0
\(649\) −11.6357 −0.456742
\(650\) 16.8339 3.44215i 0.660281 0.135012i
\(651\) 0 0
\(652\) −13.1064 7.56698i −0.513286 0.296346i
\(653\) 19.1944 33.2457i 0.751135 1.30100i −0.196138 0.980576i \(-0.562840\pi\)
0.947273 0.320427i \(-0.103827\pi\)
\(654\) 0 0
\(655\) −1.03564 + 0.597926i −0.0404658 + 0.0233629i
\(656\) 11.0540i 0.431585i
\(657\) 0 0
\(658\) 26.6934i 1.04062i
\(659\) −20.9568 36.2983i −0.816362 1.41398i −0.908346 0.418220i \(-0.862654\pi\)
0.0919840 0.995760i \(-0.470679\pi\)
\(660\) 0 0
\(661\) −10.5208 6.07418i −0.409211 0.236258i 0.281240 0.959638i \(-0.409254\pi\)
−0.690451 + 0.723379i \(0.742588\pi\)
\(662\) −2.09751 + 3.63300i −0.0815221 + 0.141200i
\(663\) 0 0
\(664\) 2.93306 + 5.08022i 0.113825 + 0.197151i
\(665\) 7.86058i 0.304820i
\(666\) 0 0
\(667\) 28.8051 1.11534
\(668\) 10.4155 6.01341i 0.402989 0.232666i
\(669\) 0 0
\(670\) 0.453742 + 0.261968i 0.0175296 + 0.0101207i
\(671\) −2.78607 1.60854i −0.107555 0.0620969i
\(672\) 0 0
\(673\) −18.3252 31.7403i −0.706386 1.22350i −0.966189 0.257835i \(-0.916991\pi\)
0.259803 0.965662i \(-0.416342\pi\)
\(674\) 13.7608i 0.530047i
\(675\) 0 0
\(676\) −10.3976 7.80315i −0.399909 0.300121i
\(677\) 19.2964 + 33.4223i 0.741620 + 1.28452i 0.951757 + 0.306851i \(0.0992755\pi\)
−0.210138 + 0.977672i \(0.567391\pi\)
\(678\) 0 0
\(679\) 32.9811 57.1249i 1.26570 2.19225i
\(680\) 1.01753 1.76242i 0.0390206 0.0675856i
\(681\) 0 0
\(682\) −18.0329 + 10.4113i −0.690514 + 0.398669i
\(683\) 31.4038i 1.20163i −0.799387 0.600816i \(-0.794842\pi\)
0.799387 0.600816i \(-0.205158\pi\)
\(684\) 0 0
\(685\) −9.49644 −0.362840
\(686\) 29.1808 + 50.5426i 1.11413 + 1.92972i
\(687\) 0 0
\(688\) 4.73367 8.19896i 0.180470 0.312583i
\(689\) 17.3212 15.3549i 0.659885 0.584975i
\(690\) 0 0
\(691\) 16.6786 9.62941i 0.634485 0.366320i −0.148002 0.988987i \(-0.547284\pi\)
0.782487 + 0.622667i \(0.213951\pi\)
\(692\) 8.85863 0.336755
\(693\) 0 0
\(694\) 23.8702i 0.906100i
\(695\) −0.162465 + 0.0937995i −0.00616266 + 0.00355802i
\(696\) 0 0
\(697\) 40.2301 + 23.2269i 1.52383 + 0.879781i
\(698\) 9.67391 16.7557i 0.366163 0.634213i
\(699\) 0 0
\(700\) 20.8596 12.0433i 0.788420 0.455194i
\(701\) 26.7781 1.01139 0.505697 0.862711i \(-0.331235\pi\)
0.505697 + 0.862711i \(0.331235\pi\)
\(702\) 0 0
\(703\) 6.69374 0.252459
\(704\) 2.78126 1.60576i 0.104823 0.0605195i
\(705\) 0 0
\(706\) −13.8914 + 24.0606i −0.522810 + 0.905533i
\(707\) 29.9709 + 17.3037i 1.12717 + 0.650773i
\(708\) 0 0
\(709\) 40.2439 23.2348i 1.51139 0.872602i 0.511479 0.859296i \(-0.329098\pi\)
0.999911 0.0133058i \(-0.00423551\pi\)
\(710\) 2.24230i 0.0841522i
\(711\) 0 0
\(712\) 8.42912 0.315895
\(713\) 35.2185 20.3334i 1.31894 0.761492i
\(714\) 0 0
\(715\) −4.19601 + 3.71968i −0.156922 + 0.139108i
\(716\) −5.18521 + 8.98104i −0.193780 + 0.335637i
\(717\) 0 0
\(718\) 11.9152 + 20.6378i 0.444672 + 0.770195i
\(719\) 4.81378 0.179524 0.0897619 0.995963i \(-0.471389\pi\)
0.0897619 + 0.995963i \(0.471389\pi\)
\(720\) 0 0
\(721\) 17.9693i 0.669213i
\(722\) 7.52237 4.34304i 0.279954 0.161631i
\(723\) 0 0
\(724\) 5.42035 9.38833i 0.201446 0.348914i
\(725\) 10.9429 18.9536i 0.406407 0.703918i
\(726\) 0 0
\(727\) −6.35915 11.0144i −0.235848 0.408501i 0.723671 0.690145i \(-0.242453\pi\)
−0.959519 + 0.281645i \(0.909120\pi\)
\(728\) −17.2878 5.76550i −0.640727 0.213684i
\(729\) 0 0
\(730\) 0.157637i 0.00583442i
\(731\) −19.8930 34.4558i −0.735771 1.27439i
\(732\) 0 0
\(733\) −3.68483 2.12744i −0.136102 0.0785787i 0.430403 0.902637i \(-0.358372\pi\)
−0.566505 + 0.824058i \(0.691705\pi\)
\(734\) 8.74067 + 5.04643i 0.322624 + 0.186267i
\(735\) 0 0
\(736\) −5.43186 + 3.13608i −0.200221 + 0.115598i
\(737\) 3.47468 0.127991
\(738\) 0 0
\(739\) 9.71484i 0.357366i 0.983907 + 0.178683i \(0.0571837\pi\)
−0.983907 + 0.178683i \(0.942816\pi\)
\(740\) 0.504664 + 0.874103i 0.0185518 + 0.0321327i
\(741\) 0 0
\(742\) 16.2243 28.1013i 0.595613 1.03163i
\(743\) −10.6739 6.16261i −0.391589 0.226084i 0.291259 0.956644i \(-0.405926\pi\)
−0.682848 + 0.730560i \(0.739259\pi\)
\(744\) 0 0
\(745\) −2.29023 3.96679i −0.0839074 0.145332i
\(746\) 8.54741i 0.312943i
\(747\) 0 0
\(748\) 13.4963i 0.493474i
\(749\) 6.18904 3.57325i 0.226143 0.130564i
\(750\) 0 0
\(751\) 1.43490 2.48532i 0.0523603 0.0906908i −0.838657 0.544660i \(-0.816659\pi\)
0.891018 + 0.453969i \(0.149992\pi\)
\(752\) 4.57369 + 2.64062i 0.166785 + 0.0962935i
\(753\) 0 0
\(754\) −16.2229 + 3.31722i −0.590805 + 0.120806i
\(755\) 0.644854 0.0234686
\(756\) 0 0
\(757\) 33.1438 1.20463 0.602316 0.798258i \(-0.294245\pi\)
0.602316 + 0.798258i \(0.294245\pi\)
\(758\) 15.3563 + 26.5978i 0.557764 + 0.966076i
\(759\) 0 0
\(760\) −1.34684 0.777601i −0.0488552 0.0282065i
\(761\) 37.0264 + 21.3772i 1.34221 + 0.774923i 0.987131 0.159915i \(-0.0511220\pi\)
0.355075 + 0.934838i \(0.384455\pi\)
\(762\) 0 0
\(763\) 12.5734 + 21.7778i 0.455188 + 0.788408i
\(764\) 11.2580 0.407300
\(765\) 0 0
\(766\) −2.88551 −0.104258
\(767\) −12.7985 + 2.61700i −0.462127 + 0.0944943i
\(768\) 0 0
\(769\) −41.6797 24.0638i −1.50301 0.867762i −0.999994 0.00348401i \(-0.998891\pi\)
−0.503014 0.864278i \(-0.667776\pi\)
\(770\) −3.93029 + 6.80746i −0.141638 + 0.245324i
\(771\) 0 0
\(772\) −6.60401 + 3.81283i −0.237684 + 0.137227i
\(773\) 21.3661i 0.768484i −0.923232 0.384242i \(-0.874463\pi\)
0.923232 0.384242i \(-0.125537\pi\)
\(774\) 0 0
\(775\) 30.8980i 1.10989i
\(776\) 6.52525 + 11.3021i 0.234243 + 0.405721i
\(777\) 0 0
\(778\) −10.3018 5.94776i −0.369338 0.213238i
\(779\) 17.7501 30.7440i 0.635962 1.10152i
\(780\) 0 0
\(781\) 7.43535 + 12.8784i 0.266058 + 0.460826i
\(782\) 26.3585i 0.942578i
\(783\) 0 0
\(784\) −18.5467 −0.662383
\(785\) −2.45019 + 1.41462i −0.0874510 + 0.0504898i
\(786\) 0 0
\(787\) 29.5928 + 17.0854i 1.05487 + 0.609029i 0.924008 0.382372i \(-0.124893\pi\)
0.130860 + 0.991401i \(0.458226\pi\)
\(788\) −21.2324 12.2585i −0.756372 0.436691i
\(789\) 0 0
\(790\) −1.89740 3.28640i −0.0675066 0.116925i
\(791\) 66.1533i 2.35214i
\(792\) 0 0
\(793\) −3.42626 1.14266i −0.121670 0.0405772i
\(794\) −11.9011 20.6132i −0.422353 0.731537i
\(795\) 0 0
\(796\) −6.76550 + 11.7182i −0.239797 + 0.415340i
\(797\) 6.26917 10.8585i 0.222066 0.384629i −0.733369 0.679830i \(-0.762053\pi\)
0.955435 + 0.295201i \(0.0953868\pi\)
\(798\) 0 0
\(799\) 19.2207 11.0971i 0.679980 0.392587i
\(800\) 4.76550i 0.168486i
\(801\) 0 0
\(802\) −8.99705 −0.317697
\(803\) 0.522716 + 0.905371i 0.0184463 + 0.0319498i
\(804\) 0 0
\(805\) 7.67592 13.2951i 0.270540 0.468590i
\(806\) −17.4933 + 15.5075i −0.616175 + 0.546228i
\(807\) 0 0
\(808\) −5.92969 + 3.42351i −0.208606 + 0.120439i
\(809\) 23.7653 0.835543 0.417772 0.908552i \(-0.362811\pi\)
0.417772 + 0.908552i \(0.362811\pi\)
\(810\) 0 0
\(811\) 12.1844i 0.427853i 0.976850 + 0.213926i \(0.0686253\pi\)
−0.976850 + 0.213926i \(0.931375\pi\)
\(812\) −20.1025 + 11.6062i −0.705461 + 0.407298i
\(813\) 0 0
\(814\) 5.79695 + 3.34687i 0.203183 + 0.117308i
\(815\) −3.66435 + 6.34685i −0.128357 + 0.222320i
\(816\) 0 0
\(817\) −26.3312 + 15.2023i −0.921212 + 0.531862i
\(818\) 32.1404 1.12376
\(819\) 0 0
\(820\) 5.35295 0.186933
\(821\) −14.8532 + 8.57549i −0.518379 + 0.299287i −0.736271 0.676686i \(-0.763415\pi\)
0.217892 + 0.975973i \(0.430082\pi\)
\(822\) 0 0
\(823\) −19.0983 + 33.0792i −0.665725 + 1.15307i 0.313363 + 0.949633i \(0.398544\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(824\) 3.07889 + 1.77760i 0.107258 + 0.0619257i
\(825\) 0 0
\(826\) −15.8592 + 9.15629i −0.551810 + 0.318588i
\(827\) 16.3182i 0.567441i −0.958907 0.283721i \(-0.908431\pi\)
0.958907 0.283721i \(-0.0915688\pi\)
\(828\) 0 0
\(829\) 13.6052 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(830\) 2.46012 1.42035i 0.0853922 0.0493012i
\(831\) 0 0
\(832\) 2.69805 2.39177i 0.0935379 0.0829196i
\(833\) −38.9709 + 67.4996i −1.35026 + 2.33872i
\(834\) 0 0
\(835\) −2.91203 5.04378i −0.100775 0.174547i
\(836\) −10.3139 −0.356714
\(837\) 0 0
\(838\) 3.37377i 0.116545i
\(839\) −43.9792 + 25.3914i −1.51833 + 0.876609i −0.518563 + 0.855039i \(0.673533\pi\)
−0.999767 + 0.0215696i \(0.993134\pi\)
\(840\) 0 0
\(841\) 3.95431 6.84907i 0.136356 0.236175i
\(842\) 1.30842 2.26626i 0.0450913 0.0781004i
\(843\) 0 0
\(844\) 11.9346 + 20.6713i 0.410805 + 0.711535i
\(845\) −3.77872 + 5.03512i −0.129992 + 0.173213i
\(846\) 0 0
\(847\) 3.46774i 0.119153i
\(848\) 3.20995 + 5.55980i 0.110230 + 0.190924i
\(849\) 0 0
\(850\) 17.3437 + 10.0134i 0.594884 + 0.343456i
\(851\) −11.3215 6.53649i −0.388097 0.224068i
\(852\) 0 0
\(853\) −31.1360 + 17.9764i −1.06608 + 0.615499i −0.927106 0.374798i \(-0.877712\pi\)
−0.138969 + 0.990297i \(0.544379\pi\)
\(854\) −5.06311 −0.173256
\(855\) 0 0
\(856\) 1.41392i 0.0483268i
\(857\) −2.28591 3.95932i −0.0780853 0.135248i 0.824339 0.566097i \(-0.191547\pi\)
−0.902424 + 0.430849i \(0.858214\pi\)
\(858\) 0 0
\(859\) −5.82450 + 10.0883i −0.198729 + 0.344209i −0.948117 0.317923i \(-0.897015\pi\)
0.749387 + 0.662132i \(0.230348\pi\)
\(860\) −3.97040 2.29231i −0.135389 0.0781671i
\(861\) 0 0
\(862\) 0.625564 + 1.08351i 0.0213068 + 0.0369044i
\(863\) 26.2523i 0.893640i 0.894624 + 0.446820i \(0.147444\pi\)
−0.894624 + 0.446820i \(0.852556\pi\)
\(864\) 0 0
\(865\) 4.28985i 0.145859i
\(866\) −4.13195 + 2.38558i −0.140409 + 0.0810655i
\(867\) 0 0
\(868\) −16.3855 + 28.3806i −0.556161 + 0.963299i
\(869\) −21.7950 12.5834i −0.739345 0.426861i
\(870\) 0 0
\(871\) 3.82191 0.781493i 0.129500 0.0264799i
\(872\) −4.97525 −0.168483
\(873\) 0 0
\(874\) 20.1432 0.681355
\(875\) −11.9511 20.6999i −0.404020 0.699783i
\(876\) 0 0
\(877\) 40.5146 + 23.3911i 1.36808 + 0.789862i 0.990683 0.136189i \(-0.0434854\pi\)
0.377398 + 0.926051i \(0.376819\pi\)
\(878\) −29.1867 16.8509i −0.985003 0.568692i
\(879\) 0 0
\(880\) −0.777601 1.34684i −0.0262129 0.0454021i
\(881\) −52.3698 −1.76438 −0.882192 0.470889i \(-0.843933\pi\)
−0.882192 + 0.470889i \(0.843933\pi\)
\(882\) 0 0
\(883\) −28.7233 −0.966617 −0.483309 0.875450i \(-0.660565\pi\)
−0.483309 + 0.875450i \(0.660565\pi\)
\(884\) −3.03546 14.8450i −0.102094 0.499291i
\(885\) 0 0
\(886\) −4.65706 2.68876i −0.156457 0.0903305i
\(887\) 6.01188 10.4129i 0.201859 0.349631i −0.747268 0.664523i \(-0.768635\pi\)
0.949128 + 0.314892i \(0.101968\pi\)
\(888\) 0 0
\(889\) 19.9732 11.5316i 0.669881 0.386756i
\(890\) 4.08185i 0.136824i
\(891\) 0 0
\(892\) 12.8698i 0.430913i
\(893\) −8.48043 14.6885i −0.283787 0.491533i
\(894\) 0 0
\(895\) 4.34912 + 2.51097i 0.145375 + 0.0839324i
\(896\) 2.52719 4.37722i 0.0844274 0.146233i
\(897\) 0 0
\(898\) −8.39064 14.5330i −0.279999 0.484973i
\(899\) 29.7766i 0.993105i
\(900\) 0 0
\(901\) 26.9793 0.898812
\(902\) 30.7440 17.7501i 1.02366 0.591012i
\(903\) 0 0
\(904\) 11.3348 + 6.54415i 0.376990 + 0.217655i
\(905\) −4.54635 2.62484i −0.151126 0.0872526i
\(906\) 0 0
\(907\) −13.8974 24.0710i −0.461456 0.799265i 0.537578 0.843214i \(-0.319339\pi\)
−0.999034 + 0.0439492i \(0.986006\pi\)
\(908\) 18.0552i 0.599182i
\(909\) 0 0
\(910\) −2.79198 + 8.37170i −0.0925531 + 0.277519i
\(911\) −10.3296 17.8914i −0.342235 0.592769i 0.642612 0.766191i \(-0.277851\pi\)
−0.984847 + 0.173423i \(0.944517\pi\)
\(912\) 0 0
\(913\) 9.41962 16.3153i 0.311744 0.539956i
\(914\) 11.8396 20.5067i 0.391618 0.678302i
\(915\) 0 0
\(916\) 18.3370 10.5869i 0.605871 0.349800i
\(917\) 12.4816i 0.412179i
\(918\) 0 0
\(919\) 56.3658 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(920\) 1.51867 + 2.63041i 0.0500690 + 0.0867220i
\(921\) 0 0
\(922\) −17.2311 + 29.8451i −0.567476 + 0.982898i
\(923\) 11.0749 + 12.4931i 0.364534 + 0.411214i
\(924\) 0 0
\(925\) −8.60193 + 4.96633i −0.282830 + 0.163292i
\(926\) −22.4773 −0.738649
\(927\) 0 0
\(928\) 4.59254i 0.150757i
\(929\) −1.75111 + 1.01100i −0.0574520 + 0.0331699i −0.528451 0.848964i \(-0.677227\pi\)
0.470999 + 0.882134i \(0.343894\pi\)
\(930\) 0 0
\(931\) 51.5834 + 29.7817i 1.69058 + 0.976055i
\(932\) −14.5305 + 25.1675i −0.475962 + 0.824390i
\(933\) 0 0
\(934\) 3.84196 2.21816i 0.125713 0.0725804i
\(935\) −6.53566 −0.213739
\(936\) 0 0
\(937\) −15.3243 −0.500622 −0.250311 0.968166i \(-0.580533\pi\)
−0.250311 + 0.968166i \(0.580533\pi\)
\(938\) 4.73589 2.73427i 0.154632 0.0892770i
\(939\) 0 0
\(940\) 1.27874 2.21484i 0.0417078 0.0722400i
\(941\) −35.8714 20.7104i −1.16938 0.675139i −0.215842 0.976428i \(-0.569250\pi\)
−0.953533 + 0.301289i \(0.902583\pi\)
\(942\) 0 0
\(943\) −60.0435 + 34.6661i −1.95529 + 1.12888i
\(944\) 3.62311i 0.117922i
\(945\) 0 0
\(946\) −30.4047 −0.988541
\(947\) −49.2660 + 28.4437i −1.60093 + 0.924297i −0.609628 + 0.792687i \(0.708681\pi\)
−0.991302 + 0.131610i \(0.957985\pi\)
\(948\) 0 0
\(949\) 0.778579 + 0.878281i 0.0252738 + 0.0285102i
\(950\) 7.65226 13.2541i 0.248272 0.430020i
\(951\) 0 0
\(952\) −10.6204 18.3951i −0.344209 0.596187i
\(953\) 40.5931 1.31494 0.657470 0.753481i \(-0.271627\pi\)
0.657470 + 0.753481i \(0.271627\pi\)
\(954\) 0 0
\(955\) 5.45175i 0.176415i
\(956\) 6.29516 3.63451i 0.203600 0.117548i
\(957\) 0 0
\(958\) 5.90827 10.2334i 0.190888 0.330627i
\(959\) −49.5591 + 85.8389i −1.60035 + 2.77188i
\(960\) 0 0
\(961\) 5.51914 + 9.55944i 0.178037 + 0.308369i
\(962\) 7.12899 + 2.37753i 0.229848 + 0.0766547i
\(963\) 0 0
\(964\) 17.9104i 0.576856i
\(965\) 1.84638 + 3.19803i 0.0594372 + 0.102948i
\(966\) 0 0
\(967\) −43.2958 24.9968i −1.39230 0.803844i −0.398729 0.917069i \(-0.630548\pi\)
−0.993569 + 0.113225i \(0.963882\pi\)
\(968\) 0.594169 + 0.343044i 0.0190973 + 0.0110258i
\(969\) 0 0
\(970\) 5.47310 3.15989i 0.175730 0.101458i
\(971\) 31.1467 0.999546 0.499773 0.866156i \(-0.333417\pi\)
0.499773 + 0.866156i \(0.333417\pi\)
\(972\) 0 0
\(973\) 1.95805i 0.0627721i
\(974\) −12.9186 22.3758i −0.413940 0.716965i
\(975\) 0 0
\(976\) 0.500864 0.867521i 0.0160323 0.0277687i
\(977\) −5.97565 3.45004i −0.191178 0.110377i 0.401356 0.915922i \(-0.368539\pi\)
−0.592534 + 0.805546i \(0.701872\pi\)
\(978\) 0 0
\(979\) −13.5352 23.4436i −0.432586 0.749262i
\(980\) 8.98136i 0.286899i
\(981\) 0 0
\(982\) 11.1999i 0.357403i
\(983\) −45.4067 + 26.2156i −1.44825 + 0.836147i −0.998377 0.0569461i \(-0.981864\pi\)
−0.449872 + 0.893093i \(0.648530\pi\)
\(984\) 0 0
\(985\) −5.93626 + 10.2819i −0.189145 + 0.327608i
\(986\) −16.7142 9.64996i −0.532289 0.307317i
\(987\) 0 0
\(988\) −11.3446 + 2.31971i −0.360920 + 0.0737998i
\(989\) 59.3808 1.88820
\(990\) 0 0
\(991\) −26.0277 −0.826799 −0.413399 0.910550i \(-0.635659\pi\)
−0.413399 + 0.910550i \(0.635659\pi\)
\(992\) −3.24185 5.61504i −0.102929 0.178278i
\(993\) 0 0
\(994\) 20.2683 + 11.7019i 0.642872 + 0.371163i
\(995\) 5.67460 + 3.27623i 0.179897 + 0.103864i
\(996\) 0 0
\(997\) −13.6237 23.5970i −0.431468 0.747324i 0.565532 0.824726i \(-0.308671\pi\)
−0.997000 + 0.0774021i \(0.975337\pi\)
\(998\) 15.4596 0.489367
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.11 28
3.2 odd 2 234.2.t.a.103.5 yes 28
9.2 odd 6 234.2.t.a.25.12 yes 28
9.4 even 3 2106.2.b.d.649.11 14
9.5 odd 6 2106.2.b.c.649.4 14
9.7 even 3 inner 702.2.t.a.181.4 28
13.12 even 2 inner 702.2.t.a.415.4 28
39.38 odd 2 234.2.t.a.103.12 yes 28
117.25 even 6 inner 702.2.t.a.181.11 28
117.38 odd 6 234.2.t.a.25.5 28
117.77 odd 6 2106.2.b.c.649.11 14
117.103 even 6 2106.2.b.d.649.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.5 28 117.38 odd 6
234.2.t.a.25.12 yes 28 9.2 odd 6
234.2.t.a.103.5 yes 28 3.2 odd 2
234.2.t.a.103.12 yes 28 39.38 odd 2
702.2.t.a.181.4 28 9.7 even 3 inner
702.2.t.a.181.11 28 117.25 even 6 inner
702.2.t.a.415.4 28 13.12 even 2 inner
702.2.t.a.415.11 28 1.1 even 1 trivial
2106.2.b.c.649.4 14 9.5 odd 6
2106.2.b.c.649.11 14 117.77 odd 6
2106.2.b.d.649.4 14 117.103 even 6
2106.2.b.d.649.11 14 9.4 even 3